Renderer.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Renderer/RenderQueue.h>
  7. #include <AnKi/Util/Tracer.h>
  8. #include <AnKi/Util/ThreadHive.h>
  9. #include <AnKi/Core/CVarSet.h>
  10. #include <AnKi/Util/HighRezTimer.h>
  11. #include <AnKi/Collision/Aabb.h>
  12. #include <AnKi/Collision/Plane.h>
  13. #include <AnKi/Collision/Functions.h>
  14. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  15. #include <AnKi/Core/GpuMemory/GpuSceneBuffer.h>
  16. #include <AnKi/Scene/Components/CameraComponent.h>
  17. #include <AnKi/Renderer/ProbeReflections.h>
  18. #include <AnKi/Renderer/GBuffer.h>
  19. #include <AnKi/Renderer/GBufferPost.h>
  20. #include <AnKi/Renderer/LightShading.h>
  21. #include <AnKi/Renderer/ShadowMapping.h>
  22. #include <AnKi/Renderer/FinalComposite.h>
  23. #include <AnKi/Renderer/Bloom.h>
  24. #include <AnKi/Renderer/Tonemapping.h>
  25. #include <AnKi/Renderer/ForwardShading.h>
  26. #include <AnKi/Renderer/LensFlare.h>
  27. #include <AnKi/Renderer/Dbg.h>
  28. #include <AnKi/Renderer/DownscaleBlur.h>
  29. #include <AnKi/Renderer/VolumetricFog.h>
  30. #include <AnKi/Renderer/DepthDownscale.h>
  31. #include <AnKi/Renderer/TemporalAA.h>
  32. #include <AnKi/Renderer/UiStage.h>
  33. #include <AnKi/Renderer/IndirectSpecular.h>
  34. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  35. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  36. #include <AnKi/Renderer/GenericCompute.h>
  37. #include <AnKi/Renderer/ShadowmapsResolve.h>
  38. #include <AnKi/Renderer/RtShadows.h>
  39. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  40. #include <AnKi/Renderer/MotionVectors.h>
  41. #include <AnKi/Renderer/ClusterBinning.h>
  42. #include <AnKi/Renderer/Scale.h>
  43. #include <AnKi/Renderer/IndirectDiffuse.h>
  44. #include <AnKi/Renderer/VrsSriGeneration.h>
  45. #include <AnKi/Renderer/PackVisibleClusteredObjects.h>
  46. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  47. namespace anki {
  48. static NumericCVar<F32> g_internalRenderScalingCVar(CVarSubsystem::kRenderer, "InternalRenderScaling", 1.0f, 0.5f, 1.0f,
  49. "A factor over the requested swapchain resolution. Applies to all passes up to TAA");
  50. NumericCVar<F32> g_renderScalingCVar(CVarSubsystem::kRenderer, "RenderScaling", 1.0f, 0.5f, 8.0f,
  51. "A factor over the requested swapchain resolution. Applies to post-processing and UI");
  52. static NumericCVar<U32> g_tileSizeCVar(CVarSubsystem::kRenderer, "TileSize", 64, 8, 256, "Tile lighting tile size");
  53. static NumericCVar<U32> g_zSplitCountCVar(CVarSubsystem::kRenderer, "ZSplitCount", 64, 8, kMaxZsplitCount, "Clusterer number of Z splits");
  54. static NumericCVar<U8> g_textureAnisotropyCVar(CVarSubsystem::kRenderer, "TextureAnisotropy", (ANKI_PLATFORM_MOBILE) ? 1 : 8, 1, 16,
  55. "Texture anisotropy for the main passes");
  56. BoolCVar g_preferComputeCVar(CVarSubsystem::kRenderer, "PreferCompute", !ANKI_PLATFORM_MOBILE, "Prefer compute shaders");
  57. static BoolCVar g_highQualityHdrCVar(CVarSubsystem::kRenderer, "HighQualityHdr", !ANKI_PLATFORM_MOBILE,
  58. "If true use R16G16B16 for HDR images. Alternatively use B10G11R11");
  59. BoolCVar g_vrsLimitTo2x2CVar(CVarSubsystem::kRenderer, "VrsLimitTo2x2", false, "If true the max rate will be 2x2");
  60. BoolCVar g_vrsCVar(CVarSubsystem::kRenderer, "Vrs", true, "Enable VRS in multiple passes");
  61. /// Generate a Halton jitter in [-0.5, 0.5]
  62. static Vec2 generateJitter(U32 frame)
  63. {
  64. // Halton jitter
  65. Vec2 result(0.0f);
  66. constexpr U32 baseX = 2;
  67. U32 index = frame + 1;
  68. F32 invBase = 1.0f / baseX;
  69. F32 fraction = invBase;
  70. while(index > 0)
  71. {
  72. result.x() += F32(index % baseX) * fraction;
  73. index /= baseX;
  74. fraction *= invBase;
  75. }
  76. constexpr U32 baseY = 3;
  77. index = frame + 1;
  78. invBase = 1.0f / baseY;
  79. fraction = invBase;
  80. while(index > 0)
  81. {
  82. result.y() += F32(index % baseY) * fraction;
  83. index /= baseY;
  84. fraction *= invBase;
  85. }
  86. result.x() -= 0.5f;
  87. result.y() -= 0.5f;
  88. return result;
  89. }
  90. Renderer::Renderer()
  91. {
  92. }
  93. Renderer::~Renderer()
  94. {
  95. }
  96. Error Renderer::init(UVec2 swapchainSize)
  97. {
  98. ANKI_TRACE_SCOPED_EVENT(RInit);
  99. const Error err = initInternal(swapchainSize);
  100. if(err)
  101. {
  102. ANKI_R_LOGE("Failed to initialize the renderer");
  103. }
  104. return err;
  105. }
  106. Error Renderer::initInternal(UVec2 swapchainResolution)
  107. {
  108. m_frameCount = 0;
  109. // Set from the config
  110. m_postProcessResolution = UVec2(Vec2(swapchainResolution) * g_renderScalingCVar.get());
  111. alignRoundDown(2, m_postProcessResolution.x());
  112. alignRoundDown(2, m_postProcessResolution.y());
  113. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_internalRenderScalingCVar.get());
  114. alignRoundDown(2, m_internalResolution.x());
  115. alignRoundDown(2, m_internalResolution.y());
  116. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  117. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  118. m_tileSize = g_tileSizeCVar.get();
  119. m_tileCounts.x() = (m_internalResolution.x() + m_tileSize - 1) / m_tileSize;
  120. m_tileCounts.y() = (m_internalResolution.y() + m_tileSize - 1) / m_tileSize;
  121. m_zSplitCount = g_zSplitCountCVar.get();
  122. // A few sanity checks
  123. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  124. {
  125. ANKI_R_LOGE("Incorrect sizes");
  126. return Error::kUserData;
  127. }
  128. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  129. // Dummy resources
  130. {
  131. TextureInitInfo texinit("RendererDummy");
  132. texinit.m_width = texinit.m_height = 4;
  133. texinit.m_usage = TextureUsageBit::kAllSampled | TextureUsageBit::kImageComputeWrite;
  134. texinit.m_format = Format::kR8G8B8A8_Unorm;
  135. TexturePtr tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  136. TextureViewInitInfo viewinit(tex.get());
  137. m_dummyTexView2d = GrManager::getSingleton().newTextureView(viewinit);
  138. texinit.m_depth = 4;
  139. texinit.m_type = TextureType::k3D;
  140. tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  141. viewinit = TextureViewInitInfo(tex.get());
  142. m_dummyTexView3d = GrManager::getSingleton().newTextureView(viewinit);
  143. m_dummyBuff = GrManager::getSingleton().newBuffer(
  144. BufferInitInfo(1024, BufferUsageBit::kAllUniform | BufferUsageBit::kAllStorage, BufferMapAccessBit::kNone, "Dummy"));
  145. }
  146. // Init the stages. Careful with the order!!!!!!!!!!
  147. m_genericCompute.reset(newInstance<GenericCompute>(RendererMemoryPool::getSingleton()));
  148. ANKI_CHECK(m_genericCompute->init());
  149. m_volumetricLightingAccumulation.reset(newInstance<VolumetricLightingAccumulation>(RendererMemoryPool::getSingleton()));
  150. ANKI_CHECK(m_volumetricLightingAccumulation->init());
  151. m_indirectDiffuseProbes.reset(newInstance<IndirectDiffuseProbes>(RendererMemoryPool::getSingleton()));
  152. ANKI_CHECK(m_indirectDiffuseProbes->init());
  153. m_probeReflections.reset(newInstance<ProbeReflections>(RendererMemoryPool::getSingleton()));
  154. ANKI_CHECK(m_probeReflections->init());
  155. m_vrsSriGeneration.reset(newInstance<VrsSriGeneration>(RendererMemoryPool::getSingleton()));
  156. ANKI_CHECK(m_vrsSriGeneration->init());
  157. m_scale.reset(newInstance<Scale>(RendererMemoryPool::getSingleton()));
  158. ANKI_CHECK(m_scale->init());
  159. m_gbuffer.reset(newInstance<GBuffer>(RendererMemoryPool::getSingleton()));
  160. ANKI_CHECK(m_gbuffer->init());
  161. m_gbufferPost.reset(newInstance<GBufferPost>(RendererMemoryPool::getSingleton()));
  162. ANKI_CHECK(m_gbufferPost->init());
  163. m_shadowMapping.reset(newInstance<ShadowMapping>(RendererMemoryPool::getSingleton()));
  164. ANKI_CHECK(m_shadowMapping->init());
  165. m_volumetricFog.reset(newInstance<VolumetricFog>(RendererMemoryPool::getSingleton()));
  166. ANKI_CHECK(m_volumetricFog->init());
  167. m_lightShading.reset(newInstance<LightShading>(RendererMemoryPool::getSingleton()));
  168. ANKI_CHECK(m_lightShading->init());
  169. m_depthDownscale.reset(newInstance<DepthDownscale>(RendererMemoryPool::getSingleton()));
  170. ANKI_CHECK(m_depthDownscale->init());
  171. m_forwardShading.reset(newInstance<ForwardShading>(RendererMemoryPool::getSingleton()));
  172. ANKI_CHECK(m_forwardShading->init());
  173. m_lensFlare.reset(newInstance<LensFlare>(RendererMemoryPool::getSingleton()));
  174. ANKI_CHECK(m_lensFlare->init());
  175. m_downscaleBlur.reset(newInstance<DownscaleBlur>(RendererMemoryPool::getSingleton()));
  176. ANKI_CHECK(m_downscaleBlur->init());
  177. m_indirectSpecular.reset(newInstance<IndirectSpecular>(RendererMemoryPool::getSingleton()));
  178. ANKI_CHECK(m_indirectSpecular->init());
  179. m_tonemapping.reset(newInstance<Tonemapping>(RendererMemoryPool::getSingleton()));
  180. ANKI_CHECK(m_tonemapping->init());
  181. m_temporalAA.reset(newInstance<TemporalAA>(RendererMemoryPool::getSingleton()));
  182. ANKI_CHECK(m_temporalAA->init());
  183. m_bloom.reset(newInstance<Bloom>(RendererMemoryPool::getSingleton()));
  184. ANKI_CHECK(m_bloom->init());
  185. m_finalComposite.reset(newInstance<FinalComposite>(RendererMemoryPool::getSingleton()));
  186. ANKI_CHECK(m_finalComposite->init());
  187. m_dbg.reset(newInstance<Dbg>(RendererMemoryPool::getSingleton()));
  188. ANKI_CHECK(m_dbg->init());
  189. m_uiStage.reset(newInstance<UiStage>(RendererMemoryPool::getSingleton()));
  190. ANKI_CHECK(m_uiStage->init());
  191. m_indirectDiffuse.reset(newInstance<IndirectDiffuse>(RendererMemoryPool::getSingleton()));
  192. ANKI_CHECK(m_indirectDiffuse->init());
  193. if(GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled && g_rayTracedShadowsCVar.get())
  194. {
  195. m_accelerationStructureBuilder.reset(newInstance<AccelerationStructureBuilder>(RendererMemoryPool::getSingleton()));
  196. ANKI_CHECK(m_accelerationStructureBuilder->init());
  197. m_rtShadows.reset(newInstance<RtShadows>(RendererMemoryPool::getSingleton()));
  198. ANKI_CHECK(m_rtShadows->init());
  199. }
  200. else
  201. {
  202. m_shadowmapsResolve.reset(newInstance<ShadowmapsResolve>(RendererMemoryPool::getSingleton()));
  203. ANKI_CHECK(m_shadowmapsResolve->init());
  204. }
  205. m_motionVectors.reset(newInstance<MotionVectors>(RendererMemoryPool::getSingleton()));
  206. ANKI_CHECK(m_motionVectors->init());
  207. m_clusterBinning.reset(newInstance<ClusterBinning>(RendererMemoryPool::getSingleton()));
  208. ANKI_CHECK(m_clusterBinning->init());
  209. m_packVisibleClustererObjects.reset(newInstance<PackVisibleClusteredObjects>(RendererMemoryPool::getSingleton()));
  210. ANKI_CHECK(m_packVisibleClustererObjects->init());
  211. m_primaryNonRenderableVisibility.reset(newInstance<PrimaryNonRenderableVisibility>(RendererMemoryPool::getSingleton()));
  212. ANKI_CHECK(m_primaryNonRenderableVisibility->init());
  213. // Init samplers
  214. {
  215. SamplerInitInfo sinit("NearestNearestClamp");
  216. sinit.m_addressing = SamplingAddressing::kClamp;
  217. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  218. sinit.m_minMagFilter = SamplingFilter::kNearest;
  219. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  220. sinit.setName("TrilinearClamp");
  221. sinit.m_minMagFilter = SamplingFilter::kLinear;
  222. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  223. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  224. sinit.setName("TrilinearRepeat");
  225. sinit.m_addressing = SamplingAddressing::kRepeat;
  226. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  227. sinit.setName("TrilinearRepeatAniso");
  228. sinit.m_anisotropyLevel = g_textureAnisotropyCVar.get();
  229. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  230. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  231. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  232. if(getScale().getUsingGrUpscaler())
  233. {
  234. // DLSS wants more bias
  235. scalingMipBias -= 1.0f;
  236. }
  237. sinit.m_lodBias = scalingMipBias;
  238. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  239. sinit = {};
  240. sinit.setName("TrilinearClampShadow");
  241. sinit.m_minMagFilter = SamplingFilter::kLinear;
  242. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  243. sinit.m_compareOperation = CompareOperation::kLessEqual;
  244. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  245. }
  246. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  247. {
  248. m_jitterOffsets[i] = generateJitter(i);
  249. }
  250. ANKI_CHECK(m_visibility.init());
  251. ANKI_CHECK(m_nonRenderablesVisibility.init());
  252. ANKI_CHECK(m_hzbGenerator.init());
  253. return Error::kNone;
  254. }
  255. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  256. {
  257. ctx.m_prevMatrices = m_prevMatrices;
  258. ctx.m_matrices.m_cameraTransform = ctx.m_renderQueue->m_cameraTransform;
  259. ctx.m_matrices.m_view = ctx.m_renderQueue->m_viewMatrix;
  260. ctx.m_matrices.m_projection = ctx.m_renderQueue->m_projectionMatrix;
  261. ctx.m_matrices.m_viewProjection = ctx.m_renderQueue->m_viewProjectionMatrix;
  262. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  263. const Vec2 ndcPixelSize = 2.0f / Vec2(m_internalResolution);
  264. jitter *= ndcPixelSize;
  265. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  266. ctx.m_matrices.m_jitter.setTranslationPart(Vec4(jitter, 0.0f, 1.0f));
  267. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  268. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  269. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.getInverse();
  270. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.getInverse();
  271. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.getInverse();
  272. ctx.m_matrices.m_reprojection = ctx.m_matrices.m_jitter * ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjectionJitter;
  273. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  274. // Check if resources got loaded
  275. if(m_prevLoadRequestCount != ResourceManager::getSingleton().getLoadingRequestCount()
  276. || m_prevAsyncTasksCompleted != ResourceManager::getSingleton().getAsyncTaskCompletedCount())
  277. {
  278. m_prevLoadRequestCount = ResourceManager::getSingleton().getLoadingRequestCount();
  279. m_prevAsyncTasksCompleted = ResourceManager::getSingleton().getAsyncTaskCompletedCount();
  280. m_resourcesDirty = true;
  281. }
  282. else
  283. {
  284. m_resourcesDirty = false;
  285. }
  286. // Import RTs first
  287. m_downscaleBlur->importRenderTargets(ctx);
  288. m_tonemapping->importRenderTargets(ctx);
  289. m_depthDownscale->importRenderTargets(ctx);
  290. m_vrsSriGeneration->importRenderTargets(ctx);
  291. m_gbuffer->importRenderTargets(ctx);
  292. // Populate render graph. WARNING Watch the order
  293. gpuSceneCopy(ctx);
  294. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  295. m_packVisibleClustererObjects->populateRenderGraph(ctx);
  296. m_genericCompute->populateRenderGraph(ctx);
  297. m_clusterBinning->populateRenderGraph(ctx);
  298. if(m_accelerationStructureBuilder)
  299. {
  300. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  301. }
  302. m_gbuffer->populateRenderGraph(ctx);
  303. m_shadowMapping->populateRenderGraph(ctx);
  304. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  305. m_probeReflections->populateRenderGraph(ctx);
  306. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  307. m_motionVectors->populateRenderGraph(ctx);
  308. m_gbufferPost->populateRenderGraph(ctx);
  309. m_depthDownscale->populateRenderGraph(ctx);
  310. if(m_rtShadows)
  311. {
  312. m_rtShadows->populateRenderGraph(ctx);
  313. }
  314. else
  315. {
  316. m_shadowmapsResolve->populateRenderGraph(ctx);
  317. }
  318. m_volumetricFog->populateRenderGraph(ctx);
  319. m_lensFlare->populateRenderGraph(ctx);
  320. m_indirectSpecular->populateRenderGraph(ctx);
  321. m_indirectDiffuse->populateRenderGraph(ctx);
  322. m_lightShading->populateRenderGraph(ctx);
  323. if(!getScale().getUsingGrUpscaler())
  324. {
  325. m_temporalAA->populateRenderGraph(ctx);
  326. }
  327. m_vrsSriGeneration->populateRenderGraph(ctx);
  328. m_scale->populateRenderGraph(ctx);
  329. m_downscaleBlur->populateRenderGraph(ctx);
  330. m_tonemapping->populateRenderGraph(ctx);
  331. m_bloom->populateRenderGraph(ctx);
  332. m_dbg->populateRenderGraph(ctx);
  333. m_finalComposite->populateRenderGraph(ctx);
  334. // Populate the uniforms
  335. m_clusterBinning->writeClusterBuffersAsync();
  336. return Error::kNone;
  337. }
  338. void Renderer::finalize(const RenderingContext& ctx, Fence* fence)
  339. {
  340. ++m_frameCount;
  341. m_prevMatrices = ctx.m_matrices;
  342. // Inform about the HiZ map. Do it as late as possible
  343. if(ctx.m_renderQueue->m_fillCoverageBufferCallback)
  344. {
  345. F32* depthValues;
  346. U32 width;
  347. U32 height;
  348. m_depthDownscale->getClientDepthMapInfo(depthValues, width, height);
  349. ctx.m_renderQueue->m_fillCoverageBufferCallback(ctx.m_renderQueue->m_fillCoverageBufferCallbackUserData, depthValues, width, height);
  350. }
  351. m_readbaks.endFrame(fence);
  352. }
  353. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  354. {
  355. ANKI_ASSERT(!!(usage & TextureUsageBit::kFramebufferWrite) || !!(usage & TextureUsageBit::kImageComputeWrite));
  356. TextureInitInfo init(name);
  357. init.m_width = w;
  358. init.m_height = h;
  359. init.m_depth = 1;
  360. init.m_layerCount = 1;
  361. init.m_type = TextureType::k2D;
  362. init.m_format = format;
  363. init.m_mipmapCount = 1;
  364. init.m_samples = 1;
  365. init.m_usage = usage;
  366. return init;
  367. }
  368. RenderTargetDescription Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  369. {
  370. RenderTargetDescription init(name);
  371. init.m_width = w;
  372. init.m_height = h;
  373. init.m_depth = 1;
  374. init.m_layerCount = 1;
  375. init.m_type = TextureType::k2D;
  376. init.m_format = format;
  377. init.m_mipmapCount = 1;
  378. init.m_samples = 1;
  379. init.m_usage = TextureUsageBit::kNone;
  380. return init;
  381. }
  382. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  383. {
  384. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite) || !!(inf.m_usage & TextureUsageBit::kImageComputeWrite));
  385. const U faceCount = (inf.m_type == TextureType::kCube || inf.m_type == TextureType::kCubeArray) ? 6 : 1;
  386. Bool useCompute = false;
  387. if(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite))
  388. {
  389. useCompute = false;
  390. }
  391. else if(!!(inf.m_usage & TextureUsageBit::kImageComputeWrite))
  392. {
  393. useCompute = true;
  394. }
  395. else
  396. {
  397. ANKI_ASSERT(!"Can't handle that");
  398. }
  399. // Create tex
  400. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  401. // Clear all surfaces
  402. CommandBufferInitInfo cmdbinit;
  403. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  404. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  405. {
  406. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  407. }
  408. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  409. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  410. {
  411. for(U32 face = 0; face < faceCount; ++face)
  412. {
  413. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  414. {
  415. TextureSurfaceInfo surf(mip, 0, face, layer);
  416. if(!useCompute)
  417. {
  418. FramebufferInitInfo fbInit("RendererClearRT");
  419. Array<TextureUsageBit, kMaxColorRenderTargets> colUsage = {};
  420. TextureUsageBit dsUsage = TextureUsageBit::kNone;
  421. if(getFormatInfo(inf.m_format).isDepthStencil())
  422. {
  423. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  424. if(getFormatInfo(inf.m_format).isDepth())
  425. {
  426. aspect |= DepthStencilAspectBit::kDepth;
  427. }
  428. if(getFormatInfo(inf.m_format).isStencil())
  429. {
  430. aspect |= DepthStencilAspectBit::kStencil;
  431. }
  432. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf, aspect));
  433. fbInit.m_depthStencilAttachment.m_textureView = std::move(view);
  434. fbInit.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  435. fbInit.m_depthStencilAttachment.m_stencilLoadOperation = AttachmentLoadOperation::kClear;
  436. fbInit.m_depthStencilAttachment.m_clearValue = clearVal;
  437. dsUsage = TextureUsageBit::kFramebufferWrite;
  438. }
  439. else
  440. {
  441. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  442. fbInit.m_colorAttachmentCount = 1;
  443. fbInit.m_colorAttachments[0].m_textureView = view;
  444. fbInit.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  445. fbInit.m_colorAttachments[0].m_clearValue = clearVal;
  446. colUsage[0] = TextureUsageBit::kFramebufferWrite;
  447. }
  448. FramebufferPtr fb = GrManager::getSingleton().newFramebuffer(fbInit);
  449. TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, surf};
  450. barrier.m_subresource.m_depthStencilAspect = tex->getDepthStencilAspect();
  451. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  452. cmdb->beginRenderPass(fb.get(), colUsage, dsUsage);
  453. cmdb->endRenderPass();
  454. if(!!initialUsage)
  455. {
  456. barrier.m_previousUsage = TextureUsageBit::kFramebufferWrite;
  457. barrier.m_nextUsage = initialUsage;
  458. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  459. }
  460. }
  461. else
  462. {
  463. // Compute
  464. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  465. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  466. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  467. I32 componentType = 0;
  468. if(formatInfo.m_shaderType == 0)
  469. {
  470. componentType = 0;
  471. }
  472. else if(formatInfo.m_shaderType == 1)
  473. {
  474. componentType = 1;
  475. }
  476. else
  477. {
  478. ANKI_ASSERT(!"Not supported");
  479. }
  480. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  481. const ShaderProgramResourceVariant* variant;
  482. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  483. cmdb->bindShaderProgram(&variant->getProgram());
  484. cmdb->setPushConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  485. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  486. cmdb->bindImage(0, 0, view.get());
  487. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kImageComputeWrite, surf};
  488. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  489. UVec3 wgSize;
  490. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  491. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  492. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  493. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  494. if(!!initialUsage)
  495. {
  496. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kImageComputeWrite, initialUsage, surf};
  497. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  498. }
  499. }
  500. }
  501. }
  502. }
  503. cmdb->flush();
  504. return tex;
  505. }
  506. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  507. {
  508. #if ANKI_ASSERTIONS_ENABLED
  509. for(const DebugRtInfo& inf : m_debugRts)
  510. {
  511. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  512. }
  513. #endif
  514. ANKI_ASSERT(obj);
  515. DebugRtInfo inf;
  516. inf.m_obj = obj;
  517. inf.m_rtName = rtName;
  518. m_debugRts.emplaceBack(std::move(inf));
  519. }
  520. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  521. {
  522. if(m_currentDebugRtName.isEmpty()) [[likely]]
  523. {
  524. return false;
  525. }
  526. RendererObject* obj = nullptr;
  527. for(const DebugRtInfo& inf : m_debugRts)
  528. {
  529. if(inf.m_rtName == m_currentDebugRtName)
  530. {
  531. obj = inf.m_obj;
  532. }
  533. }
  534. ANKI_ASSERT(obj);
  535. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  536. return true;
  537. }
  538. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  539. {
  540. m_currentDebugRtName.destroy();
  541. if(!rtName.isEmpty() && rtName.getLength() > 0)
  542. {
  543. m_currentDebugRtName = rtName;
  544. }
  545. }
  546. Format Renderer::getHdrFormat() const
  547. {
  548. Format out;
  549. if(!g_highQualityHdrCVar.get())
  550. {
  551. out = Format::kB10G11R11_Ufloat_Pack32;
  552. }
  553. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  554. {
  555. out = Format::kR16G16B16_Sfloat;
  556. }
  557. else
  558. {
  559. out = Format::kR16G16B16A16_Sfloat;
  560. }
  561. return out;
  562. }
  563. Format Renderer::getDepthNoStencilFormat() const
  564. {
  565. if(ANKI_PLATFORM_MOBILE)
  566. {
  567. return Format::kX8D24_Unorm_Pack32;
  568. }
  569. else
  570. {
  571. return Format::kD32_Sfloat;
  572. }
  573. }
  574. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  575. {
  576. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  577. m_runCtx.m_gpuSceneHandle =
  578. rgraph.importBuffer(&GpuSceneBuffer::getSingleton().getBuffer(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  579. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  580. {
  581. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("GPU scene patching");
  582. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kStorageComputeWrite);
  583. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  584. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  585. });
  586. }
  587. }
  588. } // end namespace anki