| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655 |
- // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- #pragma once
- #include <AnKi/Math/Common.h>
- #include <AnKi/Math/Vec.h>
- namespace anki
- {
- /// @addtogroup math
- /// @{
- /// Matrix type.
- /// @tparam T The scalar type. Eg float.
- /// @tparam J The number of rows.
- /// @tparam I The number of columns.
- template<typename T, U J, U I>
- class alignas(MathSimd<T, I>::ALIGNMENT) TMat
- {
- public:
- using Scalar = T;
- using Simd = typename MathSimd<T, I>::Type;
- #if ANKI_COMPILER_GCC_COMPATIBLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wignored-attributes"
- #endif
- using SimdArray = Array<Simd, J>;
- #if ANKI_COMPILER_GCC_COMPATIBLE
- # pragma GCC diagnostic pop
- #endif
- using RowVec = TVec<T, I>;
- using ColumnVec = TVec<T, J>;
- static constexpr U ROW_SIZE = J; ///< Number of rows
- static constexpr U COLUMN_SIZE = I; ///< Number of columns
- static constexpr U SIZE = J * I; ///< Number of total elements
- static constexpr Bool HAS_SIMD = I == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
- static constexpr Bool HAS_MAT4_SIMD = J == 4 && I == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
- static constexpr Bool HAS_MAT3X4_SIMD = J == 3 && I == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
- /// @name Constructors
- /// @{
- TMat()
- {
- }
- /// Copy.
- TMat(ANKI_ENABLE_ARG(const TMat&, !HAS_SIMD) b)
- {
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] = b.m_arr1[i];
- }
- }
- /// Copy.
- TMat(ANKI_ENABLE_ARG(const TMat&, HAS_SIMD) b)
- {
- for(U i = 0; i < J; i++)
- {
- m_simd[i] = b.m_simd[i];
- }
- }
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- explicit TMat(const T f)
- {
- for(T& x : m_arr1)
- {
- x = f;
- }
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- explicit TMat(const T f)
- {
- for(U i = 0; i < J; i++)
- {
- # if ANKI_SIMD_SSE
- m_simd[i] = _mm_set1_ps(f);
- # else
- m_simd[i] = {f, f, f, f};
- # endif
- }
- }
- #endif
- explicit TMat(const T arr[])
- {
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] = arr[i];
- }
- }
- // 3x3 specific constructors
- ANKI_ENABLE_METHOD(J == 3 && I == 3)
- TMat(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22)
- {
- auto& m = *this;
- m(0, 0) = m00;
- m(0, 1) = m01;
- m(0, 2) = m02;
- m(1, 0) = m10;
- m(1, 1) = m11;
- m(1, 2) = m12;
- m(2, 0) = m20;
- m(2, 1) = m21;
- m(2, 2) = m22;
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 3)
- explicit TMat(const TQuat<T>& q)
- {
- setRotationPart(q);
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 3)
- explicit TMat(const TEuler<T>& e)
- {
- setRotationPart(e);
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 3)
- explicit TMat(const TAxisang<T>& axisang)
- {
- setRotationPart(axisang);
- }
- // 4x4 specific constructors
- ANKI_ENABLE_METHOD(J == 4 && I == 4)
- TMat(T m00, T m01, T m02, T m03, T m10, T m11, T m12, T m13, T m20, T m21, T m22, T m23, T m30, T m31, T m32, T m33)
- {
- auto& m = *this;
- m(0, 0) = m00;
- m(0, 1) = m01;
- m(0, 2) = m02;
- m(0, 3) = m03;
- m(1, 0) = m10;
- m(1, 1) = m11;
- m(1, 2) = m12;
- m(1, 3) = m13;
- m(2, 0) = m20;
- m(2, 1) = m21;
- m(2, 2) = m22;
- m(2, 3) = m23;
- m(3, 0) = m30;
- m(3, 1) = m31;
- m(3, 2) = m32;
- m(3, 3) = m33;
- }
- ANKI_ENABLE_METHOD(J == 4 && I == 4)
- TMat(const TVec<T, 4>& translation, const TMat<T, 3, 3>& rotation, const T scale = T(1))
- {
- if(isZero<T>(scale - T(1)))
- {
- setRotationPart(rotation);
- }
- else
- {
- setRotationPart(rotation * scale);
- }
- setTranslationPart(translation);
- auto& m = *this;
- m(3, 0) = m(3, 1) = m(3, 2) = T(0);
- }
- ANKI_ENABLE_METHOD(J == 4 && I == 4)
- explicit TMat(const TTransform<T>& t)
- : TMat(t.getOrigin().xyz1(), t.getRotation().getRotationPart(), t.getScale())
- {
- }
- // 3x4 specific constructors
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- TMat(T m00, T m01, T m02, T m03, T m10, T m11, T m12, T m13, T m20, T m21, T m22, T m23)
- {
- auto& m = *this;
- m(0, 0) = m00;
- m(0, 1) = m01;
- m(0, 2) = m02;
- m(0, 3) = m03;
- m(1, 0) = m10;
- m(1, 1) = m11;
- m(1, 2) = m12;
- m(1, 3) = m13;
- m(2, 0) = m20;
- m(2, 1) = m21;
- m(2, 2) = m22;
- m(2, 3) = m23;
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TMat<T, 4, 4>& m4)
- {
- auto& m = *this;
- m(0, 0) = m4(0, 0);
- m(0, 1) = m4(0, 1);
- m(0, 2) = m4(0, 2);
- m(0, 3) = m4(0, 3);
- m(1, 0) = m4(1, 0);
- m(1, 1) = m4(1, 1);
- m(1, 2) = m4(1, 2);
- m(1, 3) = m4(1, 3);
- m(2, 0) = m4(2, 0);
- m(2, 1) = m4(2, 1);
- m(2, 2) = m4(2, 2);
- m(2, 3) = m4(2, 3);
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TVec<T, 3>& translation, const TMat<T, 3, 3>& rotation, const T scale = T(1))
- {
- if(isZero<T>(scale - T(1)))
- {
- setRotationPart(rotation);
- }
- else
- {
- setRotationPart(rotation * scale);
- }
- setTranslationPart(translation);
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TVec<T, 3>& translation, const TQuat<T>& q, const T scale = T(1))
- : TMat(translation, TMat<T, 3, 3>(q), scale)
- {
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TVec<T, 3>& translation, const TEuler<T>& b, const T scale = T(1))
- : TMat(translation, TMat<T, 3, 3>(b), scale)
- {
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TVec<T, 3>& translation, const TAxisang<T>& b, const T scale = T(1))
- : TMat(translation, TMat<T, 3, 3>(b), scale)
- {
- }
- ANKI_ENABLE_METHOD(J == 3 && I == 4)
- explicit TMat(const TTransform<T>& t)
- : TMat(t.getOrigin().xyz(), t.getRotation().getRotationPart(), t.getScale())
- {
- }
- /// @}
- /// @name Accessors
- /// @{
- T& operator()(const U j, const U i)
- {
- return m_arr2[j][i];
- }
- T operator()(const U j, const U i) const
- {
- return m_arr2[j][i];
- }
- T& operator[](const U n)
- {
- return m_arr1[n];
- }
- T operator[](const U n) const
- {
- return m_arr1[n];
- }
- /// @}
- /// @name Operators with same type
- /// @{
- /// Copy.
- TMat& operator=(ANKI_ENABLE_ARG(const TMat&, !HAS_SIMD) b)
- {
- for(U n = 0; n < N; n++)
- {
- m_arr1[n] = b.m_arr1[n];
- }
- return *this;
- }
- /// Copy.
- TMat& operator=(ANKI_ENABLE_ARG(const TMat&, HAS_SIMD) b)
- {
- for(U i = 0; i < J; i++)
- {
- m_simd[i] = b.m_simd[i];
- }
- return *this;
- }
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- TMat operator+(const TMat& b) const
- {
- TMat c;
- for(U n = 0; n < N; n++)
- {
- c.m_arr1[n] = m_arr1[n] + b.m_arr1[n];
- }
- return c;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- TMat operator+(const TMat& b) const
- {
- TMat c;
- for(U i = 0; i < J; i++)
- {
- # if ANKI_SIMD_SSE
- c.m_simd[i] = _mm_add_ps(m_simd[i], b.m_simd[i]);
- # else
- c.m_simd[i] = m_simd[i] + b.m_simd[i];
- # endif
- }
- return c;
- }
- #endif
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- TMat& operator+=(const TMat& b)
- {
- for(U n = 0; n < N; n++)
- {
- m_arr1[n] += b.m_arr1[n];
- }
- return *this;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- TMat& operator+=(const TMat& b)
- {
- for(U i = 0; i < J; i++)
- {
- # if ANKI_SIMD_SSE
- m_simd[i] = _mm_add_ps(m_simd[i], b.m_simd[i]);
- # else
- m_simd[i] += b.m_simd[i];
- # endif
- }
- return *this;
- }
- #endif
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- TMat operator-(const TMat& b) const
- {
- TMat c;
- for(U n = 0; n < N; n++)
- {
- c.m_arr1[n] = m_arr1[n] - b.m_arr1[n];
- }
- return c;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- TMat operator-(const TMat& b) const
- {
- TMat c;
- for(U i = 0; i < J; i++)
- {
- # if ANKI_SIMD_SSE
- c.m_simd[i] = _mm_sub_ps(m_simd[i], b.m_simd[i]);
- # else
- c.m_simd[i] = m_simd[i] - b.m_simd[i];
- # endif
- }
- return c;
- }
- #endif
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- TMat& operator-=(const TMat& b)
- {
- for(U n = 0; n < N; n++)
- {
- m_arr1[n] -= b.m_arr1[n];
- }
- return *this;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- TMat& operator-=(const TMat& b)
- {
- for(U i = 0; i < J; i++)
- {
- # if ANKI_SIMD_SSE
- m_simd[i] = _mm_sub_ps(m_simd[i], b.m_simd[i]);
- # else
- m_simd[i] -= b.m_simd[i];
- # endif
- }
- return *this;
- }
- #endif
- ANKI_ENABLE_METHOD(J == I && !HAS_MAT4_SIMD)
- TMat operator*(const TMat& b) const
- {
- TMat out;
- const TMat& a = *this;
- for(U j = 0; j < J; j++)
- {
- for(U i = 0; i < I; i++)
- {
- out(j, i) = T(0);
- for(U k = 0; k < I; k++)
- {
- out(j, i) += a(j, k) * b(k, i);
- }
- }
- }
- return out;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_MAT4_SIMD)
- TMat operator*(const TMat& b) const
- {
- TMat out;
- const auto& m = *this;
- for(U i = 0; i < 4; i++)
- {
- # if ANKI_SIMD_SSE
- __m128 t1, t2;
- t1 = _mm_set1_ps(m(i, 0));
- t2 = _mm_mul_ps(b.m_simd[0], t1);
- t1 = _mm_set1_ps(m(i, 1));
- t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[1], t1), t2);
- t1 = _mm_set1_ps(m(i, 2));
- t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[2], t1), t2);
- t1 = _mm_set1_ps(m(i, 3));
- t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[3], t1), t2);
- out.m_simd[i] = t2;
- # else
- float32x4_t t1, t2;
- t1 = vmovq_n_f32(m(i, 0));
- t2 = b.m_simd[0] * t1;
- t1 = vmovq_n_f32(m(i, 1));
- t2 = b.m_simd[1] * t1 + t2;
- t1 = vmovq_n_f32(m(i, 2));
- t2 = b.m_simd[2] * t1 + t2;
- t1 = vmovq_n_f32(m(i, 3));
- t2 = b.m_simd[3] * t1 + t2;
- out.m_simd[i] = t2;
- # endif
- }
- return out;
- }
- #endif
- TMat& operator*=(const TMat& b)
- {
- (*this) = (*this) * b;
- return *this;
- }
- Bool operator==(const TMat& b) const
- {
- for(U i = 0; i < N; i++)
- {
- if(!isZero<T>(m_arr1[i] - b.m_arr1[i]))
- {
- return false;
- }
- }
- return true;
- }
- Bool operator!=(const TMat& b) const
- {
- for(U i = 0; i < N; i++)
- {
- if(!isZero<T>(m_arr1[i] - b.m_arr1[i]))
- {
- return true;
- }
- }
- return false;
- }
- /// @}
- /// @name Operators with T
- /// @{
- TMat operator+(const T f) const
- {
- TMat out;
- for(U i = 0; i < N; i++)
- {
- out.m_arr1[i] = m_arr1[i] + f;
- }
- return out;
- }
- TMat& operator+=(const T f)
- {
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] += f;
- }
- return *this;
- }
- TMat operator-(const T f) const
- {
- TMat out;
- for(U i = 0; i < N; i++)
- {
- out.m_arr1[i] = m_arr1[i] - f;
- }
- return out;
- }
- TMat& operator-=(const T f)
- {
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] -= f;
- }
- return *this;
- }
- TMat operator*(const T f) const
- {
- TMat out;
- for(U i = 0; i < N; i++)
- {
- out.m_arr1[i] = m_arr1[i] * f;
- }
- return out;
- }
- TMat& operator*=(const T f)
- {
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] *= f;
- }
- return *this;
- }
- TMat operator/(const T f) const
- {
- ANKI_ASSERT(f != T(0));
- TMat out;
- for(U i = 0; i < N; i++)
- {
- out.m_arr1[i] = m_arr1[i] / f;
- }
- return out;
- }
- TMat& operator/=(const T f)
- {
- ANKI_ASSERT(f != T(0));
- for(U i = 0; i < N; i++)
- {
- m_arr1[i] /= f;
- }
- return *this;
- }
- /// @}
- /// @name Operators with other types
- /// @{
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- ColumnVec operator*(const RowVec& v) const
- {
- const TMat& m = *this;
- ColumnVec out;
- for(U j = 0; j < J; j++)
- {
- T sum = T(0);
- for(U i = 0; i < I; i++)
- {
- sum += m(j, i) * v[i];
- }
- out[j] = sum;
- }
- return out;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(HAS_SIMD)
- ColumnVec operator*(const RowVec& v) const
- {
- ColumnVec out;
- # if ANKI_SIMD_SSE
- for(U i = 0; i < J; i++)
- {
- _mm_store_ss(&out[i], _mm_dp_ps(m_simd[i], v.getSimd(), 0xF1));
- }
- # else
- for(U i = 0; i < J; i++)
- {
- out[i] = RowVec(m_simd[i]).dot(v);
- }
- # endif
- return out;
- }
- #endif
- /// @}
- /// @name Other
- /// @{
- ANKI_ENABLE_METHOD(!HAS_SIMD)
- void setRow(const U j, const RowVec& v)
- {
- for(U i = 0; i < I; i++)
- {
- m_arr2[j][i] = v[i];
- }
- }
- ANKI_ENABLE_METHOD(HAS_SIMD)
- void setRow(const U j, const RowVec& v)
- {
- m_simd[j] = v.getSimd();
- }
- void setRows(const RowVec& a, const RowVec& b, const RowVec& c)
- {
- setRow(0, a);
- setRow(1, b);
- setRow(2, c);
- }
- ANKI_ENABLE_METHOD(J > 3)
- void setRows(const RowVec& a, const RowVec& b, const RowVec& c, const RowVec& d)
- {
- setRows(a, b, c);
- setRow(3, d);
- }
- RowVec getRow(const U j) const
- {
- RowVec out;
- for(U i = 0; i < I; i++)
- {
- out[i] = m_arr2[j][i];
- }
- return out;
- }
- void getRows(RowVec& a, RowVec& b, RowVec& c) const
- {
- a = getRow(0);
- b = getRow(1);
- c = getRow(2);
- }
- void getRows(RowVec& a, RowVec& b, RowVec& c, RowVec& d) const
- {
- static_assert(J > 3, "Wrong matrix");
- getRows(a, b, c);
- d = getRow(3);
- }
- void setColumn(const U i, const ColumnVec& v)
- {
- for(U j = 0; j < J; j++)
- {
- m_arr2[j][i] = v[j];
- }
- }
- void setColumns(const ColumnVec& a, const ColumnVec& b, const ColumnVec& c)
- {
- setColumn(0, a);
- setColumn(1, b);
- setColumn(2, c);
- }
- void setColumns(const ColumnVec& a, const ColumnVec& b, const ColumnVec& c, const ColumnVec& d)
- {
- static_assert(I > 3, "Check column number");
- setColumns(a, b, c);
- setColumn(3, d);
- }
- ColumnVec getColumn(const U i) const
- {
- ColumnVec out;
- for(U j = 0; j < J; j++)
- {
- out[j] = m_arr2[j][i];
- }
- return out;
- }
- void getColumns(ColumnVec& a, ColumnVec& b, ColumnVec& c) const
- {
- a = getColumn(0);
- b = getColumn(1);
- c = getColumn(2);
- }
- void getColumns(ColumnVec& a, ColumnVec& b, ColumnVec& c, ColumnVec& d) const
- {
- static_assert(I > 3, "Check column number");
- getColumns(a, b, c);
- d = getColumn(3);
- }
- /// Get 1st column
- ColumnVec getXAxis() const
- {
- return getColumn(0);
- }
- /// Get 2nd column
- ColumnVec getYAxis() const
- {
- return getColumn(1);
- }
- /// Get 3rd column
- ColumnVec getZAxis() const
- {
- return getColumn(2);
- }
- /// Set 1st column
- void setXAxis(const ColumnVec& v)
- {
- setColumn(0, v);
- }
- /// Set 2nd column
- void setYAxis(const ColumnVec& v)
- {
- setColumn(1, v);
- }
- /// Set 3rd column
- void setZAxis(const ColumnVec& v)
- {
- setColumn(2, v);
- }
- void setRotationX(const T rad)
- {
- TMat& m = *this;
- T sintheta, costheta;
- sinCos(rad, sintheta, costheta);
- m(0, 0) = T(1);
- m(0, 1) = T(0);
- m(0, 2) = T(0);
- m(1, 0) = T(0);
- m(1, 1) = costheta;
- m(1, 2) = -sintheta;
- m(2, 0) = T(0);
- m(2, 1) = sintheta;
- m(2, 2) = costheta;
- }
- void setRotationY(const T rad)
- {
- TMat& m = *this;
- T sintheta, costheta;
- sinCos(rad, sintheta, costheta);
- m(0, 0) = costheta;
- m(0, 1) = T(0);
- m(0, 2) = sintheta;
- m(1, 0) = T(0);
- m(1, 1) = T(1);
- m(1, 2) = T(0);
- m(2, 0) = -sintheta;
- m(2, 1) = T(0);
- m(2, 2) = costheta;
- }
- void setRotationZ(const T rad)
- {
- TMat& m = *this;
- T sintheta, costheta;
- sinCos(rad, sintheta, costheta);
- m(0, 0) = costheta;
- m(0, 1) = -sintheta;
- m(0, 2) = T(0);
- m(1, 0) = sintheta;
- m(1, 1) = costheta;
- m(1, 2) = T(0);
- m(2, 0) = T(0);
- m(2, 1) = T(0);
- m(2, 2) = T(1);
- }
- /// It rotates "this" in the axis defined by the rotation AND not the
- /// world axis
- void rotateXAxis(const T rad)
- {
- TMat& m = *this;
- // If we analize the mat3 we can extract the 3 unit vectors rotated by the mat3. The 3 rotated vectors are in
- // mat's columns. This means that: mat3.colomn[0] == i * mat3. rotateXAxis() rotates rad angle not from i
- // vector (aka x axis) but from the vector from colomn 0
- // NOTE: See the clean code from < r664
- T sina, cosa;
- sinCos(rad, sina, cosa);
- // zAxis = zAxis*cosa - yAxis*sina;
- m(0, 2) = m(0, 2) * cosa - m(0, 1) * sina;
- m(1, 2) = m(1, 2) * cosa - m(1, 1) * sina;
- m(2, 2) = m(2, 2) * cosa - m(2, 1) * sina;
- // zAxis.normalize();
- T len = sqrt(m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2));
- m(0, 2) /= len;
- m(1, 2) /= len;
- m(2, 2) /= len;
- // yAxis = zAxis * xAxis;
- m(0, 1) = m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0);
- m(1, 1) = m(2, 2) * m(0, 0) - m(0, 2) * m(2, 0);
- m(2, 1) = m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0);
- // yAxis.normalize();
- }
- /// @copybrief rotateXAxis
- void rotateYAxis(const T rad)
- {
- TMat& m = *this;
- // NOTE: See the clean code from < r664
- T sina, cosa;
- sinCos(rad, sina, cosa);
- // zAxis = zAxis*cosa + xAxis*sina;
- m(0, 2) = m(0, 2) * cosa + m(0, 0) * sina;
- m(1, 2) = m(1, 2) * cosa + m(1, 0) * sina;
- m(2, 2) = m(2, 2) * cosa + m(2, 0) * sina;
- // zAxis.normalize();
- T len = sqrt(m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2));
- m(0, 2) /= len;
- m(1, 2) /= len;
- m(2, 2) /= len;
- // xAxis = (zAxis*yAxis) * -1.0f;
- m(0, 0) = m(2, 2) * m(1, 1) - m(1, 2) * m(2, 1);
- m(1, 0) = m(0, 2) * m(2, 1) - m(2, 2) * m(0, 1);
- m(2, 0) = m(1, 2) * m(0, 1) - m(0, 2) * m(1, 1);
- }
- /// @copybrief rotateXAxis
- void rotateZAxis(const T rad)
- {
- TMat& m = *this;
- // NOTE: See the clean code from < r664
- T sina, cosa;
- sinCos(rad, sina, cosa);
- // xAxis = xAxis*cosa + yAxis*sina;
- m(0, 0) = m(0, 0) * cosa + m(0, 1) * sina;
- m(1, 0) = m(1, 0) * cosa + m(1, 1) * sina;
- m(2, 0) = m(2, 0) * cosa + m(2, 1) * sina;
- // xAxis.normalize();
- T len = sqrt(m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0));
- m(0, 0) /= len;
- m(1, 0) /= len;
- m(2, 0) /= len;
- // yAxis = zAxis*xAxis;
- m(0, 1) = m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0);
- m(1, 1) = m(2, 2) * m(0, 0) - m(0, 2) * m(2, 0);
- m(2, 1) = m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0);
- }
- void setRotationPart(const TMat<T, 3, 3>& m3)
- {
- TMat& m = *this;
- for(U j = 0; j < 3; j++)
- {
- for(U i = 0; i < 3; i++)
- {
- m(j, i) = m3(j, i);
- }
- }
- }
- void setRotationPart(const TQuat<T>& q)
- {
- TMat& m = *this;
- // If length is > 1 + 0.002 or < 1 - 0.002 then not normalized quat
- ANKI_ASSERT(absolute(T(1) - q.getLength()) <= 0.002);
- T xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
- xs = q.x() + q.x();
- ys = q.y() + q.y();
- zs = q.z() + q.z();
- wx = q.w() * xs;
- wy = q.w() * ys;
- wz = q.w() * zs;
- xx = q.x() * xs;
- xy = q.x() * ys;
- xz = q.x() * zs;
- yy = q.y() * ys;
- yz = q.y() * zs;
- zz = q.z() * zs;
- m(0, 0) = T(1) - (yy + zz);
- m(0, 1) = xy - wz;
- m(0, 2) = xz + wy;
- m(1, 0) = xy + wz;
- m(1, 1) = T(1) - (xx + zz);
- m(1, 2) = yz - wx;
- m(2, 0) = xz - wy;
- m(2, 1) = yz + wx;
- m(2, 2) = T(1) - (xx + yy);
- }
- void setRotationPart(const TEuler<T>& e)
- {
- TMat& m = *this;
- T ch, sh, ca, sa, cb, sb;
- sinCos(e.y(), sh, ch);
- sinCos(e.z(), sa, ca);
- sinCos(e.x(), sb, cb);
- m(0, 0) = ch * ca;
- m(0, 1) = sh * sb - ch * sa * cb;
- m(0, 2) = ch * sa * sb + sh * cb;
- m(1, 0) = sa;
- m(1, 1) = ca * cb;
- m(1, 2) = -ca * sb;
- m(2, 0) = -sh * ca;
- m(2, 1) = sh * sa * cb + ch * sb;
- m(2, 2) = -sh * sa * sb + ch * cb;
- }
- void setRotationPart(const TAxisang<T>& axisang)
- {
- TMat& m = *this;
- // Not normalized axis
- ANKI_ASSERT(isZero<T>(T(1) - axisang.getAxis().getLength()));
- T c, s;
- sinCos(axisang.getAngle(), s, c);
- T t = T(1) - c;
- const TVec<T, 3>& axis = axisang.getAxis();
- m(0, 0) = c + axis.x() * axis.x() * t;
- m(1, 1) = c + axis.y() * axis.y() * t;
- m(2, 2) = c + axis.z() * axis.z() * t;
- T tmp1 = axis.x() * axis.y() * t;
- T tmp2 = axis.z() * s;
- m(1, 0) = tmp1 + tmp2;
- m(0, 1) = tmp1 - tmp2;
- tmp1 = axis.x() * axis.z() * t;
- tmp2 = axis.y() * s;
- m(2, 0) = tmp1 - tmp2;
- m(0, 2) = tmp1 + tmp2;
- tmp1 = axis.y() * axis.z() * t;
- tmp2 = axis.x() * s;
- m(2, 1) = tmp1 + tmp2;
- m(1, 2) = tmp1 - tmp2;
- }
- TMat<T, 3, 3> getRotationPart() const
- {
- const TMat& m = *this;
- TMat<T, 3, 3> m3;
- m3(0, 0) = m(0, 0);
- m3(0, 1) = m(0, 1);
- m3(0, 2) = m(0, 2);
- m3(1, 0) = m(1, 0);
- m3(1, 1) = m(1, 1);
- m3(1, 2) = m(1, 2);
- m3(2, 0) = m(2, 0);
- m3(2, 1) = m(2, 1);
- m3(2, 2) = m(2, 2);
- return m3;
- }
- void setTranslationPart(const ColumnVec& v)
- {
- if(ROW_SIZE == 4)
- {
- ANKI_ASSERT(isZero<T>(v[3] - T(1)) && "w should be 1");
- }
- setColumn(3, v);
- }
- ColumnVec getTranslationPart() const
- {
- return getColumn(3);
- }
- void reorthogonalize()
- {
- // There are 2 methods, the standard and the Gram-Schmidt method with a twist for zAxis. This uses the 2nd. For
- // the first see < r664
- ColumnVec xAxis, yAxis, zAxis;
- getColumns(xAxis, yAxis, zAxis);
- xAxis.normalize();
- yAxis = yAxis - (xAxis * xAxis.dot(yAxis));
- yAxis.normalize();
- zAxis = xAxis.cross(yAxis);
- setColumns(xAxis, yAxis, zAxis);
- }
- ANKI_ENABLE_METHOD(J == I && !HAS_SIMD)
- void transpose()
- {
- for(U j = 0; j < J; j++)
- {
- for(U i = j + 1; i < I; i++)
- {
- T tmp = m_arr2[j][i];
- m_arr2[j][i] = m_arr2[i][j];
- m_arr2[i][j] = tmp;
- }
- }
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(J == I && HAS_SIMD)
- void transpose()
- {
- # if ANKI_SIMD_SSE
- _MM_TRANSPOSE4_PS(m_simd[0], m_simd[1], m_simd[2], m_simd[3]);
- # else
- const float32x4x2_t row01 = vtrnq_f32(m_simd[0], m_simd[1]);
- const float32x4x2_t row23 = vtrnq_f32(m_simd[2], m_simd[3]);
- m_simd[0] = vcombine_f32(vget_low_f32(row01.val[0]), vget_low_f32(row23.val[0]));
- m_simd[1] = vcombine_f32(vget_low_f32(row01.val[1]), vget_low_f32(row23.val[1]));
- m_simd[2] = vcombine_f32(vget_high_f32(row01.val[0]), vget_high_f32(row23.val[0]));
- m_simd[3] = vcombine_f32(vget_high_f32(row01.val[1]), vget_high_f32(row23.val[1]));
- # endif
- }
- #endif
- void transposeRotationPart()
- {
- for(U j = 0; j < 3; j++)
- {
- for(U i = j + 1; i < 3; i++)
- {
- const T tmp = m_arr2[j][i];
- m_arr2[j][i] = m_arr2[i][j];
- m_arr2[i][j] = tmp;
- }
- }
- }
- ANKI_ENABLE_METHOD(I == J)
- TMat getTransposed() const
- {
- TMat out;
- for(U j = 0; j < J; j++)
- {
- for(U i = 0; i < I; i++)
- {
- out.m_arr2[i][j] = m_arr2[j][i];
- }
- }
- return out;
- }
- ANKI_ENABLE_METHOD(I == 3 && J == 3)
- T getDet() const
- {
- const auto& m = *this;
- // For the accurate method see < r664
- return m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0))
- + m(0, 2) * (m(0, 1) * m(2, 1) - m(1, 1) * m(2, 0));
- }
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- T getDet() const
- {
- const auto& t = *this;
- return t(0, 3) * t(1, 2) * t(2, 1) * t(3, 0) - t(0, 2) * t(1, 3) * t(2, 1) * t(3, 0)
- - t(0, 3) * t(1, 1) * t(2, 2) * t(3, 0) + t(0, 1) * t(1, 3) * t(2, 2) * t(3, 0)
- + t(0, 2) * t(1, 1) * t(2, 3) * t(3, 0) - t(0, 1) * t(1, 2) * t(2, 3) * t(3, 0)
- - t(0, 3) * t(1, 2) * t(2, 0) * t(3, 1) + t(0, 2) * t(1, 3) * t(2, 0) * t(3, 1)
- + t(0, 3) * t(1, 0) * t(2, 2) * t(3, 1) - t(0, 0) * t(1, 3) * t(2, 2) * t(3, 1)
- - t(0, 2) * t(1, 0) * t(2, 3) * t(3, 1) + t(0, 0) * t(1, 2) * t(2, 3) * t(3, 1)
- + t(0, 3) * t(1, 1) * t(2, 0) * t(3, 2) - t(0, 1) * t(1, 3) * t(2, 0) * t(3, 2)
- - t(0, 3) * t(1, 0) * t(2, 1) * t(3, 2) + t(0, 0) * t(1, 3) * t(2, 1) * t(3, 2)
- + t(0, 1) * t(1, 0) * t(2, 3) * t(3, 2) - t(0, 0) * t(1, 1) * t(2, 3) * t(3, 2)
- - t(0, 2) * t(1, 1) * t(2, 0) * t(3, 3) + t(0, 1) * t(1, 2) * t(2, 0) * t(3, 3)
- + t(0, 2) * t(1, 0) * t(2, 1) * t(3, 3) - t(0, 0) * t(1, 2) * t(2, 1) * t(3, 3)
- - t(0, 1) * t(1, 0) * t(2, 2) * t(3, 3) + t(0, 0) * t(1, 1) * t(2, 2) * t(3, 3);
- }
- ANKI_ENABLE_METHOD(I == 3 && J == 3)
- TMat getInverse() const
- {
- // Using Gramer's method Inv(A) = (1 / getDet(A)) * Adj(A)
- const TMat& m = *this;
- TMat r;
- // compute determinant
- const T cofactor0 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
- const T cofactor3 = m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2);
- const T cofactor6 = m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1);
- const T det = m(0, 0) * cofactor0 + m(1, 0) * cofactor3 + m(2, 0) * cofactor6;
- ANKI_ASSERT(!isZero<T>(det)); // Cannot invert det == 0
- // create adjoint matrix and multiply by 1/det to get inverse
- const T invDet = T(1) / det;
- r(0, 0) = invDet * cofactor0;
- r(0, 1) = invDet * cofactor3;
- r(0, 2) = invDet * cofactor6;
- r(1, 0) = invDet * (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2));
- r(1, 1) = invDet * (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0));
- r(1, 2) = invDet * (m(0, 2) * m(1, 0) - m(0, 0) * m(1, 2));
- r(2, 0) = invDet * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));
- r(2, 1) = invDet * (m(0, 1) * m(2, 0) - m(0, 0) * m(2, 1));
- r(2, 2) = invDet * (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0));
- return r;
- }
- /// Invert using Cramer's rule
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- TMat getInverse() const
- {
- Array<T, 12> tmp;
- const auto& in = (*this);
- TMat m4;
- tmp[0] = in(2, 2) * in(3, 3);
- tmp[1] = in(3, 2) * in(2, 3);
- tmp[2] = in(1, 2) * in(3, 3);
- tmp[3] = in(3, 2) * in(1, 3);
- tmp[4] = in(1, 2) * in(2, 3);
- tmp[5] = in(2, 2) * in(1, 3);
- tmp[6] = in(0, 2) * in(3, 3);
- tmp[7] = in(3, 2) * in(0, 3);
- tmp[8] = in(0, 2) * in(2, 3);
- tmp[9] = in(2, 2) * in(0, 3);
- tmp[10] = in(0, 2) * in(1, 3);
- tmp[11] = in(1, 2) * in(0, 3);
- m4(0, 0) = tmp[0] * in(1, 1) + tmp[3] * in(2, 1) + tmp[4] * in(3, 1);
- m4(0, 0) -= tmp[1] * in(1, 1) + tmp[2] * in(2, 1) + tmp[5] * in(3, 1);
- m4(0, 1) = tmp[1] * in(0, 1) + tmp[6] * in(2, 1) + tmp[9] * in(3, 1);
- m4(0, 1) -= tmp[0] * in(0, 1) + tmp[7] * in(2, 1) + tmp[8] * in(3, 1);
- m4(0, 2) = tmp[2] * in(0, 1) + tmp[7] * in(1, 1) + tmp[10] * in(3, 1);
- m4(0, 2) -= tmp[3] * in(0, 1) + tmp[6] * in(1, 1) + tmp[11] * in(3, 1);
- m4(0, 3) = tmp[5] * in(0, 1) + tmp[8] * in(1, 1) + tmp[11] * in(2, 1);
- m4(0, 3) -= tmp[4] * in(0, 1) + tmp[9] * in(1, 1) + tmp[10] * in(2, 1);
- m4(1, 0) = tmp[1] * in(1, 0) + tmp[2] * in(2, 0) + tmp[5] * in(3, 0);
- m4(1, 0) -= tmp[0] * in(1, 0) + tmp[3] * in(2, 0) + tmp[4] * in(3, 0);
- m4(1, 1) = tmp[0] * in(0, 0) + tmp[7] * in(2, 0) + tmp[8] * in(3, 0);
- m4(1, 1) -= tmp[1] * in(0, 0) + tmp[6] * in(2, 0) + tmp[9] * in(3, 0);
- m4(1, 2) = tmp[3] * in(0, 0) + tmp[6] * in(1, 0) + tmp[11] * in(3, 0);
- m4(1, 2) -= tmp[2] * in(0, 0) + tmp[7] * in(1, 0) + tmp[10] * in(3, 0);
- m4(1, 3) = tmp[4] * in(0, 0) + tmp[9] * in(1, 0) + tmp[10] * in(2, 0);
- m4(1, 3) -= tmp[5] * in(0, 0) + tmp[8] * in(1, 0) + tmp[11] * in(2, 0);
- tmp[0] = in(2, 0) * in(3, 1);
- tmp[1] = in(3, 0) * in(2, 1);
- tmp[2] = in(1, 0) * in(3, 1);
- tmp[3] = in(3, 0) * in(1, 1);
- tmp[4] = in(1, 0) * in(2, 1);
- tmp[5] = in(2, 0) * in(1, 1);
- tmp[6] = in(0, 0) * in(3, 1);
- tmp[7] = in(3, 0) * in(0, 1);
- tmp[8] = in(0, 0) * in(2, 1);
- tmp[9] = in(2, 0) * in(0, 1);
- tmp[10] = in(0, 0) * in(1, 1);
- tmp[11] = in(1, 0) * in(0, 1);
- m4(2, 0) = tmp[0] * in(1, 3) + tmp[3] * in(2, 3) + tmp[4] * in(3, 3);
- m4(2, 0) -= tmp[1] * in(1, 3) + tmp[2] * in(2, 3) + tmp[5] * in(3, 3);
- m4(2, 1) = tmp[1] * in(0, 3) + tmp[6] * in(2, 3) + tmp[9] * in(3, 3);
- m4(2, 1) -= tmp[0] * in(0, 3) + tmp[7] * in(2, 3) + tmp[8] * in(3, 3);
- m4(2, 2) = tmp[2] * in(0, 3) + tmp[7] * in(1, 3) + tmp[10] * in(3, 3);
- m4(2, 2) -= tmp[3] * in(0, 3) + tmp[6] * in(1, 3) + tmp[11] * in(3, 3);
- m4(2, 3) = tmp[5] * in(0, 3) + tmp[8] * in(1, 3) + tmp[11] * in(2, 3);
- m4(2, 3) -= tmp[4] * in(0, 3) + tmp[9] * in(1, 3) + tmp[10] * in(2, 3);
- m4(3, 0) = tmp[2] * in(2, 2) + tmp[5] * in(3, 2) + tmp[1] * in(1, 2);
- m4(3, 0) -= tmp[4] * in(3, 2) + tmp[0] * in(1, 2) + tmp[3] * in(2, 2);
- m4(3, 1) = tmp[8] * in(3, 2) + tmp[0] * in(0, 2) + tmp[7] * in(2, 2);
- m4(3, 1) -= tmp[6] * in(2, 2) + tmp[9] * in(3, 2) + tmp[1] * in(0, 2);
- m4(3, 2) = tmp[6] * in(1, 2) + tmp[11] * in(3, 2) + tmp[3] * in(0, 2);
- m4(3, 2) -= tmp[10] * in(3, 2) + tmp[2] * in(0, 2) + tmp[7] * in(1, 2);
- m4(3, 3) = tmp[10] * in(2, 2) + tmp[4] * in(0, 2) + tmp[9] * in(1, 2);
- m4(3, 3) -= tmp[8] * in(1, 2) + tmp[11] * in(2, 2) + tmp[5] * in(0, 2);
- T det = in(0, 0) * m4(0, 0) + in(1, 0) * m4(0, 1) + in(2, 0) * m4(0, 2) + in(3, 0) * m4(0, 3);
- ANKI_ASSERT(!isZero<T>(det)); // Cannot invert, det == 0
- det = T(1) / det;
- m4 *= det;
- return m4;
- }
- /// See getInverse
- ANKI_ENABLE_METHOD((I == 4 && J == 4) || (I == 3 && J == 3))
- void invert()
- {
- (*this) = getInverse();
- }
- /// 12 muls, 27 adds. Something like m4 = m0 * m1 but without touching the 4rth row and allot faster
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- static TMat combineTransformations(const TMat& m0, const TMat& m1)
- {
- // See the clean code in < r664
- // one of the 2 mat4 doesnt represent transformation
- ANKI_ASSERT(isZero<T>(m0(3, 0) + m0(3, 1) + m0(3, 2) + m0(3, 3) - T(1))
- && isZero<T>(m1(3, 0) + m1(3, 1) + m1(3, 2) + m1(3, 3) - T(1)));
- TMat m4;
- m4(0, 0) = m0(0, 0) * m1(0, 0) + m0(0, 1) * m1(1, 0) + m0(0, 2) * m1(2, 0);
- m4(0, 1) = m0(0, 0) * m1(0, 1) + m0(0, 1) * m1(1, 1) + m0(0, 2) * m1(2, 1);
- m4(0, 2) = m0(0, 0) * m1(0, 2) + m0(0, 1) * m1(1, 2) + m0(0, 2) * m1(2, 2);
- m4(1, 0) = m0(1, 0) * m1(0, 0) + m0(1, 1) * m1(1, 0) + m0(1, 2) * m1(2, 0);
- m4(1, 1) = m0(1, 0) * m1(0, 1) + m0(1, 1) * m1(1, 1) + m0(1, 2) * m1(2, 1);
- m4(1, 2) = m0(1, 0) * m1(0, 2) + m0(1, 1) * m1(1, 2) + m0(1, 2) * m1(2, 2);
- m4(2, 0) = m0(2, 0) * m1(0, 0) + m0(2, 1) * m1(1, 0) + m0(2, 2) * m1(2, 0);
- m4(2, 1) = m0(2, 0) * m1(0, 1) + m0(2, 1) * m1(1, 1) + m0(2, 2) * m1(2, 1);
- m4(2, 2) = m0(2, 0) * m1(0, 2) + m0(2, 1) * m1(1, 2) + m0(2, 2) * m1(2, 2);
- m4(0, 3) = m0(0, 0) * m1(0, 3) + m0(0, 1) * m1(1, 3) + m0(0, 2) * m1(2, 3) + m0(0, 3);
- m4(1, 3) = m0(1, 0) * m1(0, 3) + m0(1, 1) * m1(1, 3) + m0(1, 2) * m1(2, 3) + m0(1, 3);
- m4(2, 3) = m0(2, 0) * m1(0, 3) + m0(2, 1) * m1(1, 3) + m0(2, 2) * m1(2, 3) + m0(2, 3);
- m4(3, 0) = m4(3, 1) = m4(3, 2) = T(0);
- m4(3, 3) = T(1);
- return m4;
- }
- /// Create a new matrix that is equivalent to Mat4(this)*Mat4(b)
- ANKI_ENABLE_METHOD(J == 3 && I == 4 && !HAS_SIMD)
- TMat combineTransformations(const TMat& b) const
- {
- const auto& a = *this;
- TMat c;
- c(0, 0) = a(0, 0) * b(0, 0) + a(0, 1) * b(1, 0) + a(0, 2) * b(2, 0);
- c(0, 1) = a(0, 0) * b(0, 1) + a(0, 1) * b(1, 1) + a(0, 2) * b(2, 1);
- c(0, 2) = a(0, 0) * b(0, 2) + a(0, 1) * b(1, 2) + a(0, 2) * b(2, 2);
- c(1, 0) = a(1, 0) * b(0, 0) + a(1, 1) * b(1, 0) + a(1, 2) * b(2, 0);
- c(1, 1) = a(1, 0) * b(0, 1) + a(1, 1) * b(1, 1) + a(1, 2) * b(2, 1);
- c(1, 2) = a(1, 0) * b(0, 2) + a(1, 1) * b(1, 2) + a(1, 2) * b(2, 2);
- c(2, 0) = a(2, 0) * b(0, 0) + a(2, 1) * b(1, 0) + a(2, 2) * b(2, 0);
- c(2, 1) = a(2, 0) * b(0, 1) + a(2, 1) * b(1, 1) + a(2, 2) * b(2, 1);
- c(2, 2) = a(2, 0) * b(0, 2) + a(2, 1) * b(1, 2) + a(2, 2) * b(2, 2);
- c(0, 3) = a(0, 0) * b(0, 3) + a(0, 1) * b(1, 3) + a(0, 2) * b(2, 3) + a(0, 3);
- c(1, 3) = a(1, 0) * b(0, 3) + a(1, 1) * b(1, 3) + a(1, 2) * b(2, 3) + a(1, 3);
- c(2, 3) = a(2, 0) * b(0, 3) + a(2, 1) * b(1, 3) + a(2, 2) * b(2, 3) + a(2, 3);
- return c;
- }
- #if ANKI_ENABLE_SIMD
- ANKI_ENABLE_METHOD(J == 3 && I == 4 && HAS_SIMD)
- TMat combineTransformations(const TMat& b) const
- {
- TMat c;
- const auto& a = *this;
- # if ANKI_SIMD_SSE
- for(U i = 0; i < 3; i++)
- {
- __m128 t1, t2;
- t1 = _mm_set1_ps(a(i, 0));
- t2 = _mm_mul_ps(b.m_simd[0], t1);
- t1 = _mm_set1_ps(a(i, 1));
- t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[1], t1), t2);
- t1 = _mm_set1_ps(a(i, 2));
- t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[2], t1), t2);
- TVec<T, 4> v4(T(0), T(0), T(0), a(i, 3));
- t2 = _mm_add_ps(v4.getSimd(), t2);
- c.m_simd[i] = t2;
- }
- # else
- for(U i = 0; i < 3; i++)
- {
- float32x4_t t1, t2;
- t1 = vdupq_n_f32(a(i, 0));
- t2 = b.m_simd[0] * t1;
- t1 = vdupq_n_f32(a(i, 1));
- t2 = b.m_simd[1] * t1 + t2;
- t1 = vdupq_n_f32(a(i, 2));
- t2 = b.m_simd[2] * t1 + t2;
- TVec<T, 4> v4(T(0), T(0), T(0), a(i, 3));
- t2 += v4.getSimd();
- c.m_simd[i] = t2;
- }
- # endif
- return c;
- }
- #endif
- /// Calculate a perspective projection matrix. The z is mapped in [0, 1] range just like DX and Vulkan.
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- static ANKI_USE_RESULT TMat calculatePerspectiveProjectionMatrix(T fovX, T fovY, T near, T far)
- {
- ANKI_ASSERT(fovX > T(0) && fovY > T(0) && near > T(0) && far > T(0));
- const T g = near - far;
- const T f = T(1) / tan(fovY / T(2)); // f = cot(fovY/2)
- TMat proj;
- proj(0, 0) = f * (fovY / fovX); // = f/aspectRatio;
- proj(0, 1) = T(0);
- proj(0, 2) = T(0);
- proj(0, 3) = T(0);
- proj(1, 0) = T(0);
- proj(1, 1) = f;
- proj(1, 2) = T(0);
- proj(1, 3) = T(0);
- proj(2, 0) = T(0);
- proj(2, 1) = T(0);
- proj(2, 2) = far / g;
- proj(2, 3) = (far * near) / g;
- proj(3, 0) = T(0);
- proj(3, 1) = T(0);
- proj(3, 2) = T(-1);
- proj(3, 3) = T(0);
- return proj;
- }
- /// Calculate an orthographic projection matrix. The z is mapped in [0, 1] range just like DX and Vulkan.
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- static ANKI_USE_RESULT TMat calculateOrthographicProjectionMatrix(T right, T left, T top, T bottom, T near, T far)
- {
- ANKI_ASSERT(right != T(0) && left != T(0) && top != T(0) && bottom != T(0) && near != T(0) && far != T(0));
- const T difx = right - left;
- const T dify = top - bottom;
- const T difz = far - near;
- const T tx = -(right + left) / difx;
- const T ty = -(top + bottom) / dify;
- const T tz = -near / difz;
- TMat m;
- m(0, 0) = T(2) / difx;
- m(0, 1) = T(0);
- m(0, 2) = T(0);
- m(0, 3) = tx;
- m(1, 0) = T(0);
- m(1, 1) = T(2) / dify;
- m(1, 2) = T(0);
- m(1, 3) = ty;
- m(2, 0) = T(0);
- m(2, 1) = T(0);
- m(2, 2) = T(-1) / difz;
- m(2, 3) = tz;
- m(3, 0) = T(0);
- m(3, 1) = T(0);
- m(3, 2) = T(0);
- m(3, 3) = T(1);
- return m;
- }
- /// Given the parameters that construct a projection matrix extract 4 values that can be used to unproject a point
- /// from NDC to view space.
- /// @code
- /// Vec4 unprojParams = calculatePerspectiveUnprojectionParams(...);
- /// F32 z = unprojParams.z() / (unprojParams.w() + depth);
- /// Vec2 xy = ndc.xy() * unprojParams.xy() * z;
- /// Vec3 posViewSpace(xy, z);
- /// @endcode
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- static TVec<T, 4> calculatePerspectiveUnprojectionParams(T fovX, T fovY, T near, T far)
- {
- TVec<T, 4> out;
- const T g = near - far;
- const T f = T(1) / tan(fovY / T(2)); // f = cot(fovY/2)
- const T m00 = f * (fovY / fovX);
- const T m11 = f;
- const T m22 = far / g;
- const T m23 = (far * near) / g;
- // First, clip = (m * Pv) where Pv is the view space position.
- // ndc.z = clip.z / clip.w = (m22 * Pv.z + m23) / -Pv.z. Note that ndc.z == depth in zero_to_one projection.
- // Solving that for Pv.z we get
- // Pv.z = A / (depth + B)
- // where A = -m23 and B = m22
- // so we save the A and B in the projection params vector
- out.z() = -m23;
- out.w() = m22;
- // Using the same logic the Pv.x = x' * w / m00
- // so Pv.x = x' * Pv.z * (-1 / m00)
- out.x() = -T(T(1)) / m00;
- // Same for y
- out.y() = -T(T(1)) / m11;
- return out;
- }
- /// Assuming this is a projection matrix extract the unprojection parameters. See
- /// calculatePerspectiveUnprojectionParams for more info.
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- TVec<T, 4> extractPerspectiveUnprojectionParams() const
- {
- TVec<T, 4> out;
- const auto& m = *this;
- out.z() = -m(2, 3);
- out.w() = m(2, 2);
- out.x() = -T(T(1)) / m(0, 0);
- out.y() = -T(T(1)) / m(1, 1);
- return out;
- }
- /// If we suppose this matrix represents a transformation, return the inverted transformation
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- TMat getInverseTransformation() const
- {
- const TMat<T, 3, 3> invertedRot = getRotationPart().getTransposed();
- TVec<T, 3> invertedTsl = getTranslationPart().xyz();
- invertedTsl = -(invertedRot * invertedTsl);
- return TMat(invertedTsl.xyz0(), invertedRot);
- }
- /// @note 9 muls, 9 adds
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- TVec<T, 3> transform(const TVec<T, 3>& v) const
- {
- const auto& m = *this;
- return TVec<T, 3>(m(0, 0) * v.x() + m(0, 1) * v.y() + m(0, 2) * v.z() + m(0, 3),
- m(1, 0) * v.x() + m(1, 1) * v.y() + m(1, 2) * v.z() + m(1, 3),
- m(2, 0) * v.x() + m(2, 1) * v.y() + m(2, 2) * v.z() + m(2, 3));
- }
- /// Create a new transform matrix position at eye and looking at refPoint.
- template<U VEC_DIMS, ANKI_ENABLE(J == 3 && I == 4 && VEC_DIMS >= 3)>
- static TMat lookAt(const TVec<T, VEC_DIMS>& eye, const TVec<T, VEC_DIMS>& refPoint, const TVec<T, VEC_DIMS>& up)
- {
- const TVec<T, 3> vdir = (refPoint.xyz() - eye.xyz()).getNormalized();
- const TVec<T, 3> vup = (up.xyz() - vdir * up.xyz().dot(vdir)).getNormalized();
- const TVec<T, 3> vside = vdir.cross(vup);
- TMat out;
- out.setColumns(vside, vup, -vdir, eye.xyz());
- return out;
- }
- /// Create a new transform matrix position at eye and looking at refPoint.
- template<U VEC_DIMS, ANKI_ENABLE(J == 4 && I == 4 && VEC_DIMS >= 3)>
- static TMat lookAt(const TVec<T, VEC_DIMS>& eye, const TVec<T, VEC_DIMS>& refPoint, const TVec<T, VEC_DIMS>& up)
- {
- const TVec<T, 4> vdir = (refPoint.xyz0() - eye.xyz0()).getNormalized();
- const TVec<T, 4> vup = (up.xyz0() - vdir * up.xyz0().dot(vdir)).getNormalized();
- const TVec<T, 4> vside = vdir.cross(vup);
- TMat out;
- out.setColumns(vside, vup, -vdir, eye.xyz1());
- return out;
- }
- TMat lerp(const TMat& b, T t) const
- {
- return ((*this) * (T(1) - t)) + (b * t);
- }
- static TMat getZero()
- {
- return TMat(T(0));
- }
- void setZero()
- {
- *this = getZero();
- }
- ANKI_ENABLE_METHOD(I == 3 && J == 3)
- static TMat getIdentity()
- {
- return TMat(T(1), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(1));
- }
- ANKI_ENABLE_METHOD(I == 4 && J == 4)
- static TMat getIdentity()
- {
- return TMat(T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1));
- }
- ANKI_ENABLE_METHOD(I == 4 && J == 3)
- static TMat getIdentity()
- {
- return TMat(T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1), T(0));
- }
- void setIdentity()
- {
- (*this) = getIdentity();
- }
- static constexpr U8 getSize()
- {
- return U8(I * J);
- }
- ANKI_ENABLE_METHOD(std::is_floating_point<T>::value)
- void toString(StringAuto& str) const
- {
- for(U j = 0; j < J; ++j)
- {
- for(U i = 0; i < I; ++i)
- {
- CString fmt;
- if(i == I - 1 && j == J - 1)
- {
- fmt = "%f";
- }
- else if(i == I - 1)
- {
- fmt = "%f\n";
- }
- else
- {
- fmt = "%f ";
- }
- str.append(StringAuto(str.getAllocator()).sprintf(fmt, m_arr2[j][i]));
- }
- }
- }
- /// @}
- protected:
- static constexpr U N = I * J;
- /// @name Data members
- /// @{
- union
- {
- Array<T, N> m_arr1;
- Array2d<T, J, I> m_arr2;
- T m_carr1[N]; ///< For easier debugging with gdb
- T m_carr2[J][I]; ///< For easier debugging with gdb
- SimdArray m_simd;
- };
- /// @}
- };
- /// @memberof TMat
- template<typename T, U J, U I>
- TMat<T, J, I> operator+(const T f, const TMat<T, J, I>& m)
- {
- return m + f;
- }
- /// @memberof TMat
- template<typename T, U J, U I>
- TMat<T, J, I> operator-(const T f, const TMat<T, J, I>& m)
- {
- TMat<T, J, I> out;
- for(U i = 0; i < J * I; i++)
- {
- out[i] = f - m[i];
- }
- return out;
- }
- /// @memberof TMat
- template<typename T, U J, U I>
- TMat<T, J, I> operator*(const T f, const TMat<T, J, I>& m)
- {
- return m * f;
- }
- /// @memberof TMat
- template<typename T, U J, U I>
- TMat<T, J, I> operator/(const T f, const TMat<T, 3, 3>& m3)
- {
- TMat<T, J, I> out;
- for(U i = 0; i < J * I; i++)
- {
- ANKI_ASSERT(m3[i] != T(0));
- out[i] = f / m3[i];
- }
- return out;
- }
- /// F32 3x3 matrix
- using Mat3 = TMat<F32, 3, 3>;
- static_assert(sizeof(Mat3) == sizeof(F32) * 3 * 3, "Incorrect size");
- /// F64 3x3 matrix
- using DMat3 = TMat<F64, 3, 3>;
- static_assert(sizeof(DMat3) == sizeof(F64) * 3 * 3, "Incorrect size");
- /// F32 4x4 matrix
- using Mat4 = TMat<F32, 4, 4>;
- static_assert(sizeof(Mat4) == sizeof(F32) * 4 * 4, "Incorrect size");
- /// F64 4x4 matrix
- using DMat4 = TMat<F64, 4, 4>;
- static_assert(sizeof(DMat4) == sizeof(F64) * 4 * 4, "Incorrect size");
- /// F32 3x4 matrix
- using Mat3x4 = TMat<F32, 3, 4>;
- static_assert(sizeof(Mat3x4) == sizeof(F32) * 3 * 4, "Incorrect size");
- /// F64 3x4 matrix
- using DMat3x4 = TMat<F64, 3, 4>;
- static_assert(sizeof(DMat3x4) == sizeof(F64) * 3 * 4, "Incorrect size");
- /// @}
- } // end namespace anki
|