ShaderProgramBinaryDumpMain.cpp 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/ShaderCompiler/ShaderCompiler.h>
  6. #include <AnKi/ShaderCompiler/ShaderDump.h>
  7. #include <AnKi/ShaderCompiler/MaliOfflineCompiler.h>
  8. #include <AnKi/ShaderCompiler/RadeonGpuAnalyzer.h>
  9. #include <AnKi/Util/ThreadHive.h>
  10. #include <AnKi/Util/System.h>
  11. using namespace anki;
  12. static const char* kUsage = R"(Dump the shader binary to stdout
  13. Usage: %s [options] input_shader_program_binary
  14. Options:
  15. -stats : Print performance statistics for all shaders. By default it doesn't
  16. -no-binary : Don't print the binary
  17. -no-glsl : Don't print GLSL
  18. -spirv : Print SPIR-V
  19. )";
  20. static Error parseCommandLineArgs(WeakArray<char*> argv, Bool& dumpStats, Bool& dumpBinary, Bool& glsl, Bool& spirv, String& filename)
  21. {
  22. // Parse config
  23. if(argv.getSize() < 2)
  24. {
  25. return Error::kUserData;
  26. }
  27. dumpStats = false;
  28. dumpBinary = true;
  29. glsl = true;
  30. spirv = false;
  31. filename = argv[argv.getSize() - 1];
  32. for(U32 i = 1; i < argv.getSize() - 1; i++)
  33. {
  34. if(CString(argv[i]) == "-stats")
  35. {
  36. dumpStats = true;
  37. }
  38. else if(CString(argv[i]) == "-no-binary")
  39. {
  40. dumpBinary = false;
  41. dumpStats = true;
  42. }
  43. else if(CString(argv[i]) == "-no-glsl")
  44. {
  45. glsl = false;
  46. }
  47. else if(CString(argv[i]) == "-spirv")
  48. {
  49. spirv = true;
  50. }
  51. }
  52. return Error::kNone;
  53. }
  54. Error dumpStats(const ShaderBinary& bin)
  55. {
  56. printf("\nOffline compilers stats:\n");
  57. fflush(stdout);
  58. class Stats
  59. {
  60. public:
  61. class
  62. {
  63. public:
  64. F64 m_fma;
  65. F64 m_cvt;
  66. F64 m_sfu;
  67. F64 m_loadStore;
  68. F64 m_varying;
  69. F64 m_texture;
  70. F64 m_workRegisters;
  71. F64 m_fp16ArithmeticPercentage;
  72. F64 m_spillingCount;
  73. } m_arm;
  74. class
  75. {
  76. public:
  77. F64 m_vgprCount;
  78. F64 m_sgprCount;
  79. F64 m_isaSize;
  80. } m_amd;
  81. Stats(F64 v)
  82. {
  83. m_arm.m_fma = m_arm.m_cvt = m_arm.m_sfu = m_arm.m_loadStore = m_arm.m_varying = m_arm.m_texture = m_arm.m_workRegisters =
  84. m_arm.m_fp16ArithmeticPercentage = m_arm.m_spillingCount = v;
  85. m_amd.m_vgprCount = m_amd.m_sgprCount = m_amd.m_isaSize = v;
  86. }
  87. Stats()
  88. : Stats(0.0)
  89. {
  90. }
  91. void op(const Stats& b, void (*func)(F64& a, F64 b))
  92. {
  93. func(m_arm.m_fma, b.m_arm.m_fma);
  94. func(m_arm.m_cvt, b.m_arm.m_cvt);
  95. func(m_arm.m_sfu, b.m_arm.m_sfu);
  96. func(m_arm.m_loadStore, b.m_arm.m_loadStore);
  97. func(m_arm.m_varying, b.m_arm.m_varying);
  98. func(m_arm.m_texture, b.m_arm.m_texture);
  99. func(m_arm.m_workRegisters, b.m_arm.m_workRegisters);
  100. func(m_arm.m_fp16ArithmeticPercentage, b.m_arm.m_fp16ArithmeticPercentage);
  101. func(m_arm.m_spillingCount, b.m_arm.m_spillingCount);
  102. func(m_amd.m_vgprCount, b.m_amd.m_vgprCount);
  103. func(m_amd.m_sgprCount, b.m_amd.m_sgprCount);
  104. func(m_amd.m_isaSize, b.m_amd.m_isaSize);
  105. }
  106. };
  107. class StageStats
  108. {
  109. public:
  110. Stats m_avgStats{0.0};
  111. Stats m_maxStats{-1.0};
  112. Stats m_minStats{kMaxF64};
  113. U32 m_spillingCount = 0;
  114. U32 m_count = 0;
  115. };
  116. class Ctx
  117. {
  118. public:
  119. DynamicArray<Stats> m_spirvStats;
  120. DynamicArray<Atomic<U32>> m_spirvVisited;
  121. Atomic<U32> m_variantCount = {0};
  122. const ShaderBinary* m_bin = nullptr;
  123. Atomic<I32> m_error = {0};
  124. };
  125. Ctx ctx;
  126. ctx.m_bin = &bin;
  127. ctx.m_spirvStats.resize(bin.m_codeBlocks.getSize());
  128. ctx.m_spirvVisited.resize(bin.m_codeBlocks.getSize(), 0);
  129. memset(ctx.m_spirvVisited.getBegin(), 0, ctx.m_spirvVisited.getSizeInBytes());
  130. ThreadHive hive(getCpuCoresCount());
  131. ThreadHiveTaskCallback callback = [](void* userData, [[maybe_unused]] U32 threadId, [[maybe_unused]] ThreadHive& hive,
  132. [[maybe_unused]] ThreadHiveSemaphore* signalSemaphore) {
  133. Ctx& ctx = *static_cast<Ctx*>(userData);
  134. U32 variantIdx;
  135. while((variantIdx = ctx.m_variantCount.fetchAdd(1)) < ctx.m_bin->m_variants.getSize() && ctx.m_error.load() == 0)
  136. {
  137. const ShaderBinaryVariant& variant = ctx.m_bin->m_variants[variantIdx];
  138. for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t)
  139. {
  140. for(ShaderType shaderType : EnumBitsIterable<ShaderType, ShaderTypeBit>(ctx.m_bin->m_techniques[t].m_shaderTypes))
  141. {
  142. const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType];
  143. const Bool visited = ctx.m_spirvVisited[codeblockIdx].fetchAdd(1) != 0;
  144. if(visited)
  145. {
  146. continue;
  147. }
  148. const ShaderBinaryCodeBlock& codeBlock = ctx.m_bin->m_codeBlocks[codeblockIdx];
  149. // Arm stats
  150. MaliOfflineCompilerOut maliocOut;
  151. Error err = Error::kNone;
  152. if(shaderType == ShaderType::kVertex || shaderType == ShaderType::kFragment || shaderType == ShaderType::kCompute)
  153. {
  154. err = runMaliOfflineCompiler(codeBlock.m_binary, shaderType, maliocOut);
  155. if(err)
  156. {
  157. ANKI_LOGE("Mali offline compiler failed");
  158. ctx.m_error.store(1);
  159. break;
  160. }
  161. }
  162. // AMD
  163. RgaOutput rgaOut = {};
  164. #if 0
  165. err = runRadeonGpuAnalyzer(codeBlock.m_binary, shaderType, rgaOut);
  166. if(err)
  167. {
  168. ANKI_LOGE("Radeon GPU Analyzer compiler failed");
  169. ctx.m_error.store(1);
  170. break;
  171. }
  172. #endif
  173. // Write stats
  174. Stats& stats = ctx.m_spirvStats[codeblockIdx];
  175. stats.m_arm.m_fma = maliocOut.m_fma;
  176. stats.m_arm.m_cvt = maliocOut.m_cvt;
  177. stats.m_arm.m_sfu = maliocOut.m_sfu;
  178. stats.m_arm.m_loadStore = maliocOut.m_loadStore;
  179. stats.m_arm.m_varying = maliocOut.m_varying;
  180. stats.m_arm.m_texture = maliocOut.m_texture;
  181. stats.m_arm.m_workRegisters = maliocOut.m_workRegisters;
  182. stats.m_arm.m_fp16ArithmeticPercentage = maliocOut.m_fp16ArithmeticPercentage;
  183. stats.m_arm.m_spillingCount = (maliocOut.m_spilling) ? 1.0 : 0.0;
  184. stats.m_amd.m_vgprCount = F64(rgaOut.m_vgprCount);
  185. stats.m_amd.m_sgprCount = F64(rgaOut.m_sgprCount);
  186. stats.m_amd.m_isaSize = F64(rgaOut.m_isaSize);
  187. }
  188. if(variantIdx > 0 && ((variantIdx + 1) % 32) == 0)
  189. {
  190. printf("Processed %u out of %u variants\n", variantIdx + 1, ctx.m_bin->m_variants.getSize());
  191. }
  192. }
  193. } // while
  194. };
  195. for(U32 i = 0; i < hive.getThreadCount(); ++i)
  196. {
  197. hive.submitTask(callback, &ctx);
  198. }
  199. hive.waitAllTasks();
  200. if(ctx.m_error.load() != 0)
  201. {
  202. return Error::kFunctionFailed;
  203. }
  204. // Cather the results
  205. Array<StageStats, U32(ShaderType::kCount)> allStageStats;
  206. for(const ShaderBinaryVariant& variant : bin.m_variants)
  207. {
  208. for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t)
  209. {
  210. for(ShaderType shaderType : EnumBitsIterable<ShaderType, ShaderTypeBit>(ctx.m_bin->m_techniques[t].m_shaderTypes))
  211. {
  212. const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType];
  213. const Stats& stats = ctx.m_spirvStats[codeblockIdx];
  214. StageStats& allStats = allStageStats[shaderType];
  215. ++allStats.m_count;
  216. allStats.m_avgStats.op(stats, [](F64& a, F64 b) {
  217. a += b;
  218. });
  219. allStats.m_minStats.op(stats, [](F64& a, F64 b) {
  220. a = min(a, b);
  221. });
  222. allStats.m_maxStats.op(stats, [](F64& a, F64 b) {
  223. a = max(a, b);
  224. });
  225. }
  226. }
  227. }
  228. // Print
  229. for(ShaderType shaderType : EnumIterable<ShaderType>())
  230. {
  231. const StageStats& stage = allStageStats[shaderType];
  232. if(stage.m_count == 0)
  233. {
  234. continue;
  235. }
  236. printf("Stage %u\n", U32(shaderType));
  237. printf(" Arm shaders spilling regs %u\n", stage.m_spillingCount);
  238. const F64 countf = F64(stage.m_count);
  239. const Stats& avg = stage.m_avgStats;
  240. printf(" Average:\n");
  241. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", avg.m_arm.m_workRegisters / countf, avg.m_arm.m_fma / countf,
  242. avg.m_arm.m_cvt / countf, avg.m_arm.m_sfu / countf, avg.m_arm.m_loadStore / countf, avg.m_arm.m_varying / countf,
  243. avg.m_arm.m_texture / countf, avg.m_arm.m_fp16ArithmeticPercentage / countf);
  244. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", avg.m_amd.m_vgprCount / countf, avg.m_amd.m_sgprCount / countf,
  245. avg.m_amd.m_isaSize / countf);
  246. const Stats& maxs = stage.m_maxStats;
  247. printf(" Max:\n");
  248. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", maxs.m_arm.m_workRegisters, maxs.m_arm.m_fma,
  249. maxs.m_arm.m_cvt, maxs.m_arm.m_sfu, maxs.m_arm.m_loadStore, maxs.m_arm.m_varying, maxs.m_arm.m_texture,
  250. maxs.m_arm.m_fp16ArithmeticPercentage);
  251. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", maxs.m_amd.m_vgprCount, maxs.m_amd.m_sgprCount, maxs.m_amd.m_isaSize);
  252. }
  253. return Error::kNone;
  254. }
  255. Error dump(CString fname, Bool bDumpStats, Bool dumpBinary, Bool glsl, Bool spirv)
  256. {
  257. ShaderBinary* binary;
  258. ANKI_CHECK(deserializeShaderBinaryFromFile(fname, binary, ShaderCompilerMemoryPool::getSingleton()));
  259. class Dummy
  260. {
  261. public:
  262. ShaderBinary* m_binary;
  263. ~Dummy()
  264. {
  265. ShaderCompilerMemoryPool::getSingleton().free(m_binary);
  266. }
  267. } dummy{binary};
  268. if(dumpBinary)
  269. {
  270. ShaderDumpOptions options;
  271. options.m_writeGlsl = glsl;
  272. options.m_writeSpirv = spirv;
  273. ShaderCompilerString txt;
  274. dumpShaderBinary(options, *binary, txt);
  275. printf("%s\n", txt.cstr());
  276. }
  277. if(bDumpStats)
  278. {
  279. ANKI_CHECK(dumpStats(*binary));
  280. }
  281. return Error::kNone;
  282. }
  283. ANKI_MAIN_FUNCTION(myMain)
  284. int myMain(int argc, char** argv)
  285. {
  286. class Dummy
  287. {
  288. public:
  289. ~Dummy()
  290. {
  291. DefaultMemoryPool::freeSingleton();
  292. ShaderCompilerMemoryPool::freeSingleton();
  293. }
  294. } dummy;
  295. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr);
  296. ShaderCompilerMemoryPool::allocateSingleton(allocAligned, nullptr);
  297. String filename;
  298. Bool dumpStats;
  299. Bool dumpBinary;
  300. Bool glsl;
  301. Bool spirv;
  302. if(parseCommandLineArgs(WeakArray<char*>(argv, argc), dumpStats, dumpBinary, glsl, spirv, filename))
  303. {
  304. ANKI_LOGE(kUsage, argv[0]);
  305. return 1;
  306. }
  307. const Error err = dump(filename, dumpStats, dumpBinary, glsl, spirv);
  308. if(err)
  309. {
  310. ANKI_LOGE("Can't dump due to an error. Bye");
  311. return 1;
  312. }
  313. return 0;
  314. }