Gr.cpp 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509
  1. // Copyright (C) 2009-2020, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <tests/framework/Framework.h>
  6. #include <anki/Gr.h>
  7. #include <anki/core/NativeWindow.h>
  8. #include <anki/core/ConfigSet.h>
  9. #include <anki/util/HighRezTimer.h>
  10. #include <anki/core/StagingGpuMemoryManager.h>
  11. #include <anki/resource/TransferGpuAllocator.h>
  12. #include <anki/shader_compiler/Glslang.h>
  13. #include <anki/shader_compiler/ShaderProgramParser.h>
  14. #include <anki/collision/Aabb.h>
  15. #include <ctime>
  16. namespace anki
  17. {
  18. const U WIDTH = 1024;
  19. const U HEIGHT = 768;
  20. static const char* VERT_SRC = R"(
  21. out gl_PerVertex
  22. {
  23. vec4 gl_Position;
  24. };
  25. void main()
  26. {
  27. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  28. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  29. })";
  30. static const char* VERT_QUAD_STRIP_SRC = R"(
  31. out gl_PerVertex
  32. {
  33. vec4 gl_Position;
  34. };
  35. layout(location = 0) out Vec2 out_uv;
  36. void main()
  37. {
  38. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  39. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  40. out_uv = gl_Position.xy / 2.0 + 0.5;
  41. })";
  42. static const char* VERT_UBO_SRC = R"(
  43. out gl_PerVertex
  44. {
  45. vec4 gl_Position;
  46. };
  47. layout(set = 0, binding = 0) uniform u0_
  48. {
  49. vec4 u_color[3];
  50. };
  51. layout(set = 0, binding = 1) uniform u1_
  52. {
  53. vec4 u_rotation2d;
  54. };
  55. layout(location = 0) out vec3 out_color;
  56. void main()
  57. {
  58. out_color = u_color[gl_VertexID].rgb;
  59. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  60. mat2 rot = mat2(
  61. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  62. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  63. gl_Position = vec4(pos, 0.0, 1.0);
  64. })";
  65. static const char* VERT_INP_SRC = R"(
  66. layout(location = 0) in vec3 in_position;
  67. layout(location = 1) in vec3 in_color0;
  68. layout(location = 2) in vec3 in_color1;
  69. out gl_PerVertex
  70. {
  71. vec4 gl_Position;
  72. };
  73. layout(location = 0) out vec3 out_color0;
  74. layout(location = 1) out vec3 out_color1;
  75. void main()
  76. {
  77. gl_Position = vec4(in_position, 1.0);
  78. out_color0 = in_color0;
  79. out_color1 = in_color1;
  80. })";
  81. static const char* VERT_QUAD_SRC = R"(
  82. out gl_PerVertex
  83. {
  84. vec4 gl_Position;
  85. };
  86. layout(location = 0) out vec2 out_uv;
  87. void main()
  88. {
  89. const vec2 POSITIONS[6] =
  90. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  91. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  92. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  93. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  94. })";
  95. static const char* VERT_MRT_SRC = R"(
  96. out gl_PerVertex
  97. {
  98. vec4 gl_Position;
  99. };
  100. layout(location = 0) in vec3 in_pos;
  101. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  102. {
  103. mat4 u_mvp;
  104. };
  105. void main()
  106. {
  107. gl_Position = u_mvp * vec4(in_pos, 1.0);
  108. })";
  109. static const char* FRAG_SRC = R"(layout (location = 0) out vec4 out_color;
  110. void main()
  111. {
  112. out_color = vec4(0.5);
  113. })";
  114. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  115. layout(location = 0) in vec3 in_color;
  116. void main()
  117. {
  118. out_color = vec4(in_color, 1.0);
  119. })";
  120. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  121. layout(location = 0) in vec3 in_color0;
  122. layout(location = 1) in vec3 in_color1;
  123. void main()
  124. {
  125. out_color = vec4(in_color0 + in_color1, 1.0);
  126. })";
  127. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  128. layout(location = 0) in vec2 in_uv;
  129. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  130. void main()
  131. {
  132. out_color = texture(u_tex0, in_uv);
  133. })";
  134. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  135. layout(location = 0) in vec2 in_uv;
  136. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  137. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  138. void main()
  139. {
  140. if(gl_FragCoord.x < 1024 / 2)
  141. {
  142. if(gl_FragCoord.y < 768 / 2)
  143. {
  144. vec2 uv = in_uv * 2.0;
  145. out_color = textureLod(u_tex0, uv, 0.0);
  146. }
  147. else
  148. {
  149. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  150. out_color = textureLod(u_tex0, uv, 1.0);
  151. }
  152. }
  153. else
  154. {
  155. if(gl_FragCoord.y < 768 / 2)
  156. {
  157. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  158. out_color = textureLod(u_tex1, uv, 0.0);
  159. }
  160. else
  161. {
  162. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  163. out_color = textureLod(u_tex1, uv, 1.0);
  164. }
  165. }
  166. })";
  167. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  168. layout(set = 0, binding = 0) uniform u0_
  169. {
  170. vec4 u_uv;
  171. };
  172. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  173. void main()
  174. {
  175. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  176. })";
  177. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  178. layout (location = 1) out vec4 out_color1;
  179. layout(set = 0, binding = 1, std140) uniform u1_
  180. {
  181. vec4 u_color0;
  182. vec4 u_color1;
  183. };
  184. void main()
  185. {
  186. out_color0 = u_color0;
  187. out_color1 = u_color1;
  188. })";
  189. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  190. layout(location = 0) in vec2 in_uv;
  191. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  192. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  193. void main()
  194. {
  195. vec2 uv = in_uv;
  196. #ifdef ANKI_VK
  197. uv.y = 1.0 - uv.y;
  198. #endif
  199. float factor = uv.x;
  200. vec3 col0 = texture(u_tex0, uv).rgb;
  201. vec3 col1 = texture(u_tex1, uv).rgb;
  202. out_color = vec4(col1 + col0, 1.0);
  203. })";
  204. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  205. layout (location = 0) out vec4 out_color;
  206. layout(location = 0) in vec2 in_uv;
  207. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  208. void main()
  209. {
  210. out_color = textureLod(u_tex0, in_uv, 1.0);
  211. })";
  212. static const char* COMP_WRITE_IMAGE_SRC = R"(
  213. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  214. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  215. layout(set = 1, binding = 0) buffer ss1_
  216. {
  217. vec4 u_color;
  218. };
  219. void main()
  220. {
  221. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  222. })";
  223. static NativeWindow* win = nullptr;
  224. static GrManager* gr = nullptr;
  225. static StagingGpuMemoryManager* stagingMem = nullptr;
  226. #define COMMON_BEGIN() \
  227. stagingMem = new StagingGpuMemoryManager(); \
  228. ConfigSet cfg = DefaultConfigSet::get(); \
  229. cfg.set("width", WIDTH); \
  230. cfg.set("height", HEIGHT); \
  231. cfg.set("gr_debugContext", true); \
  232. cfg.set("gr_vsync", false); \
  233. cfg.set("gr_rayTracing", true); \
  234. cfg.set("gr_debugMarkers", true); \
  235. win = createWindow(cfg); \
  236. gr = createGrManager(cfg, win); \
  237. ANKI_TEST_EXPECT_NO_ERR(stagingMem->init(gr, cfg)); \
  238. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  239. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB, gr, gr->getAllocator())); \
  240. while(true) \
  241. {
  242. #define COMMON_END() \
  243. break; \
  244. } \
  245. gr->finish(); \
  246. delete transfAlloc; \
  247. delete stagingMem; \
  248. GrManager::deleteInstance(gr); \
  249. delete win; \
  250. win = nullptr; \
  251. gr = nullptr; \
  252. stagingMem = nullptr;
  253. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  254. {
  255. StagingGpuMemoryToken token;
  256. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::UNIFORM, token);
  257. cmdb->bindUniformBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  258. return ptr;
  259. }
  260. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  261. {
  262. StagingGpuMemoryToken token;
  263. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::STORAGE, token);
  264. cmdb->bindStorageBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  265. return ptr;
  266. }
  267. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  268. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  269. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  270. do \
  271. { \
  272. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  273. void* f = handle_.getMappedMemory(); \
  274. memcpy(f, ptr_, size_); \
  275. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, surf_)); \
  276. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  277. } while(0)
  278. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  279. do \
  280. { \
  281. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  282. void* f = handle_.getMappedMemory(); \
  283. memcpy(f, ptr_, size_); \
  284. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, vol_)); \
  285. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  286. } while(0)
  287. const Format DS_FORMAT = Format::D24_UNORM_S8_UINT;
  288. static ShaderPtr createShader(CString src, ShaderType type, GrManager& gr,
  289. ConstWeakArray<ShaderSpecializationConstValue> specVals = {})
  290. {
  291. HeapAllocator<U8> alloc(allocAligned, nullptr);
  292. StringAuto header(alloc);
  293. ShaderProgramParser::generateAnkiShaderHeader(type, gr.getDeviceCapabilities(), gr.getBindlessLimits(), header);
  294. header.append(src);
  295. DynamicArrayAuto<U8> spirv(alloc);
  296. ANKI_TEST_EXPECT_NO_ERR(compilerGlslToSpirv(header, type, alloc, spirv));
  297. ShaderInitInfo initInf(type, spirv);
  298. initInf.m_constValues = specVals;
  299. return gr.newShader(initInf);
  300. }
  301. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  302. {
  303. ShaderPtr vert = createShader(vertSrc, ShaderType::VERTEX, gr);
  304. ShaderPtr frag = createShader(fragSrc, ShaderType::FRAGMENT, gr);
  305. ShaderProgramInitInfo inf;
  306. inf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  307. inf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  308. return gr.newShaderProgram(inf);
  309. }
  310. static FramebufferPtr createColorFb(GrManager& gr, TexturePtr tex)
  311. {
  312. TextureViewInitInfo init;
  313. init.m_texture = tex;
  314. TextureViewPtr view = gr.newTextureView(init);
  315. FramebufferInitInfo fbinit;
  316. fbinit.m_colorAttachmentCount = 1;
  317. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{1.0, 0.0, 1.0, 1.0}};
  318. fbinit.m_colorAttachments[0].m_textureView = view;
  319. return gr.newFramebuffer(fbinit);
  320. }
  321. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  322. {
  323. static const Array<F32, 8 * 3> pos = {
  324. {1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  325. static const Array<U16, 6 * 2 * 3> idx = {
  326. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  327. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  328. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::WRITE);
  329. memcpy(mapped, &pos[0], sizeof(pos));
  330. verts->unmap();
  331. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::INDEX, BufferMapAccessBit::WRITE));
  332. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::WRITE);
  333. memcpy(mapped, &idx[0], sizeof(idx));
  334. indices->unmap();
  335. }
  336. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  337. {
  338. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  339. TextureSubresourceInfo());
  340. }
  341. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  342. {
  343. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  344. TextureSubresourceInfo());
  345. }
  346. ANKI_TEST(Gr, GrManager){COMMON_BEGIN() COMMON_END()}
  347. ANKI_TEST(Gr, Shader)
  348. {
  349. COMMON_BEGIN()
  350. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::FRAGMENT, *gr);
  351. COMMON_END()
  352. }
  353. ANKI_TEST(Gr, ShaderProgram)
  354. {
  355. COMMON_BEGIN()
  356. ShaderProgramPtr ppline = createProgram(VERT_SRC, FRAG_SRC, *gr);
  357. COMMON_END()
  358. }
  359. ANKI_TEST(Gr, ClearScreen)
  360. {
  361. COMMON_BEGIN()
  362. ANKI_TEST_LOGI("Expect to see a magenta background");
  363. U iterations = 100;
  364. while(iterations--)
  365. {
  366. HighRezTimer timer;
  367. timer.start();
  368. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  369. FramebufferPtr fb = createColorFb(*gr, presentTex);
  370. CommandBufferInitInfo cinit;
  371. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  372. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  373. presentBarrierA(cmdb, presentTex);
  374. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  375. cmdb->endRenderPass();
  376. presentBarrierB(cmdb, presentTex);
  377. cmdb->flush();
  378. gr->swapBuffers();
  379. timer.stop();
  380. const F32 TICK = 1.0f / 30.0f;
  381. if(timer.getElapsedTime() < TICK)
  382. {
  383. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  384. }
  385. }
  386. COMMON_END()
  387. }
  388. ANKI_TEST(Gr, SimpleDrawcall)
  389. {
  390. COMMON_BEGIN()
  391. ANKI_TEST_LOGI("Expect to see a grey triangle");
  392. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  393. const U ITERATIONS = 200;
  394. for(U i = 0; i < ITERATIONS; ++i)
  395. {
  396. HighRezTimer timer;
  397. timer.start();
  398. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  399. FramebufferPtr fb = createColorFb(*gr, presentTex);
  400. CommandBufferInitInfo cinit;
  401. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  402. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  403. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  404. cmdb->bindShaderProgram(prog);
  405. presentBarrierA(cmdb, presentTex);
  406. cmdb->beginRenderPass(fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  407. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  408. cmdb->endRenderPass();
  409. presentBarrierB(cmdb, presentTex);
  410. cmdb->flush();
  411. gr->swapBuffers();
  412. timer.stop();
  413. const F32 TICK = 1.0f / 30.0f;
  414. if(timer.getElapsedTime() < TICK)
  415. {
  416. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  417. }
  418. }
  419. COMMON_END()
  420. }
  421. ANKI_TEST(Gr, ViewportAndScissor)
  422. {
  423. #if 0
  424. COMMON_BEGIN()
  425. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  426. "the area around the quad");
  427. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  428. srand(time(nullptr));
  429. Array<FramebufferPtr, 4> fb;
  430. for(FramebufferPtr& f : fb)
  431. {
  432. FramebufferInitInfo fbinit;
  433. fbinit.m_colorAttachmentCount = 1;
  434. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  435. f = gr->newFramebuffer(fbinit);
  436. }
  437. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  438. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  439. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  440. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  441. const U ITERATIONS = 400;
  442. const U SCISSOR_MARGIN = 20;
  443. const U RENDER_AREA_MARGIN = 10;
  444. for(U i = 0; i < ITERATIONS; ++i)
  445. {
  446. HighRezTimer timer;
  447. timer.start();
  448. gr->beginFrame();
  449. CommandBufferInitInfo cinit;
  450. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  451. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  452. U idx = (i / 30) % 4;
  453. auto vp = VIEWPORTS[idx];
  454. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  455. cmdb->setScissor(
  456. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  457. cmdb->bindShaderProgram(prog);
  458. cmdb->beginRenderPass(fb[i % 4],
  459. {},
  460. {},
  461. vp[0] + RENDER_AREA_MARGIN,
  462. vp[1] + RENDER_AREA_MARGIN,
  463. vp[2] - RENDER_AREA_MARGIN * 2,
  464. vp[3] - RENDER_AREA_MARGIN * 2);
  465. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  466. cmdb->endRenderPass();
  467. cmdb->flush();
  468. gr->swapBuffers();
  469. timer.stop();
  470. const F32 TICK = 1.0f / 30.0f;
  471. if(timer.getElapsedTime() < TICK)
  472. {
  473. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  474. }
  475. }
  476. COMMON_END()
  477. #endif
  478. }
  479. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  480. {
  481. srand(U32(time(nullptr)));
  482. COMMON_BEGIN()
  483. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  484. "Around that quad is a border that changes color. "
  485. "The quads appear counter-clockwise");
  486. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  487. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *gr);
  488. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  489. const U RT_WIDTH = 32;
  490. const U RT_HEIGHT = 16;
  491. TextureInitInfo init;
  492. init.m_depth = 1;
  493. init.m_format = COL_FORMAT;
  494. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  495. init.m_height = RT_HEIGHT;
  496. init.m_width = RT_WIDTH;
  497. init.m_mipmapCount = 1;
  498. init.m_depth = 1;
  499. init.m_layerCount = 1;
  500. init.m_samples = 1;
  501. init.m_type = TextureType::_2D;
  502. TexturePtr rt = gr->newTexture(init);
  503. TextureViewInitInfo viewInit(rt);
  504. TextureViewPtr texView = gr->newTextureView(viewInit);
  505. Array<FramebufferPtr, 4> fb;
  506. for(FramebufferPtr& f : fb)
  507. {
  508. TextureViewInitInfo viewInf(rt);
  509. TextureViewPtr view = gr->newTextureView(viewInf);
  510. FramebufferInitInfo fbinit;
  511. fbinit.m_colorAttachmentCount = 1;
  512. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  513. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  514. fbinit.m_colorAttachments[0].m_textureView = view;
  515. f = gr->newFramebuffer(fbinit);
  516. }
  517. SamplerInitInfo samplerInit;
  518. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  519. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  520. SamplerPtr sampler = gr->newSampler(samplerInit);
  521. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  522. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  523. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  524. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  525. const U32 ITERATIONS = 400;
  526. const U32 SCISSOR_MARGIN = 2;
  527. const U32 RENDER_AREA_MARGIN = 1;
  528. for(U32 i = 0; i < ITERATIONS; ++i)
  529. {
  530. HighRezTimer timer;
  531. timer.start();
  532. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  533. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  534. if(i == 0)
  535. {
  536. CommandBufferInitInfo cinit;
  537. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  538. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  539. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  540. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  541. TextureSurfaceInfo(0, 0, 0, 0));
  542. cmdb->beginRenderPass(fb[0], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  543. cmdb->endRenderPass();
  544. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  545. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  546. cmdb->flush();
  547. }
  548. CommandBufferInitInfo cinit;
  549. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  550. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  551. // Draw offscreen
  552. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::SAMPLED_FRAGMENT,
  553. TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureSurfaceInfo(0, 0, 0, 0));
  554. auto vp = VIEWPORTS[(i / 30) % 4];
  555. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  556. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2,
  557. vp[3] - SCISSOR_MARGIN * 2);
  558. cmdb->bindShaderProgram(prog);
  559. cmdb->beginRenderPass(fb[i % 4], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {},
  560. vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN, vp[2] - RENDER_AREA_MARGIN * 2,
  561. vp[3] - RENDER_AREA_MARGIN * 2);
  562. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  563. cmdb->endRenderPass();
  564. // Draw onscreen
  565. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  566. cmdb->setScissor(0, 0, WIDTH, HEIGHT);
  567. cmdb->bindShaderProgram(blitProg);
  568. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  569. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  570. cmdb->bindTextureAndSampler(0, 0, texView, sampler, TextureUsageBit::SAMPLED_FRAGMENT);
  571. presentBarrierA(cmdb, presentTex);
  572. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  573. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  574. cmdb->endRenderPass();
  575. presentBarrierB(cmdb, presentTex);
  576. cmdb->flush();
  577. gr->swapBuffers();
  578. timer.stop();
  579. const F32 TICK = 1.0f / 30.0f;
  580. if(timer.getElapsedTime() < TICK)
  581. {
  582. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  583. }
  584. }
  585. COMMON_END()
  586. }
  587. ANKI_TEST(Gr, Buffer)
  588. {
  589. COMMON_BEGIN()
  590. BufferPtr a = gr->newBuffer(BufferInitInfo(512, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::NONE));
  591. BufferPtr b = gr->newBuffer(
  592. BufferInitInfo(64, BufferUsageBit::ALL_STORAGE, BufferMapAccessBit::WRITE | BufferMapAccessBit::READ));
  593. void* ptr = b->map(0, 64, BufferMapAccessBit::WRITE);
  594. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  595. U8 ptr2[64];
  596. memset(ptr, 0xCC, 64);
  597. memset(ptr2, 0xCC, 64);
  598. b->unmap();
  599. ptr = b->map(0, 64, BufferMapAccessBit::READ);
  600. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  601. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  602. b->unmap();
  603. COMMON_END()
  604. }
  605. ANKI_TEST(Gr, DrawWithUniforms)
  606. {
  607. COMMON_BEGIN()
  608. // A non-uploaded buffer
  609. BufferPtr b =
  610. gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::WRITE));
  611. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::WRITE));
  612. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  613. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  614. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  615. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  616. b->unmap();
  617. // Progm
  618. ShaderProgramPtr prog = createProgram(VERT_UBO_SRC, FRAG_UBO_SRC, *gr);
  619. const U ITERATION_COUNT = 100;
  620. U iterations = ITERATION_COUNT;
  621. while(iterations--)
  622. {
  623. HighRezTimer timer;
  624. timer.start();
  625. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  626. FramebufferPtr fb = createColorFb(*gr, presentTex);
  627. CommandBufferInitInfo cinit;
  628. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  629. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  630. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  631. cmdb->bindShaderProgram(prog);
  632. presentBarrierA(cmdb, presentTex);
  633. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  634. cmdb->bindUniformBuffer(0, 0, b, 0, MAX_PTR_SIZE);
  635. // Uploaded buffer
  636. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  637. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  638. (*rotMat)[0] = cos(angle);
  639. (*rotMat)[1] = -sin(angle);
  640. (*rotMat)[2] = sin(angle);
  641. (*rotMat)[3] = cos(angle);
  642. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  643. cmdb->endRenderPass();
  644. presentBarrierB(cmdb, presentTex);
  645. cmdb->flush();
  646. gr->swapBuffers();
  647. timer.stop();
  648. const F32 TICK = 1.0f / 30.0f;
  649. if(timer.getElapsedTime() < TICK)
  650. {
  651. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  652. }
  653. }
  654. COMMON_END()
  655. }
  656. ANKI_TEST(Gr, DrawWithVertex)
  657. {
  658. COMMON_BEGIN()
  659. // The buffers
  660. struct Vert
  661. {
  662. Vec3 m_pos;
  663. Array<U8, 4> m_color;
  664. };
  665. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  666. BufferPtr b = gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  667. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::WRITE));
  668. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  669. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  670. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  671. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  672. ptr[0].m_color = {{255, 0, 0}};
  673. ptr[1].m_color = {{0, 255, 0}};
  674. ptr[2].m_color = {{0, 0, 255}};
  675. b->unmap();
  676. BufferPtr c = gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  677. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::WRITE));
  678. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  679. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  680. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  681. c->unmap();
  682. // Prog
  683. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *gr);
  684. U iterations = 100;
  685. while(iterations--)
  686. {
  687. HighRezTimer timer;
  688. timer.start();
  689. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  690. FramebufferPtr fb = createColorFb(*gr, presentTex);
  691. CommandBufferInitInfo cinit;
  692. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  693. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  694. cmdb->bindVertexBuffer(0, b, 0, sizeof(Vert));
  695. cmdb->bindVertexBuffer(1, c, 0, sizeof(Vec3));
  696. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  697. cmdb->setVertexAttribute(1, 0, Format::R8G8B8_UNORM, sizeof(Vec3));
  698. cmdb->setVertexAttribute(2, 1, Format::R32G32B32_SFLOAT, 0);
  699. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  700. cmdb->setPolygonOffset(0.0, 0.0);
  701. cmdb->bindShaderProgram(prog);
  702. presentBarrierA(cmdb, presentTex);
  703. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  704. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  705. cmdb->endRenderPass();
  706. presentBarrierB(cmdb, presentTex);
  707. cmdb->flush();
  708. gr->swapBuffers();
  709. timer.stop();
  710. const F32 TICK = 1.0f / 30.0f;
  711. if(timer.getElapsedTime() < TICK)
  712. {
  713. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  714. }
  715. }
  716. COMMON_END()
  717. }
  718. ANKI_TEST(Gr, Sampler)
  719. {
  720. COMMON_BEGIN()
  721. SamplerInitInfo init;
  722. SamplerPtr b = gr->newSampler(init);
  723. COMMON_END()
  724. }
  725. ANKI_TEST(Gr, Texture)
  726. {
  727. COMMON_BEGIN()
  728. TextureInitInfo init;
  729. init.m_depth = 1;
  730. init.m_format = Format::R8G8B8_UNORM;
  731. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT;
  732. init.m_height = 4;
  733. init.m_width = 4;
  734. init.m_mipmapCount = 2;
  735. init.m_depth = 1;
  736. init.m_layerCount = 1;
  737. init.m_samples = 1;
  738. init.m_type = TextureType::_2D;
  739. TexturePtr b = gr->newTexture(init);
  740. TextureViewInitInfo view(b);
  741. TextureViewPtr v = gr->newTextureView(view);
  742. COMMON_END()
  743. }
  744. ANKI_TEST(Gr, DrawWithTexture)
  745. {
  746. COMMON_BEGIN()
  747. //
  748. // Create sampler
  749. //
  750. SamplerInitInfo samplerInit;
  751. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  752. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  753. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  754. SamplerPtr sampler = gr->newSampler(samplerInit);
  755. //
  756. // Create texture A
  757. //
  758. TextureInitInfo init;
  759. init.m_depth = 1;
  760. init.m_format = Format::R8G8B8_UNORM;
  761. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  762. init.m_initialUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  763. init.m_height = 2;
  764. init.m_width = 2;
  765. init.m_mipmapCount = 2;
  766. init.m_samples = 1;
  767. init.m_depth = 1;
  768. init.m_layerCount = 1;
  769. init.m_type = TextureType::_2D;
  770. TexturePtr a = gr->newTexture(init);
  771. TextureViewPtr aView = gr->newTextureView(TextureViewInitInfo(a));
  772. //
  773. // Create texture B
  774. //
  775. init.m_width = 4;
  776. init.m_height = 4;
  777. init.m_mipmapCount = 3;
  778. init.m_usage =
  779. TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::GENERATE_MIPMAPS;
  780. init.m_initialUsage = TextureUsageBit::NONE;
  781. TexturePtr b = gr->newTexture(init);
  782. TextureViewPtr bView = gr->newTextureView(TextureViewInitInfo(b));
  783. //
  784. // Upload all textures
  785. //
  786. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  787. Array<U8, 3> mip1 = {{128, 128, 128}};
  788. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0,
  789. 255, 255, 255, 255, 255, 128, 0, 0, 0, 128, 0, 0, 0, 128, 128, 128,
  790. 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  791. CommandBufferInitInfo cmdbinit;
  792. cmdbinit.m_flags = CommandBufferFlag::TRANSFER_WORK;
  793. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  794. // Set barriers
  795. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  796. TextureSurfaceInfo(0, 0, 0, 0));
  797. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  798. TextureSurfaceInfo(1, 0, 0, 0));
  799. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  800. TextureSurfaceInfo(0, 0, 0, 0));
  801. TransferGpuAllocatorHandle handle0, handle1, handle2;
  802. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  803. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  804. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  805. // Gen mips
  806. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::GENERATE_MIPMAPS,
  807. TextureSurfaceInfo(0, 0, 0, 0));
  808. cmdb->generateMipmaps2d(gr->newTextureView(TextureViewInitInfo(b)));
  809. // Set barriers
  810. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  811. TextureSurfaceInfo(0, 0, 0, 0));
  812. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  813. TextureSurfaceInfo(1, 0, 0, 0));
  814. for(U32 i = 0; i < 3; ++i)
  815. {
  816. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::GENERATE_MIPMAPS, TextureUsageBit::SAMPLED_FRAGMENT,
  817. TextureSurfaceInfo(i, 0, 0, 0));
  818. }
  819. FencePtr fence;
  820. cmdb->flush(&fence);
  821. transfAlloc->release(handle0, fence);
  822. transfAlloc->release(handle1, fence);
  823. transfAlloc->release(handle2, fence);
  824. //
  825. // Create prog
  826. //
  827. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *gr);
  828. //
  829. // Draw
  830. //
  831. const U ITERATION_COUNT = 200;
  832. U iterations = ITERATION_COUNT;
  833. while(iterations--)
  834. {
  835. HighRezTimer timer;
  836. timer.start();
  837. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  838. FramebufferPtr fb = createColorFb(*gr, presentTex);
  839. CommandBufferInitInfo cinit;
  840. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  841. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  842. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  843. cmdb->bindShaderProgram(prog);
  844. presentBarrierA(cmdb, presentTex);
  845. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  846. cmdb->bindTextureAndSampler(0, 0, aView, sampler, TextureUsageBit::SAMPLED_FRAGMENT);
  847. cmdb->bindTextureAndSampler(0, 1, bView, sampler, TextureUsageBit::SAMPLED_FRAGMENT);
  848. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  849. cmdb->endRenderPass();
  850. presentBarrierB(cmdb, presentTex);
  851. cmdb->flush();
  852. gr->swapBuffers();
  853. timer.stop();
  854. const F32 TICK = 1.0f / 30.0f;
  855. if(timer.getElapsedTime() < TICK)
  856. {
  857. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  858. }
  859. }
  860. COMMON_END()
  861. }
  862. static void drawOffscreenDrawcalls(GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  863. BufferPtr indexBuff, BufferPtr vertBuff)
  864. {
  865. static F32 ang = -2.5f;
  866. ang += toRad(2.5f);
  867. Mat4 viewMat(Vec4(0.0, 0.0, 5.0, 1.0), Mat3::getIdentity(), 1.0f);
  868. viewMat.invert();
  869. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  870. Mat4 modelMat(Vec4(-0.5, -0.5, 0.0, 1.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), 1.0f);
  871. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  872. *mvp = projMat * viewMat * modelMat;
  873. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  874. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  875. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  876. cmdb->bindVertexBuffer(0, vertBuff, 0, sizeof(Vec3));
  877. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  878. cmdb->bindShaderProgram(prog);
  879. cmdb->bindIndexBuffer(indexBuff, 0, IndexType::U16);
  880. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  881. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  882. // 2nd draw
  883. modelMat = Mat4(Vec4(0.5, 0.5, 0.0, 1.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), 1.0f);
  884. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  885. *mvp = projMat * viewMat * modelMat;
  886. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  887. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  888. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  889. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  890. }
  891. static void drawOffscreen(GrManager& gr, Bool useSecondLevel)
  892. {
  893. //
  894. // Create textures
  895. //
  896. SamplerInitInfo samplerInit;
  897. samplerInit.m_minMagFilter = SamplingFilter::LINEAR;
  898. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  899. SamplerPtr sampler = gr.newSampler(samplerInit);
  900. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  901. const U TEX_SIZE = 256;
  902. TextureInitInfo init;
  903. init.m_format = COL_FORMAT;
  904. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  905. init.m_height = TEX_SIZE;
  906. init.m_width = TEX_SIZE;
  907. init.m_type = TextureType::_2D;
  908. TexturePtr col0 = gr.newTexture(init);
  909. TexturePtr col1 = gr.newTexture(init);
  910. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0));
  911. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1));
  912. init.m_format = DS_FORMAT;
  913. TexturePtr dp = gr.newTexture(init);
  914. //
  915. // Create FB
  916. //
  917. FramebufferInitInfo fbinit;
  918. fbinit.m_colorAttachmentCount = 2;
  919. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0));
  920. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  921. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1));
  922. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  923. TextureViewInitInfo viewInit(dp);
  924. viewInit.m_depthStencilAspect = DepthStencilAspectBit::DEPTH;
  925. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  926. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  927. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  928. //
  929. // Create buffs
  930. //
  931. BufferPtr verts, indices;
  932. createCube(gr, verts, indices);
  933. //
  934. // Create progs
  935. //
  936. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  937. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  938. //
  939. // Draw
  940. //
  941. const U ITERATION_COUNT = 200;
  942. U iterations = ITERATION_COUNT;
  943. while(iterations--)
  944. {
  945. HighRezTimer timer;
  946. timer.start();
  947. CommandBufferInitInfo cinit;
  948. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  949. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  950. cmdb->setPolygonOffset(0.0, 0.0);
  951. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  952. TextureSurfaceInfo(0, 0, 0, 0));
  953. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  954. TextureSurfaceInfo(0, 0, 0, 0));
  955. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::NONE, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  956. TextureSurfaceInfo(0, 0, 0, 0));
  957. cmdb->beginRenderPass(
  958. fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}},
  959. TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT);
  960. if(!useSecondLevel)
  961. {
  962. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  963. }
  964. else
  965. {
  966. CommandBufferInitInfo cinit;
  967. cinit.m_flags = CommandBufferFlag::SECOND_LEVEL | CommandBufferFlag::GRAPHICS_WORK;
  968. cinit.m_framebuffer = fb;
  969. CommandBufferPtr cmdb2 = gr.newCommandBuffer(cinit);
  970. drawOffscreenDrawcalls(gr, prog, cmdb2, TEX_SIZE, indices, verts);
  971. cmdb2->flush();
  972. cmdb->pushSecondLevelCommandBuffer(cmdb2);
  973. }
  974. cmdb->endRenderPass();
  975. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  976. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  977. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  978. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  979. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  980. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  981. // Draw quad
  982. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  983. FramebufferPtr dfb = createColorFb(gr, presentTex);
  984. presentBarrierA(cmdb, presentTex);
  985. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  986. cmdb->bindShaderProgram(resolveProg);
  987. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  988. cmdb->bindTextureAndSampler(0, 0, col0View, sampler, TextureUsageBit::SAMPLED_FRAGMENT);
  989. cmdb->bindTextureAndSampler(0, 2, col1View, sampler, TextureUsageBit::SAMPLED_FRAGMENT);
  990. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  991. cmdb->endRenderPass();
  992. presentBarrierB(cmdb, presentTex);
  993. cmdb->flush();
  994. // End
  995. gr.swapBuffers();
  996. timer.stop();
  997. const F32 TICK = 1.0f / 30.0f;
  998. if(timer.getElapsedTime() < TICK)
  999. {
  1000. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1001. }
  1002. }
  1003. }
  1004. ANKI_TEST(Gr, DrawOffscreen)
  1005. {
  1006. COMMON_BEGIN()
  1007. drawOffscreen(*gr, false);
  1008. COMMON_END()
  1009. }
  1010. ANKI_TEST(Gr, DrawWithSecondLevel)
  1011. {
  1012. COMMON_BEGIN()
  1013. drawOffscreen(*gr, true);
  1014. COMMON_END()
  1015. }
  1016. ANKI_TEST(Gr, ImageLoadStore)
  1017. {
  1018. COMMON_BEGIN()
  1019. SamplerInitInfo samplerInit;
  1020. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1021. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1022. SamplerPtr sampler = gr->newSampler(samplerInit);
  1023. TextureInitInfo init;
  1024. init.m_width = init.m_height = 4;
  1025. init.m_mipmapCount = 2;
  1026. init.m_usage =
  1027. TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED | TextureUsageBit::IMAGE_COMPUTE_WRITE;
  1028. init.m_type = TextureType::_2D;
  1029. init.m_format = Format::R8G8B8A8_UNORM;
  1030. TexturePtr tex = gr->newTexture(init);
  1031. TextureViewInitInfo viewInit(tex);
  1032. viewInit.m_firstMipmap = 1;
  1033. viewInit.m_mipmapCount = 1;
  1034. TextureViewPtr view = gr->newTextureView(viewInit);
  1035. // Prog
  1036. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *gr);
  1037. // Create shader & compute prog
  1038. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::COMPUTE, *gr);
  1039. ShaderProgramInitInfo sprogInit;
  1040. sprogInit.m_computeShader = shader;
  1041. ShaderProgramPtr compProg = gr->newShaderProgram(sprogInit);
  1042. // Write texture data
  1043. CommandBufferInitInfo cmdbinit;
  1044. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1045. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1046. TextureSurfaceInfo(0, 0, 0, 0));
  1047. ClearValue clear;
  1048. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1049. TextureViewInitInfo viewInit2(tex, TextureSurfaceInfo(0, 0, 0, 0));
  1050. cmdb->clearTextureView(gr->newTextureView(viewInit2), clear);
  1051. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1052. TextureSurfaceInfo(0, 0, 0, 0));
  1053. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1054. TextureSurfaceInfo(1, 0, 0, 0));
  1055. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1056. TextureViewInitInfo viewInit3(tex, TextureSurfaceInfo(1, 0, 0, 0));
  1057. cmdb->clearTextureView(gr->newTextureView(viewInit3), clear);
  1058. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1059. TextureSurfaceInfo(1, 0, 0, 0));
  1060. cmdb->flush();
  1061. const U ITERATION_COUNT = 100;
  1062. U iterations = ITERATION_COUNT;
  1063. while(iterations--)
  1064. {
  1065. HighRezTimer timer;
  1066. timer.start();
  1067. CommandBufferInitInfo cinit;
  1068. cinit.m_flags =
  1069. CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1070. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1071. // Write image
  1072. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1073. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1074. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1075. TextureSurfaceInfo(1, 0, 0, 0));
  1076. cmdb->bindShaderProgram(compProg);
  1077. cmdb->bindImage(0, 0, view);
  1078. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1079. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::SAMPLED_FRAGMENT,
  1080. TextureSurfaceInfo(1, 0, 0, 0));
  1081. // Present image
  1082. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1083. cmdb->bindShaderProgram(prog);
  1084. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1085. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1086. presentBarrierA(cmdb, presentTex);
  1087. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1088. cmdb->bindTextureAndSampler(0, 0, gr->newTextureView(TextureViewInitInfo(tex)), sampler,
  1089. TextureUsageBit::SAMPLED_FRAGMENT);
  1090. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1091. cmdb->endRenderPass();
  1092. presentBarrierB(cmdb, presentTex);
  1093. cmdb->flush();
  1094. // End
  1095. gr->swapBuffers();
  1096. timer.stop();
  1097. const F32 TICK = 1.0f / 30.0f;
  1098. if(timer.getElapsedTime() < TICK)
  1099. {
  1100. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1101. }
  1102. }
  1103. COMMON_END()
  1104. }
  1105. ANKI_TEST(Gr, 3DTextures)
  1106. {
  1107. COMMON_BEGIN()
  1108. SamplerInitInfo samplerInit;
  1109. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1110. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1111. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  1112. SamplerPtr sampler = gr->newSampler(samplerInit);
  1113. //
  1114. // Create texture A
  1115. //
  1116. TextureInitInfo init;
  1117. init.m_depth = 1;
  1118. init.m_format = Format::R8G8B8A8_UNORM;
  1119. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  1120. init.m_initialUsage = TextureUsageBit::TRANSFER_DESTINATION;
  1121. init.m_height = 2;
  1122. init.m_width = 2;
  1123. init.m_mipmapCount = 2;
  1124. init.m_samples = 1;
  1125. init.m_depth = 2;
  1126. init.m_layerCount = 1;
  1127. init.m_type = TextureType::_3D;
  1128. TexturePtr a = gr->newTexture(init);
  1129. //
  1130. // Upload all textures
  1131. //
  1132. Array<U8, 2 * 2 * 2 * 4> mip0 = {{255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0,
  1133. 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1134. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1135. CommandBufferInitInfo cmdbinit;
  1136. cmdbinit.m_flags = CommandBufferFlag::TRANSFER_WORK | CommandBufferFlag::SMALL_BATCH;
  1137. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1138. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1139. TextureVolumeInfo(0));
  1140. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1141. TextureVolumeInfo(1));
  1142. TransferGpuAllocatorHandle handle0, handle1;
  1143. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1144. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1145. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1146. TextureVolumeInfo(0));
  1147. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1148. TextureVolumeInfo(1));
  1149. FencePtr fence;
  1150. cmdb->flush(&fence);
  1151. transfAlloc->release(handle0, fence);
  1152. transfAlloc->release(handle1, fence);
  1153. //
  1154. // Rest
  1155. //
  1156. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *gr);
  1157. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0),
  1158. Vec4(0, 0, 1, 0), Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0),
  1159. Vec4(0, 0, 0, 1)}};
  1160. const U ITERATION_COUNT = 100;
  1161. U iterations = ITERATION_COUNT;
  1162. while(iterations--)
  1163. {
  1164. HighRezTimer timer;
  1165. timer.start();
  1166. CommandBufferInitInfo cinit;
  1167. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  1168. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1169. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1170. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1171. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1172. presentBarrierA(cmdb, presentTex);
  1173. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1174. cmdb->bindShaderProgram(prog);
  1175. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1176. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1177. *uv = TEX_COORDS_LOD[idx];
  1178. cmdb->bindTextureAndSampler(0, 1, gr->newTextureView(TextureViewInitInfo(a)), sampler,
  1179. TextureUsageBit::SAMPLED_FRAGMENT);
  1180. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1181. cmdb->endRenderPass();
  1182. presentBarrierB(cmdb, presentTex);
  1183. cmdb->flush();
  1184. // End
  1185. gr->swapBuffers();
  1186. timer.stop();
  1187. const F32 TICK = 1.0f / 15.0f;
  1188. if(timer.getElapsedTime() < TICK)
  1189. {
  1190. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1191. }
  1192. }
  1193. COMMON_END()
  1194. }
  1195. static RenderTargetDescription newRTDescr(CString name)
  1196. {
  1197. RenderTargetDescription texInf(name);
  1198. texInf.m_width = texInf.m_height = 16;
  1199. texInf.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1200. texInf.m_format = Format::R8G8B8A8_UNORM;
  1201. texInf.bake();
  1202. return texInf;
  1203. }
  1204. ANKI_TEST(Gr, RenderGraph)
  1205. {
  1206. COMMON_BEGIN()
  1207. StackAllocator<U8> alloc(allocAligned, nullptr, 2_MB);
  1208. RenderGraphDescription descr(alloc);
  1209. RenderGraphPtr rgraph = gr->newRenderGraph();
  1210. const U GI_MIP_COUNT = 4;
  1211. TextureInitInfo texI("dummy");
  1212. texI.m_width = texI.m_height = 16;
  1213. texI.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1214. texI.m_format = Format::R8G8B8A8_UNORM;
  1215. TexturePtr dummyTex = gr->newTexture(texI);
  1216. // SM
  1217. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1218. {
  1219. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1220. pass.newDependency({smScratchRt, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT});
  1221. }
  1222. // SM to exponential SM
  1223. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1224. {
  1225. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1226. pass.newDependency({smScratchRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1227. pass.newDependency({smExpRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1228. }
  1229. // GI gbuff
  1230. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1231. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1232. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1233. {
  1234. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1235. pass.newDependency({giGbuffNormRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1236. pass.newDependency({giGbuffDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1237. pass.newDependency({giGbuffDiffRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1238. }
  1239. // GI light
  1240. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1241. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1242. {
  1243. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  1244. GraphicsRenderPassDescription& pass =
  1245. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI lp%u", faceIdx).toCString());
  1246. pass.newDependency({giGiLightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, subresource});
  1247. pass.newDependency({giGbuffNormRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1248. pass.newDependency({giGbuffDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1249. pass.newDependency({giGbuffDiffRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1250. }
  1251. // GI light mips
  1252. {
  1253. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1254. {
  1255. GraphicsRenderPassDescription& pass =
  1256. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI mip%u", faceIdx).toCString());
  1257. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1258. {
  1259. TextureSurfaceInfo surf(mip, 0, faceIdx, 0);
  1260. pass.newDependency({giGiLightRt, TextureUsageBit::GENERATE_MIPMAPS, surf});
  1261. }
  1262. }
  1263. }
  1264. // Gbuffer
  1265. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1266. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1267. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1268. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1269. {
  1270. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1271. pass.newDependency({gbuffRt0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1272. pass.newDependency({gbuffRt1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1273. pass.newDependency({gbuffRt2, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1274. pass.newDependency({gbuffDepth, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1275. }
  1276. // Half depth
  1277. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1278. {
  1279. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1280. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1281. pass.newDependency({halfDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1282. }
  1283. // Quarter depth
  1284. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1285. {
  1286. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1287. pass.newDependency({quarterDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1288. pass.newDependency({halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1289. }
  1290. // SSAO
  1291. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1292. {
  1293. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1294. pass.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1295. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1296. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1297. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1298. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1299. pass2.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1300. pass2.newDependency({ssaoVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1301. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1302. pass3.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1303. pass3.newDependency({ssaoVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1304. }
  1305. // Volumetric
  1306. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1307. {
  1308. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1309. pass.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1310. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1311. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1312. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1313. pass2.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1314. pass2.newDependency({volVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1315. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1316. pass3.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1317. pass3.newDependency({volVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1318. }
  1319. // Forward shading
  1320. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1321. {
  1322. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1323. pass.newDependency({fsRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1324. pass.newDependency(
  1325. {halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::FRAMEBUFFER_ATTACHMENT_READ});
  1326. pass.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1327. }
  1328. // Light shading
  1329. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1330. {
  1331. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1332. pass.newDependency({lightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1333. pass.newDependency({gbuffRt0, TextureUsageBit::SAMPLED_FRAGMENT});
  1334. pass.newDependency({gbuffRt1, TextureUsageBit::SAMPLED_FRAGMENT});
  1335. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1336. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1337. pass.newDependency({smExpRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1338. pass.newDependency({giGiLightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1339. pass.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1340. pass.newDependency({fsRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1341. }
  1342. // TAA
  1343. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1344. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1345. {
  1346. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1347. pass.newDependency({lightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1348. pass.newDependency({taaRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1349. pass.newDependency({taaHistoryRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1350. }
  1351. rgraph->compileNewGraph(descr, alloc);
  1352. COMMON_END()
  1353. }
  1354. /// Test workarounds for some unsupported formats
  1355. ANKI_TEST(Gr, VkWorkarounds)
  1356. {
  1357. COMMON_BEGIN()
  1358. // Create program
  1359. static const char* COMP_SRC = R"(
  1360. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1361. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1362. layout(set = 0, binding = 1) buffer s_
  1363. {
  1364. uvec4 u_result;
  1365. };
  1366. shared uint g_wrong;
  1367. void main()
  1368. {
  1369. g_wrong = 0;
  1370. memoryBarrierShared();
  1371. barrier();
  1372. int lod = -1;
  1373. uint idx;
  1374. if(gl_LocalInvocationID.z == 0)
  1375. {
  1376. // First mip
  1377. lod = 0;
  1378. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1379. }
  1380. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1381. {
  1382. lod = 1;
  1383. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1384. }
  1385. if(lod != -1)
  1386. {
  1387. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1388. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1389. {
  1390. atomicAdd(g_wrong, 1);
  1391. }
  1392. }
  1393. memoryBarrierShared();
  1394. barrier();
  1395. if(g_wrong != 0)
  1396. {
  1397. u_result = uvec4(1);
  1398. }
  1399. else
  1400. {
  1401. u_result = uvec4(2);
  1402. }
  1403. })";
  1404. ShaderPtr comp = createShader(COMP_SRC, ShaderType::COMPUTE, *gr);
  1405. ShaderProgramInitInfo sinf;
  1406. sinf.m_computeShader = comp;
  1407. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1408. // Create the texture
  1409. TextureInitInfo texInit;
  1410. texInit.m_width = texInit.m_height = 8;
  1411. texInit.m_format = Format::R8G8B8_UINT;
  1412. texInit.m_type = TextureType::_2D;
  1413. texInit.m_usage = TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED;
  1414. texInit.m_mipmapCount = 2;
  1415. TexturePtr tex = gr->newTexture(texInit);
  1416. TextureViewPtr texView = gr->newTextureView(TextureViewInitInfo(tex));
  1417. SamplerInitInfo samplerInit;
  1418. SamplerPtr sampler = gr->newSampler(samplerInit);
  1419. // Create the buffer to copy to the texture
  1420. BufferPtr uploadBuff = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3,
  1421. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1422. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::WRITE));
  1423. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1424. {
  1425. data[0] = U8(i);
  1426. data[1] = U8(i + 1);
  1427. data[2] = U8(i + 2);
  1428. data += 3;
  1429. }
  1430. uploadBuff->unmap();
  1431. BufferPtr uploadBuff2 = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3,
  1432. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1433. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::WRITE));
  1434. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1435. {
  1436. data[0] = U8(i);
  1437. data[1] = U8(i + 1);
  1438. data[2] = U8(i + 2);
  1439. data += 3;
  1440. }
  1441. uploadBuff2->unmap();
  1442. // Create the result buffer
  1443. BufferPtr resultBuff =
  1444. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1445. // Upload data and test them
  1446. CommandBufferInitInfo cmdbInit;
  1447. cmdbInit.m_flags =
  1448. CommandBufferFlag::TRANSFER_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1449. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbInit);
  1450. TextureSubresourceInfo subresource;
  1451. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1452. cmdb->setTextureBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION, subresource);
  1453. cmdb->copyBufferToTextureView(uploadBuff, 0, uploadBuff->getSize(),
  1454. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(0, 0, 0, 0))));
  1455. cmdb->copyBufferToTextureView(uploadBuff2, 0, uploadBuff2->getSize(),
  1456. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(1, 0, 0, 0))));
  1457. cmdb->setTextureBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE, subresource);
  1458. cmdb->bindShaderProgram(prog);
  1459. cmdb->bindTextureAndSampler(0, 0, texView, sampler, TextureUsageBit::SAMPLED_COMPUTE);
  1460. cmdb->bindStorageBuffer(0, 1, resultBuff, 0, resultBuff->getSize());
  1461. cmdb->dispatchCompute(1, 1, 1);
  1462. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferUsageBit::STORAGE_COMPUTE_WRITE, 0,
  1463. resultBuff->getSize());
  1464. cmdb->flush();
  1465. gr->finish();
  1466. // Get the result
  1467. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1468. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1469. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1470. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1471. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1472. resultBuff->unmap();
  1473. COMMON_END()
  1474. }
  1475. ANKI_TEST(Gr, SpecConsts)
  1476. {
  1477. COMMON_BEGIN()
  1478. static const char* VERT_SRC = R"(
  1479. layout(constant_id = 0) const int const0 = 0;
  1480. layout(constant_id = 2) const float const1 = 0.0;
  1481. out gl_PerVertex
  1482. {
  1483. vec4 gl_Position;
  1484. };
  1485. layout(location = 0) flat out int out_const0;
  1486. layout(location = 1) flat out float out_const1;
  1487. void main()
  1488. {
  1489. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1490. vec2 pos = uv * 2.0 - 1.0;
  1491. gl_Position = vec4(pos, 0.0, 1.0);
  1492. out_const0 = const0;
  1493. out_const1 = const1;
  1494. }
  1495. )";
  1496. static const char* FRAG_SRC = R"(
  1497. layout(constant_id = 0) const int const0 = 0;
  1498. layout(constant_id = 1) const float const1 = 0.0;
  1499. layout(location = 0) flat in int in_const0;
  1500. layout(location = 1) flat in float in_const1;
  1501. layout(location = 0) out vec4 out_color;
  1502. layout(set = 0, binding = 0) buffer s_
  1503. {
  1504. uvec4 u_result;
  1505. };
  1506. void main()
  1507. {
  1508. out_color = vec4(1.0);
  1509. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1510. {
  1511. if(in_const0 != 2147483647 || in_const1 != 1234.5678 || const0 != -2147483647 || const1 != -1.0)
  1512. {
  1513. u_result = uvec4(1u);
  1514. }
  1515. else
  1516. {
  1517. u_result = uvec4(2u);
  1518. }
  1519. }
  1520. }
  1521. )";
  1522. ShaderPtr vert =
  1523. createShader(VERT_SRC, ShaderType::VERTEX, *gr,
  1524. Array<ShaderSpecializationConstValue, 3>{{ShaderSpecializationConstValue(2147483647),
  1525. ShaderSpecializationConstValue(-1.0f),
  1526. ShaderSpecializationConstValue(1234.5678f)}});
  1527. ShaderPtr frag = createShader(FRAG_SRC, ShaderType::FRAGMENT, *gr,
  1528. Array<ShaderSpecializationConstValue, 2>{{ShaderSpecializationConstValue(-2147483647),
  1529. ShaderSpecializationConstValue(-1.0f)}});
  1530. ShaderProgramInitInfo sinf;
  1531. sinf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  1532. sinf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  1533. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1534. // Create the result buffer
  1535. BufferPtr resultBuff =
  1536. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1537. // Draw
  1538. CommandBufferInitInfo cinit;
  1539. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  1540. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1541. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1542. cmdb->bindShaderProgram(prog);
  1543. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1544. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1545. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1546. presentBarrierA(cmdb, presentTex);
  1547. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1548. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1549. cmdb->endRenderPass();
  1550. presentBarrierB(cmdb, presentTex);
  1551. cmdb->flush();
  1552. gr->swapBuffers();
  1553. gr->finish();
  1554. // Get the result
  1555. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1556. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1557. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1558. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1559. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1560. resultBuff->unmap();
  1561. COMMON_END()
  1562. }
  1563. ANKI_TEST(Gr, PushConsts)
  1564. {
  1565. COMMON_BEGIN()
  1566. static const char* VERT_SRC = R"(
  1567. struct PC
  1568. {
  1569. vec4 color;
  1570. ivec4 icolor;
  1571. vec4 arr[2];
  1572. mat4 mat;
  1573. };
  1574. layout(push_constant, std140) uniform pc_
  1575. {
  1576. PC regs;
  1577. };
  1578. out gl_PerVertex
  1579. {
  1580. vec4 gl_Position;
  1581. };
  1582. layout(location = 0) out vec4 out_color;
  1583. void main()
  1584. {
  1585. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1586. vec2 pos = uv * 2.0 - 1.0;
  1587. gl_Position = vec4(pos, 0.0, 1.0);
  1588. out_color = regs.color;
  1589. }
  1590. )";
  1591. static const char* FRAG_SRC = R"(
  1592. struct PC
  1593. {
  1594. vec4 color;
  1595. ivec4 icolor;
  1596. vec4 arr[2];
  1597. mat4 mat;
  1598. };
  1599. layout(push_constant, std140) uniform pc_
  1600. {
  1601. PC regs;
  1602. };
  1603. layout(location = 0) in vec4 in_color;
  1604. layout(location = 0) out vec4 out_color;
  1605. layout(set = 0, binding = 0) buffer s_
  1606. {
  1607. uvec4 u_result;
  1608. };
  1609. void main()
  1610. {
  1611. out_color = vec4(1.0);
  1612. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1613. {
  1614. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1615. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1616. || regs.mat[1][0] != 0.5)
  1617. {
  1618. u_result = uvec4(1u);
  1619. }
  1620. else
  1621. {
  1622. u_result = uvec4(2u);
  1623. }
  1624. }
  1625. }
  1626. )";
  1627. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  1628. // Create the result buffer
  1629. BufferPtr resultBuff = gr->newBuffer(BufferInitInfo(
  1630. sizeof(UVec4), BufferUsageBit::ALL_STORAGE | BufferUsageBit::TRANSFER_DESTINATION, BufferMapAccessBit::READ));
  1631. // Draw
  1632. CommandBufferInitInfo cinit;
  1633. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK;
  1634. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1635. cmdb->fillBuffer(resultBuff, 0, resultBuff->getSize(), 0);
  1636. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::STORAGE_FRAGMENT_WRITE, 0,
  1637. resultBuff->getSize());
  1638. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1639. cmdb->bindShaderProgram(prog);
  1640. struct PushConstants
  1641. {
  1642. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1643. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1644. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1645. Mat4 m_mat = Mat4(0.0f);
  1646. } pc;
  1647. pc.m_mat(0, 1) = 0.5f;
  1648. cmdb->setPushConstants(&pc, sizeof(pc));
  1649. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1650. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1651. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1652. presentBarrierA(cmdb, presentTex);
  1653. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1654. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1655. cmdb->endRenderPass();
  1656. presentBarrierB(cmdb, presentTex);
  1657. cmdb->flush();
  1658. gr->swapBuffers();
  1659. gr->finish();
  1660. // Get the result
  1661. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1662. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1663. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1664. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1665. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1666. resultBuff->unmap();
  1667. COMMON_END()
  1668. }
  1669. ANKI_TEST(Gr, BindingWithArray)
  1670. {
  1671. COMMON_BEGIN()
  1672. // Create result buffer
  1673. BufferPtr resBuff =
  1674. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1675. Array<BufferPtr, 4> uniformBuffers;
  1676. F32 count = 1.0f;
  1677. for(BufferPtr& ptr : uniformBuffers)
  1678. {
  1679. ptr = gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::WRITE));
  1680. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::WRITE));
  1681. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1682. count += 4.0f;
  1683. ptr->unmap();
  1684. }
  1685. // Create program
  1686. static const char* PROG_SRC = R"(
  1687. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1688. layout(set = 0, binding = 0) uniform u_
  1689. {
  1690. vec4 m_vec;
  1691. } u_ubos[4];
  1692. layout(set = 0, binding = 1) writeonly buffer ss_
  1693. {
  1694. vec4 u_result;
  1695. };
  1696. void main()
  1697. {
  1698. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1699. })";
  1700. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1701. ShaderProgramInitInfo sprogInit;
  1702. sprogInit.m_computeShader = shader;
  1703. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1704. // Run
  1705. CommandBufferInitInfo cinit;
  1706. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1707. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1708. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1709. {
  1710. cmdb->bindUniformBuffer(0, 0, uniformBuffers[i], 0, MAX_PTR_SIZE, i);
  1711. }
  1712. cmdb->bindStorageBuffer(0, 1, resBuff, 0, MAX_PTR_SIZE);
  1713. cmdb->bindShaderProgram(prog);
  1714. cmdb->dispatchCompute(1, 1, 1);
  1715. cmdb->flush();
  1716. gr->finish();
  1717. // Check result
  1718. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::READ));
  1719. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1720. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1721. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1722. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1723. resBuff->unmap();
  1724. COMMON_END();
  1725. }
  1726. ANKI_TEST(Gr, Bindless)
  1727. {
  1728. COMMON_BEGIN()
  1729. // Create texture A
  1730. TextureInitInfo texInit;
  1731. texInit.m_width = 1;
  1732. texInit.m_height = 1;
  1733. texInit.m_format = Format::R32G32B32A32_UINT;
  1734. texInit.m_usage = TextureUsageBit::ALL_IMAGE | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::ALL_SAMPLED;
  1735. texInit.m_mipmapCount = 1;
  1736. TexturePtr texA = gr->newTexture(texInit);
  1737. // Create texture B
  1738. TexturePtr texB = gr->newTexture(texInit);
  1739. // Create texture C
  1740. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1741. TexturePtr texC = gr->newTexture(texInit);
  1742. // Create sampler
  1743. SamplerInitInfo samplerInit;
  1744. SamplerPtr sampler = gr->newSampler(samplerInit);
  1745. // Create views
  1746. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1747. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1748. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1749. // Create result buffer
  1750. BufferPtr resBuff =
  1751. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1752. // Create program A
  1753. static const char* PROG_SRC = R"(
  1754. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1755. ANKI_BINDLESS_SET(0);
  1756. layout(set = 1, binding = 0) writeonly buffer ss_
  1757. {
  1758. uvec4 u_result;
  1759. };
  1760. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1761. layout(push_constant) uniform pc_
  1762. {
  1763. uvec4 u_texIndices;
  1764. };
  1765. void main()
  1766. {
  1767. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1768. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1769. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1770. u_result = val0 + val1 + uvec4(val2);
  1771. })";
  1772. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1773. ShaderProgramInitInfo sprogInit;
  1774. sprogInit.m_computeShader = shader;
  1775. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1776. // Run
  1777. CommandBufferInitInfo cinit;
  1778. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1779. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1780. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1781. TextureSurfaceInfo());
  1782. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1783. TextureSurfaceInfo());
  1784. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1785. TextureSurfaceInfo());
  1786. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1787. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1788. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1789. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1790. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1791. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1792. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1793. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_READ,
  1794. TextureSurfaceInfo());
  1795. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1796. TextureSurfaceInfo());
  1797. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1798. TextureSurfaceInfo());
  1799. cmdb->bindStorageBuffer(1, 0, resBuff, 0, MAX_PTR_SIZE);
  1800. cmdb->bindSampler(1, 1, sampler);
  1801. cmdb->bindShaderProgram(prog);
  1802. cmdb->addReference(viewA);
  1803. cmdb->addReference(viewB);
  1804. cmdb->addReference(viewC);
  1805. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1806. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1807. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1808. UVec4 pc(idx0, idx1, idx2, 0);
  1809. cmdb->setPushConstants(&pc, sizeof(pc));
  1810. cmdb->bindAllBindless(0);
  1811. cmdb->dispatchCompute(1, 1, 1);
  1812. // Read result
  1813. FencePtr fence;
  1814. cmdb->flush(&fence);
  1815. transfAlloc->release(handle0, fence);
  1816. transfAlloc->release(handle1, fence);
  1817. transfAlloc->release(handle2, fence);
  1818. gr->finish();
  1819. // Check result
  1820. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::READ));
  1821. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1822. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1823. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1824. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1825. resBuff->unmap();
  1826. COMMON_END()
  1827. }
  1828. ANKI_TEST(Gr, BufferAddress)
  1829. {
  1830. COMMON_BEGIN()
  1831. // Create program
  1832. static const char* PROG_SRC = R"(
  1833. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1834. ANKI_REF(Vec4);
  1835. layout(push_constant) uniform u_
  1836. {
  1837. U64 u_bufferAddress;
  1838. U64 u_padding0;
  1839. };
  1840. layout(set = 0, binding = 0) writeonly buffer ss_
  1841. {
  1842. Vec4 u_result;
  1843. };
  1844. void main()
  1845. {
  1846. u_result = Vec4Ref(u_bufferAddress).m_value + Vec4Ref(u_bufferAddress + 16u).m_value;
  1847. })";
  1848. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1849. ShaderProgramInitInfo sprogInit;
  1850. sprogInit.m_computeShader = shader;
  1851. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1852. // Create buffers
  1853. BufferInitInfo info;
  1854. info.m_size = sizeof(Vec4) * 2;
  1855. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  1856. info.m_mapAccess = BufferMapAccessBit::WRITE;
  1857. BufferPtr ptrBuff = gr->newBuffer(info);
  1858. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE));
  1859. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1860. *mapped = VEC;
  1861. ++mapped;
  1862. *mapped = VEC * 10.0f;
  1863. ptrBuff->unmap();
  1864. BufferPtr resBuff =
  1865. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1866. // Run
  1867. CommandBufferInitInfo cinit;
  1868. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1869. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1870. cmdb->bindShaderProgram(prog);
  1871. struct Address
  1872. {
  1873. PtrSize m_address;
  1874. PtrSize m_padding;
  1875. } address;
  1876. address.m_address = ptrBuff->getGpuAddress();
  1877. cmdb->setPushConstants(&address, sizeof(address));
  1878. cmdb->bindStorageBuffer(0, 0, resBuff, 0, MAX_PTR_SIZE);
  1879. cmdb->dispatchCompute(1, 1, 1);
  1880. cmdb->flush();
  1881. gr->finish();
  1882. // Check
  1883. mapped = static_cast<Vec4*>(resBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ));
  1884. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1885. resBuff->unmap();
  1886. COMMON_END();
  1887. }
  1888. ANKI_TEST(Gr, RayQuery)
  1889. {
  1890. COMMON_BEGIN();
  1891. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  1892. if(!useRayTracing)
  1893. {
  1894. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1895. }
  1896. // Index buffer
  1897. BufferPtr idxBuffer;
  1898. if(useRayTracing)
  1899. {
  1900. Array<U16, 3> indices = {0, 1, 2};
  1901. BufferInitInfo init;
  1902. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1903. init.m_usage = BufferUsageBit::INDEX;
  1904. init.m_size = sizeof(indices);
  1905. idxBuffer = gr->newBuffer(init);
  1906. void* addr = idxBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1907. memcpy(addr, &indices[0], sizeof(indices));
  1908. idxBuffer->unmap();
  1909. }
  1910. // Position buffer (add some padding to complicate things a bit)
  1911. BufferPtr vertBuffer;
  1912. if(useRayTracing)
  1913. {
  1914. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1915. BufferInitInfo init;
  1916. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1917. init.m_usage = BufferUsageBit::VERTEX;
  1918. init.m_size = sizeof(verts);
  1919. vertBuffer = gr->newBuffer(init);
  1920. void* addr = vertBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1921. memcpy(addr, &verts[0], sizeof(verts));
  1922. vertBuffer->unmap();
  1923. }
  1924. // BLAS
  1925. AccelerationStructurePtr blas;
  1926. if(useRayTracing)
  1927. {
  1928. AccelerationStructureInitInfo init;
  1929. init.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  1930. init.m_bottomLevel.m_indexBuffer = idxBuffer;
  1931. init.m_bottomLevel.m_indexCount = 3;
  1932. init.m_bottomLevel.m_indexType = IndexType::U16;
  1933. init.m_bottomLevel.m_positionBuffer = vertBuffer;
  1934. init.m_bottomLevel.m_positionCount = 3;
  1935. init.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  1936. init.m_bottomLevel.m_positionStride = 4 * 4;
  1937. blas = gr->newAccelerationStructure(init);
  1938. }
  1939. // TLAS
  1940. AccelerationStructurePtr tlas;
  1941. if(useRayTracing)
  1942. {
  1943. AccelerationStructureInitInfo init;
  1944. init.m_type = AccelerationStructureType::TOP_LEVEL;
  1945. Array<AccelerationStructureInstance, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1946. init.m_topLevel.m_instances = instances;
  1947. tlas = gr->newAccelerationStructure(init);
  1948. }
  1949. // Program
  1950. ShaderProgramPtr prog;
  1951. {
  1952. CString src = R"(
  1953. #if USE_RAY_TRACING
  1954. #extension GL_EXT_ray_query : enable
  1955. #endif
  1956. layout(push_constant, std140, row_major) uniform b_pc
  1957. {
  1958. Mat4 u_vp;
  1959. Vec3 u_cameraPos;
  1960. F32 u_padding0;
  1961. };
  1962. #if USE_RAY_TRACING
  1963. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1964. #endif
  1965. layout(location = 0) in Vec2 in_uv;
  1966. layout(location = 0) out Vec3 out_color;
  1967. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1968. {
  1969. const Vec3 v0v1 = v1 - v0;
  1970. const Vec3 v0v2 = v2 - v0;
  1971. const Vec3 pvec = cross(dir, v0v2);
  1972. const F32 det = dot(v0v1, pvec);
  1973. if(det < 0.00001)
  1974. {
  1975. return false;
  1976. }
  1977. const F32 invDet = 1.0 / det;
  1978. const Vec3 tvec = orig - v0;
  1979. u = dot(tvec, pvec) * invDet;
  1980. if(u < 0.0 || u > 1.0)
  1981. {
  1982. return false;
  1983. }
  1984. const Vec3 qvec = cross(tvec, v0v1);
  1985. v = dot(dir, qvec) * invDet;
  1986. if(v < 0.0 || u + v > 1.0)
  1987. {
  1988. return false;
  1989. }
  1990. t = dot(v0v2, qvec) * invDet;
  1991. return true;
  1992. }
  1993. void main()
  1994. {
  1995. // Unproject
  1996. const Vec2 ndc = in_uv * 2.0 - 1.0;
  1997. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  1998. const Vec3 p3 = p4.xyz / p4.w;
  1999. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  2000. const Vec3 rayOrigin = u_cameraPos;
  2001. #if USE_RAY_TRACING
  2002. Bool hit = false;
  2003. F32 u = 0.0;
  2004. F32 v = 0.0;
  2005. rayQueryEXT rayQuery;
  2006. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2007. 0.01, rayDir, 1000.0);
  2008. rayQueryProceedEXT(rayQuery);
  2009. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2010. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2011. {
  2012. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2013. u = bary.x;
  2014. v = bary.y;
  2015. hit = true;
  2016. }
  2017. #else
  2018. // Manual trace
  2019. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2020. F32 t;
  2021. F32 u;
  2022. F32 v;
  2023. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2024. #endif
  2025. if(hit)
  2026. {
  2027. out_color = Vec3(u, v, 1.0 - (u + v));
  2028. }
  2029. else
  2030. {
  2031. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2032. }
  2033. }
  2034. )";
  2035. StringAuto fragSrc(HeapAllocator<U8>{allocAligned, nullptr});
  2036. if(useRayTracing)
  2037. {
  2038. fragSrc.append("#define USE_RAY_TRACING 1\n");
  2039. }
  2040. else
  2041. {
  2042. fragSrc.append("#define USE_RAY_TRACING 0\n");
  2043. }
  2044. fragSrc.append(src);
  2045. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *gr);
  2046. }
  2047. // Build AS
  2048. if(useRayTracing)
  2049. {
  2050. CommandBufferInitInfo cinit;
  2051. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  2052. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2053. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::NONE,
  2054. AccelerationStructureUsageBit::BUILD);
  2055. cmdb->buildAccelerationStructure(blas);
  2056. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::BUILD,
  2057. AccelerationStructureUsageBit::ATTACH);
  2058. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2059. AccelerationStructureUsageBit::BUILD);
  2060. cmdb->buildAccelerationStructure(tlas);
  2061. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2062. AccelerationStructureUsageBit::FRAGMENT_READ);
  2063. cmdb->flush();
  2064. }
  2065. // Draw
  2066. constexpr U32 ITERATIONS = 200;
  2067. for(U i = 0; i < ITERATIONS; ++i)
  2068. {
  2069. HighRezTimer timer;
  2070. timer.start();
  2071. const Vec4 cameraPos = {0.0f, 0.0f, 3.0f, 0.0f};
  2072. const Mat4 viewMat = Mat4{Transform{cameraPos, Mat3x4::getIdentity(), 1.0f}}.getInverse();
  2073. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2074. CommandBufferInitInfo cinit;
  2075. cinit.m_flags = CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::SMALL_BATCH;
  2076. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2077. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2078. cmdb->bindShaderProgram(prog);
  2079. struct PC
  2080. {
  2081. Mat4 m_vp;
  2082. Vec4 m_cameraPos;
  2083. } pc;
  2084. pc.m_vp = projMat * viewMat;
  2085. pc.m_cameraPos = cameraPos;
  2086. cmdb->setPushConstants(&pc, sizeof(pc));
  2087. if(useRayTracing)
  2088. {
  2089. cmdb->bindAccelerationStructure(0, 0, tlas);
  2090. }
  2091. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2092. FramebufferPtr fb = createColorFb(*gr, presentTex);
  2093. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  2094. TextureSubresourceInfo{});
  2095. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  2096. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  2097. cmdb->endRenderPass();
  2098. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  2099. TextureSubresourceInfo{});
  2100. cmdb->flush();
  2101. gr->swapBuffers();
  2102. timer.stop();
  2103. const F32 TICK = 1.0f / 30.0f;
  2104. if(timer.getElapsedTime() < TICK)
  2105. {
  2106. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2107. }
  2108. }
  2109. COMMON_END();
  2110. }
  2111. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2112. Bool turnInsideOut = false)
  2113. {
  2114. BufferInitInfo inf;
  2115. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2116. inf.m_usage = BufferUsageBit::INDEX | BufferUsageBit::VERTEX | BufferUsageBit::STORAGE_TRACE_RAYS_READ;
  2117. inf.m_size = sizeof(Vec3) * 8;
  2118. vertBuffer = gr.newBuffer(inf);
  2119. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::WRITE);
  2120. // 7------6
  2121. // /| /|
  2122. // 3------2 |
  2123. // | | | |
  2124. // | 4 ---|-5
  2125. // |/ |/
  2126. // 0------1
  2127. positions[0] = Vec3(min.x(), min.y(), max.z());
  2128. positions[1] = Vec3(max.x(), min.y(), max.z());
  2129. positions[2] = Vec3(max.x(), max.y(), max.z());
  2130. positions[3] = Vec3(min.x(), max.y(), max.z());
  2131. positions[4] = Vec3(min.x(), min.y(), min.z());
  2132. positions[5] = Vec3(max.x(), min.y(), min.z());
  2133. positions[6] = Vec3(max.x(), max.y(), min.z());
  2134. positions[7] = Vec3(min.x(), max.y(), min.z());
  2135. vertBuffer->unmap();
  2136. inf.m_size = sizeof(U16) * 36;
  2137. indexBuffer = gr.newBuffer(inf);
  2138. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::WRITE);
  2139. U32 t = 0;
  2140. // Top
  2141. indices[t++] = 3;
  2142. indices[t++] = 2;
  2143. indices[t++] = 7;
  2144. indices[t++] = 2;
  2145. indices[t++] = 6;
  2146. indices[t++] = 7;
  2147. // Bottom
  2148. indices[t++] = 1;
  2149. indices[t++] = 0;
  2150. indices[t++] = 4;
  2151. indices[t++] = 1;
  2152. indices[t++] = 4;
  2153. indices[t++] = 5;
  2154. // Left
  2155. indices[t++] = 0;
  2156. indices[t++] = 3;
  2157. indices[t++] = 4;
  2158. indices[t++] = 3;
  2159. indices[t++] = 7;
  2160. indices[t++] = 4;
  2161. // Right
  2162. indices[t++] = 1;
  2163. indices[t++] = 5;
  2164. indices[t++] = 2;
  2165. indices[t++] = 2;
  2166. indices[t++] = 5;
  2167. indices[t++] = 6;
  2168. // Front
  2169. indices[t++] = 0;
  2170. indices[t++] = 1;
  2171. indices[t++] = 3;
  2172. indices[t++] = 3;
  2173. indices[t++] = 1;
  2174. indices[t++] = 2;
  2175. // Back
  2176. indices[t++] = 4;
  2177. indices[t++] = 7;
  2178. indices[t++] = 6;
  2179. indices[t++] = 5;
  2180. indices[t++] = 4;
  2181. indices[t++] = 6;
  2182. ANKI_ASSERT(t == indices.getSize());
  2183. if(turnInsideOut)
  2184. {
  2185. for(U32 i = 0; i < t; i += 3)
  2186. {
  2187. std::swap(indices[i + 1], indices[i + 2]);
  2188. }
  2189. }
  2190. indexBuffer->unmap();
  2191. }
  2192. enum class GeomWhat
  2193. {
  2194. SMALL_BOX,
  2195. BIG_BOX,
  2196. ROOM,
  2197. LIGHT,
  2198. COUNT,
  2199. FIRST = 0
  2200. };
  2201. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2202. ANKI_TEST(Gr, RayGen)
  2203. {
  2204. COMMON_BEGIN();
  2205. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  2206. if(!useRayTracing)
  2207. {
  2208. ANKI_TEST_LOGW("Ray tracing not supported");
  2209. break;
  2210. }
  2211. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2212. #define MAGIC_MACRO(x) x
  2213. #include "RtTypes.h"
  2214. #undef MAGIC_MACRO
  2215. HeapAllocator<U8> alloc(allocAligned, nullptr);
  2216. // Create the offscreen RTs
  2217. Array<TexturePtr, 2> offscreenRts;
  2218. {
  2219. TextureInitInfo inf("T_offscreen#1");
  2220. inf.m_width = WIDTH;
  2221. inf.m_height = HEIGHT;
  2222. inf.m_format = Format::R8G8B8A8_UNORM;
  2223. inf.m_usage = TextureUsageBit::IMAGE_TRACE_RAYS_READ | TextureUsageBit::IMAGE_TRACE_RAYS_WRITE
  2224. | TextureUsageBit::IMAGE_COMPUTE_READ;
  2225. inf.m_initialUsage = TextureUsageBit::IMAGE_COMPUTE_READ;
  2226. offscreenRts[0] = gr->newTexture(inf);
  2227. inf.setName("T_offscreen#2");
  2228. offscreenRts[1] = gr->newTexture(inf);
  2229. }
  2230. // Copy to present program
  2231. ShaderProgramPtr copyToPresentProg;
  2232. {
  2233. const CString src = R"(
  2234. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2235. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2236. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2237. void main()
  2238. {
  2239. const UVec2 size = UVec2(imageSize(u_inImg));
  2240. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2241. {
  2242. return;
  2243. }
  2244. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2245. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2246. })";
  2247. ShaderPtr shader = createShader(src, ShaderType::COMPUTE, *gr);
  2248. ShaderProgramInitInfo sprogInit;
  2249. sprogInit.m_computeShader = shader;
  2250. copyToPresentProg = gr->newShaderProgram(sprogInit);
  2251. }
  2252. // Create the gometries
  2253. struct Geom
  2254. {
  2255. BufferPtr m_vertexBuffer;
  2256. BufferPtr m_indexBuffer;
  2257. Aabb m_aabb;
  2258. Mat3x4 m_worldTransform;
  2259. Mat3 m_worldRotation;
  2260. Bool m_insideOut = false;
  2261. U8 m_asMask = 0b10;
  2262. AccelerationStructurePtr m_blas;
  2263. U32 m_indexCount = 36;
  2264. Vec3 m_diffuseColor = Vec3(0.0f);
  2265. Vec3 m_emissiveColor = Vec3(0.0f);
  2266. };
  2267. Array<Geom, U(GeomWhat::COUNT)> geometries;
  2268. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2269. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2270. geometries[GeomWhat::SMALL_BOX].m_worldTransform = Mat3x4(
  2271. Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz()
  2272. / 2.0f),
  2273. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2274. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2275. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2276. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2277. geometries[GeomWhat::BIG_BOX].m_worldTransform = Mat3x4(
  2278. Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz()
  2279. / 2.0f),
  2280. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2281. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2282. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2283. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2284. geometries[GeomWhat::ROOM].m_worldTransform = Mat3x4(
  2285. Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2286. geometries[GeomWhat::ROOM].m_worldRotation);
  2287. geometries[GeomWhat::ROOM].m_insideOut = true;
  2288. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2289. geometries[GeomWhat::LIGHT].m_aabb =
  2290. Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2291. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2292. geometries[GeomWhat::LIGHT].m_worldTransform = Mat3x4(
  2293. Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2294. geometries[GeomWhat::LIGHT].m_worldRotation);
  2295. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2296. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2297. // Create Buffers
  2298. for(Geom& g : geometries)
  2299. {
  2300. createCubeBuffers(*gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2301. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer,
  2302. g.m_insideOut);
  2303. }
  2304. // Create AS
  2305. AccelerationStructurePtr tlas;
  2306. {
  2307. for(Geom& g : geometries)
  2308. {
  2309. AccelerationStructureInitInfo inf;
  2310. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  2311. inf.m_bottomLevel.m_indexBuffer = g.m_indexBuffer;
  2312. inf.m_bottomLevel.m_indexType = IndexType::U16;
  2313. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2314. inf.m_bottomLevel.m_positionBuffer = g.m_vertexBuffer;
  2315. inf.m_bottomLevel.m_positionCount = 8;
  2316. inf.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  2317. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2318. g.m_blas = gr->newAccelerationStructure(inf);
  2319. }
  2320. // TLAS
  2321. Array<AccelerationStructureInstance, U32(GeomWhat::COUNT)> instances;
  2322. U32 count = 0;
  2323. for(Geom& g : geometries)
  2324. {
  2325. instances[count].m_bottomLevel = g.m_blas;
  2326. instances[count].m_transform = g.m_worldTransform;
  2327. instances[count].m_sbtRecordIndex = count;
  2328. instances[count].m_mask = g.m_asMask;
  2329. ++count;
  2330. }
  2331. AccelerationStructureInitInfo inf;
  2332. inf.m_type = AccelerationStructureType::TOP_LEVEL;
  2333. inf.m_topLevel.m_instances = instances;
  2334. tlas = gr->newAccelerationStructure(inf);
  2335. }
  2336. // Create model info
  2337. BufferPtr modelBuffer;
  2338. {
  2339. BufferInitInfo inf;
  2340. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2341. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2342. inf.m_size = sizeof(Model) * U32(GeomWhat::COUNT);
  2343. modelBuffer = gr->newBuffer(inf);
  2344. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::COUNT), BufferMapAccessBit::WRITE);
  2345. memset(&models[0], 0, inf.m_size);
  2346. for(GeomWhat i : EnumIterable<GeomWhat>())
  2347. {
  2348. const Geom& g = geometries[i];
  2349. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2350. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2351. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2352. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2353. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2354. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2355. }
  2356. modelBuffer->unmap();
  2357. }
  2358. // Create the ppline
  2359. ShaderProgramPtr rtProg;
  2360. constexpr U32 rayGenGroupIdx = 0;
  2361. constexpr U32 missGroupIdx = 1;
  2362. constexpr U32 shadowMissGroupIdx = 2;
  2363. constexpr U32 lambertianChitGroupIdx = 3;
  2364. constexpr U32 lambertianRoomChitGroupIdx = 4;
  2365. constexpr U32 emissiveChitGroupIdx = 5;
  2366. constexpr U32 shadowAhitGroupIdx = 6;
  2367. constexpr U32 hitgroupCount = 7;
  2368. {
  2369. const CString commonSrcPart = R"(
  2370. #define Mat3x4Scalar Mat3x4
  2371. %s
  2372. const F32 PI = 3.14159265358979323846;
  2373. struct PayLoad
  2374. {
  2375. Vec3 m_total;
  2376. Vec3 m_weight;
  2377. Vec3 m_scatteredDir;
  2378. F32 m_hitT;
  2379. };
  2380. struct ShadowPayLoad
  2381. {
  2382. F32 m_shadow;
  2383. };
  2384. layout(set = 0, binding = 0, scalar) buffer b_00
  2385. {
  2386. Model u_models[];
  2387. };
  2388. layout(set = 0, binding = 1, scalar) buffer b_01
  2389. {
  2390. Light u_lights[];
  2391. };
  2392. layout(push_constant, scalar) uniform b_pc
  2393. {
  2394. PushConstants u_regs;
  2395. };
  2396. #define PAYLOAD_LOCATION 0
  2397. #define SHADOW_PAYLOAD_LOCATION 1
  2398. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2399. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2400. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2401. {
  2402. const Mesh mesh = model.m_mesh;
  2403. const U32 offset = primitiveId * 6;
  2404. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2405. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2406. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2407. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2408. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2409. return model.m_worldRotation * normal;
  2410. }
  2411. UVec3 rand3DPCG16(UVec3 v)
  2412. {
  2413. v = v * 1664525u + 1013904223u;
  2414. v.x += v.y * v.z;
  2415. v.y += v.z * v.x;
  2416. v.z += v.x * v.y;
  2417. v.x += v.y * v.z;
  2418. v.y += v.z * v.x;
  2419. v.z += v.x * v.y;
  2420. return v >> 16u;
  2421. }
  2422. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2423. {
  2424. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2425. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2426. return Vec2(e1, e2);
  2427. }
  2428. Vec3 hemisphereSampleUniform(Vec2 uv)
  2429. {
  2430. const F32 phi = uv.y * 2.0 * PI;
  2431. const F32 cosTheta = 1.0 - uv.x;
  2432. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2433. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2434. }
  2435. Mat3 rotationFromDirection(Vec3 zAxis)
  2436. {
  2437. Vec3 z = zAxis;
  2438. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2439. F32 a = -1.0 / (sign + z.z);
  2440. F32 b = z.x * z.y * a;
  2441. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2442. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2443. return Mat3(x, y, z);
  2444. }
  2445. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2446. {
  2447. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2448. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2449. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2450. }
  2451. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2452. {
  2453. scatterDir = randomDirectionInHemisphere(normal);
  2454. pdf = dot(normal, scatterDir) / PI;
  2455. }
  2456. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2457. {
  2458. F32 cosine = dot(normal, scatteredDir);
  2459. return max(cosine / PI, 0.0);
  2460. })";
  2461. #define MAGIC_MACRO ANKI_STRINGIZE
  2462. const CString rtTypesStr =
  2463. #include "RtTypes.h"
  2464. ;
  2465. #undef MAGIC_MACRO
  2466. StringAuto commonSrc(alloc);
  2467. commonSrc.sprintf(commonSrcPart, rtTypesStr.cstr());
  2468. const CString lambertianSrc = R"(
  2469. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2470. hitAttributeEXT vec2 g_attribs;
  2471. void main()
  2472. {
  2473. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2474. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2475. Vec3 scatteredDir;
  2476. F32 pdf;
  2477. scatterLambertian(normal, scatteredDir, pdf);
  2478. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2479. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2480. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2481. s_payLoad.m_scatteredDir = scatteredDir;
  2482. s_payLoad.m_hitT = gl_HitTEXT;
  2483. })";
  2484. const CString lambertianRoomSrc = R"(
  2485. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2486. void main()
  2487. {
  2488. Vec3 col;
  2489. U32 quad = gl_PrimitiveID / 2;
  2490. if(quad == 2)
  2491. {
  2492. col = Vec3(0.65, 0.05, 0.05);
  2493. }
  2494. else if(quad == 3)
  2495. {
  2496. col = Vec3(0.12, 0.45, 0.15);
  2497. }
  2498. else
  2499. {
  2500. col = Vec3(0.73f);
  2501. }
  2502. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2503. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2504. Vec3 scatteredDir;
  2505. F32 pdf;
  2506. scatterLambertian(normal, scatteredDir, pdf);
  2507. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2508. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2509. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2510. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2511. s_payLoad.m_scatteredDir = scatteredDir;
  2512. s_payLoad.m_hitT = gl_HitTEXT;
  2513. })";
  2514. const CString emissiveSrc = R"(
  2515. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2516. void main()
  2517. {
  2518. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2519. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2520. s_payLoad.m_weight = Vec3(0.0);
  2521. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2522. s_payLoad.m_hitT = -1.0;
  2523. })";
  2524. const CString missSrc = R"(
  2525. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2526. void main()
  2527. {
  2528. //s_payLoad.m_color =
  2529. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2530. //Vec3(0.0);
  2531. s_payLoad.m_weight = Vec3(0.0);
  2532. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2533. s_payLoad.m_hitT = -1.0;
  2534. })";
  2535. const CString shadowAhitSrc = R"(
  2536. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2537. void main()
  2538. {
  2539. s_payLoad.m_shadow += 0.25;
  2540. //terminateRayEXT();
  2541. })";
  2542. const CString shadowChitSrc = R"(
  2543. void main()
  2544. {
  2545. })";
  2546. const CString shadowMissSrc = R"(
  2547. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2548. void main()
  2549. {
  2550. s_payLoad.m_shadow = 1.0;
  2551. })";
  2552. const CString rayGenSrc = R"(
  2553. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2554. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2555. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2556. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2557. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2558. void main()
  2559. {
  2560. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2561. uv.y = 1.0 - uv.y;
  2562. const Vec2 ndc = uv * 2.0 - 1.0;
  2563. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2564. const Vec3 p3 = p4.xyz / p4.w;
  2565. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2566. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2567. Vec3 outColor = Vec3(0.0);
  2568. const U32 sampleCount = 8;
  2569. const U32 maxRecursionDepth = 2;
  2570. for(U32 s = 0; s < sampleCount; ++s)
  2571. {
  2572. Vec3 rayOrigin = u_regs.m_cameraPos;
  2573. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2574. s_payLoad.m_total = Vec3(0.0);
  2575. s_payLoad.m_weight = Vec3(1.0);
  2576. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2577. {
  2578. const U32 cullMask = 0xFF;
  2579. const U32 sbtRecordOffset = 0;
  2580. const U32 sbtRecordStride = 0;
  2581. const U32 missIndex = 0;
  2582. const F32 tMin = 0.1;
  2583. const F32 tMax = 10000.0;
  2584. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2585. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2586. if(s_payLoad.m_hitT > 0.0)
  2587. {
  2588. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2589. rayDir = s_payLoad.m_scatteredDir;
  2590. }
  2591. else
  2592. {
  2593. break;
  2594. }
  2595. }
  2596. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2597. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2598. }
  2599. outColor /= F32(sampleCount);
  2600. #if 0
  2601. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2602. const Vec3 normal = s_payLoad.m_normal;
  2603. if(s_payLoad.m_hitT > 0.0)
  2604. {
  2605. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2606. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2607. {
  2608. s_shadowPayLoad.m_shadow = 0.0;
  2609. const Light light = u_lights[i];
  2610. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2611. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2612. const U32 cullMask = 0x2;
  2613. const U32 sbtRecordOffset = 1;
  2614. const U32 sbtRecordStride = 0;
  2615. const U32 missIndex = 1;
  2616. const F32 tMin = 0.1;
  2617. const F32 tMax = length(randomPointInLight - rayOrigin);
  2618. const U32 flags = gl_RayFlagsOpaqueEXT;
  2619. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2620. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2621. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2622. outColor += normal * light.m_intensity * shadow;
  2623. }
  2624. }
  2625. else
  2626. {
  2627. outColor = diffuseColor;
  2628. }
  2629. #endif
  2630. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2631. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2632. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2633. })";
  2634. ShaderPtr lambertianShader = createShader(
  2635. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2636. ShaderPtr lambertianRoomShader =
  2637. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()),
  2638. ShaderType::CLOSEST_HIT, *gr);
  2639. ShaderPtr emissiveShader = createShader(
  2640. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2641. ShaderPtr shadowAhitShader = createShader(
  2642. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::ANY_HIT, *gr);
  2643. ShaderPtr shadowChitShader = createShader(
  2644. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2645. ShaderPtr missShader =
  2646. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::MISS, *gr);
  2647. ShaderPtr shadowMissShader = createShader(
  2648. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::MISS, *gr);
  2649. ShaderPtr rayGenShader = createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()),
  2650. ShaderType::RAY_GEN, *gr);
  2651. Array<RayTracingHitGroup, 4> hitGroups;
  2652. hitGroups[0].m_closestHitShader = lambertianShader;
  2653. hitGroups[1].m_closestHitShader = lambertianRoomShader;
  2654. hitGroups[2].m_closestHitShader = emissiveShader;
  2655. hitGroups[3].m_closestHitShader = shadowChitShader;
  2656. hitGroups[3].m_anyHitShader = shadowAhitShader;
  2657. Array<ShaderPtr, 2> missShaders = {missShader, shadowMissShader};
  2658. ShaderProgramInitInfo inf;
  2659. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2660. inf.m_rayTracingShaders.m_rayGenShader = rayGenShader;
  2661. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2662. rtProg = gr->newShaderProgram(inf);
  2663. }
  2664. // Create the SBT
  2665. BufferPtr sbt;
  2666. {
  2667. const U32 recordCount = 1 + 2 + U32(GeomWhat::COUNT) * 2;
  2668. BufferInitInfo inf;
  2669. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2670. inf.m_usage = BufferUsageBit::SBT;
  2671. inf.m_size = gr->getDeviceCapabilities().m_sbtRecordSize * recordCount;
  2672. sbt = gr->newBuffer(inf);
  2673. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::WRITE);
  2674. memset(&mapped[0], 0, inf.m_size);
  2675. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2676. ANKI_TEST_EXPECT_EQ(handles.getSize(), gr->getDeviceCapabilities().m_shaderGroupHandleSize * hitgroupCount);
  2677. // Ray gen
  2678. U32 record = 0;
  2679. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2680. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2681. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2682. // 2xMiss
  2683. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2684. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2685. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2686. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2687. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2688. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2689. // Small box
  2690. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2691. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2692. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2693. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2694. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2695. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2696. // Big box
  2697. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2698. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2699. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2700. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2701. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2702. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2703. // Room
  2704. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2705. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2706. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2707. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2708. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2709. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2710. // Light
  2711. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2712. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2713. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2714. memcpy(&mapped[gr->getDeviceCapabilities().m_sbtRecordSize * record++],
  2715. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2716. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2717. sbt->unmap();
  2718. }
  2719. // Create lights
  2720. BufferPtr lightBuffer;
  2721. constexpr U32 lightCount = 1;
  2722. {
  2723. BufferInitInfo inf;
  2724. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2725. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2726. inf.m_size = sizeof(Light) * lightCount;
  2727. lightBuffer = gr->newBuffer(inf);
  2728. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::WRITE);
  2729. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2730. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2731. lights[0].m_intensity = Vec3(1.0f);
  2732. lightBuffer->unmap();
  2733. }
  2734. // Draw
  2735. constexpr U32 ITERATIONS = 100 * 8;
  2736. for(U32 i = 0; i < ITERATIONS; ++i)
  2737. {
  2738. HighRezTimer timer;
  2739. timer.start();
  2740. const Mat4 viewMat =
  2741. Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f))
  2742. .getInverse();
  2743. const Mat4 projMat =
  2744. Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2745. CommandBufferInitInfo cinit;
  2746. cinit.m_flags =
  2747. CommandBufferFlag::GRAPHICS_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2748. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2749. if(i == 0)
  2750. {
  2751. for(const Geom& g : geometries)
  2752. {
  2753. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::NONE,
  2754. AccelerationStructureUsageBit::BUILD);
  2755. }
  2756. for(const Geom& g : geometries)
  2757. {
  2758. cmdb->buildAccelerationStructure(g.m_blas);
  2759. }
  2760. for(const Geom& g : geometries)
  2761. {
  2762. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::BUILD,
  2763. AccelerationStructureUsageBit::ATTACH);
  2764. }
  2765. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2766. AccelerationStructureUsageBit::BUILD);
  2767. cmdb->buildAccelerationStructure(tlas);
  2768. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2769. AccelerationStructureUsageBit::TRACE_RAYS_READ);
  2770. }
  2771. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2772. TextureViewPtr presentView;
  2773. {
  2774. TextureViewInitInfo inf;
  2775. inf.m_texture = presentTex;
  2776. presentView = gr->newTextureView(inf);
  2777. }
  2778. TextureViewPtr offscreenView, offscreenHistoryView;
  2779. {
  2780. TextureViewInitInfo inf;
  2781. inf.m_texture = offscreenRts[i & 1];
  2782. offscreenView = gr->newTextureView(inf);
  2783. inf.m_texture = offscreenRts[(i + 1) & 1];
  2784. offscreenHistoryView = gr->newTextureView(inf);
  2785. }
  2786. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::NONE, TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2787. TextureSubresourceInfo());
  2788. cmdb->setTextureBarrier(offscreenRts[(i + 1) & 1], TextureUsageBit::IMAGE_COMPUTE_READ,
  2789. TextureUsageBit::IMAGE_TRACE_RAYS_READ, TextureSubresourceInfo());
  2790. cmdb->bindStorageBuffer(0, 0, modelBuffer, 0, MAX_PTR_SIZE);
  2791. cmdb->bindStorageBuffer(0, 1, lightBuffer, 0, MAX_PTR_SIZE);
  2792. cmdb->bindAccelerationStructure(1, 0, tlas);
  2793. cmdb->bindImage(1, 1, offscreenHistoryView);
  2794. cmdb->bindImage(1, 2, offscreenView);
  2795. cmdb->bindShaderProgram(rtProg);
  2796. PushConstants pc;
  2797. pc.m_vp = projMat * viewMat;
  2798. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2799. pc.m_lightCount = lightCount;
  2800. pc.m_frame = i;
  2801. cmdb->setPushConstants(&pc, sizeof(pc));
  2802. cmdb->traceRays(sbt, 0, U32(GeomWhat::COUNT) * 2, 2, WIDTH, HEIGHT, 1);
  2803. // Copy to present
  2804. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2805. TextureUsageBit::IMAGE_COMPUTE_READ, TextureSubresourceInfo());
  2806. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  2807. TextureSubresourceInfo());
  2808. cmdb->bindImage(0, 0, offscreenView);
  2809. cmdb->bindImage(0, 1, presentView);
  2810. cmdb->bindShaderProgram(copyToPresentProg);
  2811. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2812. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2813. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2814. cmdb->setTextureBarrier(presentTex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::PRESENT,
  2815. TextureSubresourceInfo());
  2816. cmdb->flush();
  2817. gr->swapBuffers();
  2818. timer.stop();
  2819. const F32 TICK = 1.0f / 60.0f;
  2820. if(timer.getElapsedTime() < TICK)
  2821. {
  2822. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2823. }
  2824. }
  2825. COMMON_END();
  2826. }
  2827. } // end namespace anki