ParticleEmitterComponent.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Scene/Components/ParticleEmitterComponent.h>
  6. #include <AnKi/Scene/SceneGraph.h>
  7. #include <AnKi/Scene/SceneNode.h>
  8. #include <AnKi/Scene/Components/MoveComponent.h>
  9. #include <AnKi/Resource/ParticleEmitterResource.h>
  10. #include <AnKi/Resource/ResourceManager.h>
  11. #include <AnKi/Physics/PhysicsBody.h>
  12. #include <AnKi/Physics/PhysicsCollisionShape.h>
  13. #include <AnKi/Physics/PhysicsWorld.h>
  14. #include <AnKi/Math.h>
  15. #include <AnKi/Shaders/Include/GpuSceneFunctions.h>
  16. #include <AnKi/Core/GpuMemory/RebarTransientMemoryPool.h>
  17. namespace anki {
  18. static Vec3 getRandom(const Vec3& min, const Vec3& max)
  19. {
  20. Vec3 out;
  21. out.x() = mix(min.x(), max.x(), getRandomRange(0.0f, 1.0f));
  22. out.y() = mix(min.y(), max.y(), getRandomRange(0.0f, 1.0f));
  23. out.z() = mix(min.z(), max.z(), getRandomRange(0.0f, 1.0f));
  24. return out;
  25. }
  26. /// Particle base
  27. class ParticleEmitterComponent::ParticleBase
  28. {
  29. public:
  30. Second m_timeOfBirth; ///< Keep the time of birth for nice effects
  31. Second m_timeOfDeath = -1.0; ///< Time of death. If < 0.0 then dead
  32. F32 m_initialSize;
  33. F32 m_finalSize;
  34. F32 m_crntSize;
  35. F32 m_initialAlpha;
  36. F32 m_finalAlpha;
  37. F32 m_crntAlpha;
  38. Vec3 m_crntPosition;
  39. Bool isDead() const
  40. {
  41. return m_timeOfDeath < 0.0;
  42. }
  43. /// Kill the particle
  44. void killCommon()
  45. {
  46. ANKI_ASSERT(m_timeOfDeath > 0.0);
  47. m_timeOfDeath = -1.0;
  48. }
  49. /// Revive the particle
  50. void reviveCommon(const ParticleEmitterProperties& props, Second crntTime)
  51. {
  52. ANKI_ASSERT(isDead());
  53. // life
  54. m_timeOfDeath = crntTime + getRandomRange(props.m_particle.m_minLife, props.m_particle.m_maxLife);
  55. m_timeOfBirth = crntTime;
  56. // Size
  57. m_initialSize = getRandomRange(props.m_particle.m_minInitialSize, props.m_particle.m_maxInitialSize);
  58. m_finalSize = getRandomRange(props.m_particle.m_minFinalSize, props.m_particle.m_maxFinalSize);
  59. // Alpha
  60. m_initialAlpha = getRandomRange(props.m_particle.m_minInitialAlpha, props.m_particle.m_maxInitialAlpha);
  61. m_finalAlpha = getRandomRange(props.m_particle.m_minFinalAlpha, props.m_particle.m_maxFinalAlpha);
  62. }
  63. /// Common sumulation code
  64. void simulateCommon(Second crntTime)
  65. {
  66. const F32 lifeFactor = F32((crntTime - m_timeOfBirth) / (m_timeOfDeath - m_timeOfBirth));
  67. m_crntSize = mix(m_initialSize, m_finalSize, lifeFactor);
  68. m_crntAlpha = mix(m_initialAlpha, m_finalAlpha, lifeFactor);
  69. }
  70. };
  71. /// Simple particle for simple simulation
  72. class ParticleEmitterComponent::SimpleParticle : public ParticleEmitterComponent::ParticleBase
  73. {
  74. public:
  75. Vec3 m_velocity = Vec3(0.0f);
  76. Vec3 m_acceleration = Vec3(0.0f);
  77. void kill()
  78. {
  79. killCommon();
  80. }
  81. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  82. {
  83. reviveCommon(props, crntTime);
  84. m_velocity = Vec3(0.0f);
  85. m_acceleration = getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity);
  86. // Set the initial position
  87. m_crntPosition = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  88. m_crntPosition += trf.getOrigin().xyz();
  89. }
  90. void simulate(Second prevUpdateTime, Second crntTime)
  91. {
  92. simulateCommon(crntTime);
  93. const F32 dt = F32(crntTime - prevUpdateTime);
  94. const Vec3 xp = m_crntPosition;
  95. const Vec3 xc = m_acceleration * (dt * dt) + m_velocity * dt + xp;
  96. m_crntPosition = xc;
  97. m_velocity += m_acceleration * dt;
  98. }
  99. };
  100. /// Particle for Jolt simulations
  101. class ParticleEmitterComponent::PhysicsParticle : public ParticleEmitterComponent::ParticleBase
  102. {
  103. public:
  104. PhysicsBodyPtr m_body;
  105. PhysicsParticle(const PhysicsBodyInitInfo& init, ParticleEmitterComponent* component)
  106. {
  107. m_body = PhysicsWorld::getSingleton().newPhysicsBody(init);
  108. m_body->setUserData(component);
  109. m_body->activate(false);
  110. }
  111. void kill()
  112. {
  113. killCommon();
  114. m_body->activate(false);
  115. }
  116. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  117. {
  118. reviveCommon(props, crntTime);
  119. // pre calculate
  120. const Bool forceFlag = props.forceEnabled();
  121. const Bool worldGravFlag = props.wordGravityEnabled();
  122. // Activate it
  123. m_body->activate(true);
  124. m_body->setLinearVelocity(Vec3(0.0f));
  125. m_body->setAngularVelocity(Vec3(0.0f));
  126. m_body->clearForcesAndTorque();
  127. // force
  128. if(forceFlag)
  129. {
  130. Vec3 forceDir = getRandom(props.m_particle.m_minForceDirection, props.m_particle.m_maxForceDirection);
  131. forceDir.normalize();
  132. // The forceDir depends on the particle emitter rotation
  133. forceDir = trf.getRotation().getRotationPart() * forceDir;
  134. const F32 forceMag = getRandomRange(props.m_particle.m_minForceMagnitude, props.m_particle.m_maxForceMagnitude);
  135. m_body->applyForce(forceDir * forceMag, Vec3(0.0f));
  136. }
  137. // gravity
  138. if(!worldGravFlag)
  139. {
  140. // TODO m_body->setGravity(getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity));
  141. }
  142. // Starting pos. In local space
  143. Vec3 pos = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  144. pos = trf.transform(pos);
  145. m_body->setTransform(Transform(pos.xyz0(), trf.getRotation(), Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  146. m_crntPosition = pos;
  147. }
  148. void simulate([[maybe_unused]] Second prevUpdateTime, Second crntTime)
  149. {
  150. simulateCommon(crntTime);
  151. m_crntPosition = m_body->getTransform().getOrigin().xyz();
  152. }
  153. };
  154. ParticleEmitterComponent::ParticleEmitterComponent(SceneNode* node)
  155. : SceneComponent(node, kClassType)
  156. {
  157. // Allocate and populate a quad
  158. const U32 vertCount = 4;
  159. const U32 indexCount = 6;
  160. m_quadPositions = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition], vertCount);
  161. m_quadUvs = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv], vertCount);
  162. m_quadIndices = UnifiedGeometryBuffer::getSingleton().allocateFormat(Format::kR16_Uint, indexCount);
  163. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition] == Format::kR16G16B16A16_Unorm);
  164. WeakArray<U16Vec4> transientPositions;
  165. const BufferView positionsAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(vertCount, transientPositions);
  166. transientPositions[0] = U16Vec4(0, 0, 0, 0);
  167. transientPositions[1] = U16Vec4(kMaxU16, 0, 0, 0);
  168. transientPositions[2] = U16Vec4(kMaxU16, kMaxU16, 0, 0);
  169. transientPositions[3] = U16Vec4(0, kMaxU16, 0, 0);
  170. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv] == Format::kR32G32_Sfloat);
  171. WeakArray<Vec2> transientUvs;
  172. const BufferView uvsAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(vertCount, transientUvs);
  173. transientUvs[0] = Vec2(0.0f);
  174. transientUvs[1] = Vec2(1.0f, 0.0f);
  175. transientUvs[2] = Vec2(1.0f, 1.0f);
  176. transientUvs[3] = Vec2(0.0f, 1.0f);
  177. WeakArray<U16> transientIndices;
  178. const BufferView indicesAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(indexCount, transientIndices);
  179. transientIndices[0] = 0;
  180. transientIndices[1] = 1;
  181. transientIndices[2] = 3;
  182. transientIndices[3] = 1;
  183. transientIndices[4] = 2;
  184. transientIndices[5] = 3;
  185. CommandBufferInitInfo cmdbInit("Particle quad upload");
  186. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  187. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  188. Buffer* dstBuff = &UnifiedGeometryBuffer::getSingleton().getBuffer();
  189. cmdb->copyBufferToBuffer(positionsAlloc, m_quadPositions);
  190. cmdb->copyBufferToBuffer(uvsAlloc, m_quadUvs);
  191. cmdb->copyBufferToBuffer(indicesAlloc, m_quadIndices);
  192. BufferBarrierInfo barrier;
  193. barrier.m_bufferView = BufferView(dstBuff);
  194. barrier.m_previousUsage = BufferUsageBit::kCopyDestination;
  195. barrier.m_nextUsage = dstBuff->getBufferUsage();
  196. cmdb->setPipelineBarrier({}, {&barrier, 1}, {});
  197. cmdb->endRecording();
  198. GrManager::getSingleton().submit(cmdb.get());
  199. }
  200. ParticleEmitterComponent::~ParticleEmitterComponent()
  201. {
  202. }
  203. void ParticleEmitterComponent::loadParticleEmitterResource(CString filename)
  204. {
  205. // Load
  206. ParticleEmitterResourcePtr rsrc;
  207. const Error err = ResourceManager::getSingleton().loadResource(filename, rsrc);
  208. if(err)
  209. {
  210. ANKI_SCENE_LOGE("Failed to load particle emitter");
  211. return;
  212. }
  213. m_particleEmitterResource = std::move(rsrc);
  214. m_props = m_particleEmitterResource->getProperties();
  215. m_resourceUpdated = true;
  216. // Cleanup
  217. m_simpleParticles.destroy();
  218. m_physicsParticles.destroy();
  219. GpuSceneBuffer::getSingleton().deferredFree(m_gpuScenePositions);
  220. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneScales);
  221. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneAlphas);
  222. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneConstants);
  223. for(RenderStateBucketIndex& idx : m_renderStateBuckets)
  224. {
  225. RenderStateBucketContainer::getSingleton().removeUser(idx);
  226. }
  227. // Init particles
  228. m_simulationType = (m_props.m_usePhysicsEngine) ? SimulationType::kPhysicsEngine : SimulationType::kSimple;
  229. if(m_simulationType == SimulationType::kPhysicsEngine)
  230. {
  231. PhysicsCollisionShapePtr collisionShape = PhysicsWorld::getSingleton().newSphereCollisionShape(m_props.m_particle.m_minInitialSize / 2.0f);
  232. PhysicsBodyInitInfo binit;
  233. binit.m_layer = PhysicsLayer::kDebris;
  234. binit.m_shape = collisionShape.get();
  235. m_physicsParticles.resizeStorage(m_props.m_maxNumOfParticles);
  236. for(U32 i = 0; i < m_props.m_maxNumOfParticles; i++)
  237. {
  238. binit.m_mass = getRandomRange(m_props.m_particle.m_minMass, m_props.m_particle.m_maxMass);
  239. m_physicsParticles.emplaceBack(binit, this);
  240. }
  241. }
  242. else
  243. {
  244. m_simpleParticles.resize(m_props.m_maxNumOfParticles);
  245. }
  246. // GPU scene allocations
  247. m_gpuScenePositions = GpuSceneBuffer::getSingleton().allocate(sizeof(Vec3) * m_props.m_maxNumOfParticles, alignof(F32));
  248. m_gpuSceneAlphas = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  249. m_gpuSceneScales = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  250. m_gpuSceneConstants = GpuSceneBuffer::getSingleton().allocate(
  251. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getSizeInBytes(), alignof(U32));
  252. // Allocate buckets
  253. for(RenderingTechnique t :
  254. EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  255. {
  256. RenderingKey key;
  257. key.setRenderingTechnique(t);
  258. ShaderProgramPtr prog;
  259. m_particleEmitterResource->getRenderingInfo(key, prog);
  260. RenderStateInfo state;
  261. state.m_program = prog;
  262. state.m_primitiveTopology = PrimitiveTopology::kTriangles;
  263. state.m_indexedDrawcall = false;
  264. m_renderStateBuckets[t] = RenderStateBucketContainer::getSingleton().addUser(state, t, 0);
  265. }
  266. }
  267. Error ParticleEmitterComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
  268. {
  269. if(!m_particleEmitterResource.isCreated()) [[unlikely]]
  270. {
  271. updated = false;
  272. return Error::kNone;
  273. }
  274. updated = true;
  275. Vec3* positions;
  276. F32* scales;
  277. F32* alphas;
  278. Aabb aabbWorld;
  279. if(m_simulationType == SimulationType::kSimple)
  280. {
  281. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<SimpleParticle>(m_simpleParticles), positions,
  282. scales, alphas, aabbWorld);
  283. }
  284. else
  285. {
  286. ANKI_ASSERT(m_simulationType == SimulationType::kPhysicsEngine);
  287. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<PhysicsParticle>(m_physicsParticles), positions,
  288. scales, alphas, aabbWorld);
  289. }
  290. // Upload particles to the GPU scene
  291. GpuSceneMicroPatcher& patcher = GpuSceneMicroPatcher::getSingleton();
  292. if(m_aliveParticleCount > 0)
  293. {
  294. patcher.newCopy(*info.m_framePool, m_gpuScenePositions, sizeof(Vec3) * m_aliveParticleCount, positions);
  295. patcher.newCopy(*info.m_framePool, m_gpuSceneScales, sizeof(F32) * m_aliveParticleCount, scales);
  296. patcher.newCopy(*info.m_framePool, m_gpuSceneAlphas, sizeof(F32) * m_aliveParticleCount, alphas);
  297. }
  298. if(m_resourceUpdated)
  299. {
  300. // Upload GpuSceneParticleEmitter
  301. GpuSceneParticleEmitter particles = {};
  302. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  303. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  304. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  305. particles.m_aliveParticleCount = m_aliveParticleCount;
  306. if(!m_gpuSceneParticleEmitter.isValid())
  307. {
  308. m_gpuSceneParticleEmitter.allocate();
  309. }
  310. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  311. // Upload uniforms
  312. patcher.newCopy(*info.m_framePool, m_gpuSceneConstants,
  313. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getSizeInBytes(),
  314. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getBegin());
  315. // Upload mesh LODs
  316. GpuSceneMeshLod meshLod = {};
  317. meshLod.m_vertexOffsets[U32(VertexStreamId::kPosition)] =
  318. m_quadPositions.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition]).m_texelSize;
  319. meshLod.m_vertexOffsets[U32(VertexStreamId::kUv)] =
  320. m_quadUvs.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv]).m_texelSize;
  321. meshLod.m_indexCount = 6;
  322. meshLod.m_firstIndex = m_quadIndices.getOffset() / sizeof(U16);
  323. meshLod.m_positionScale = 1.0f;
  324. meshLod.m_positionTranslation = Vec3(-0.5f, -0.5f, 0.0f);
  325. Array<GpuSceneMeshLod, kMaxLodCount> meshLods;
  326. meshLods.fill(meshLod);
  327. if(!m_gpuSceneMeshLods.isValid())
  328. {
  329. m_gpuSceneMeshLods.allocate();
  330. }
  331. m_gpuSceneMeshLods.uploadToGpuScene(meshLods);
  332. // Upload the GpuSceneRenderable
  333. GpuSceneRenderable renderable = {};
  334. renderable.m_boneTransformsOffset = 0;
  335. renderable.m_constantsOffset = m_gpuSceneConstants.getOffset();
  336. renderable.m_meshLodsIndex = m_gpuSceneMeshLods.getIndex() * kMaxLodCount;
  337. renderable.m_particleEmitterIndex = m_gpuSceneParticleEmitter.getIndex();
  338. renderable.m_worldTransformsIndex = 0;
  339. renderable.m_uuid = SceneGraph::getSingleton().getNewUuid();
  340. if(!m_gpuSceneRenderable.isValid())
  341. {
  342. m_gpuSceneRenderable.allocate();
  343. }
  344. m_gpuSceneRenderable.uploadToGpuScene(renderable);
  345. }
  346. if(!m_resourceUpdated)
  347. {
  348. // Always upload GpuSceneParticleEmitter
  349. GpuSceneParticleEmitter particles = {};
  350. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  351. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  352. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  353. particles.m_aliveParticleCount = m_aliveParticleCount;
  354. if(!m_gpuSceneParticleEmitter.isValid())
  355. {
  356. m_gpuSceneParticleEmitter.allocate();
  357. }
  358. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  359. }
  360. // Upload the GpuSceneRenderableBoundingVolume always
  361. for(RenderingTechnique t : EnumIterable<RenderingTechnique>())
  362. {
  363. if(!!(RenderingTechniqueBit(1 << t) & m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  364. {
  365. const GpuSceneRenderableBoundingVolume gpuVolume = initGpuSceneRenderableBoundingVolume(
  366. aabbWorld.getMin().xyz(), aabbWorld.getMax().xyz(), m_gpuSceneRenderable.getIndex(), m_renderStateBuckets[t].get());
  367. switch(t)
  368. {
  369. case RenderingTechnique::kGBuffer:
  370. if(!m_gpuSceneRenderableAabbGBuffer.isValid())
  371. {
  372. m_gpuSceneRenderableAabbGBuffer.allocate();
  373. }
  374. m_gpuSceneRenderableAabbGBuffer.uploadToGpuScene(gpuVolume);
  375. break;
  376. case RenderingTechnique::kDepth:
  377. if(!m_gpuSceneRenderableAabbDepth.isValid())
  378. {
  379. m_gpuSceneRenderableAabbDepth.allocate();
  380. }
  381. m_gpuSceneRenderableAabbDepth.uploadToGpuScene(gpuVolume);
  382. break;
  383. case RenderingTechnique::kForward:
  384. if(!m_gpuSceneRenderableAabbForward.isValid())
  385. {
  386. m_gpuSceneRenderableAabbForward.allocate();
  387. }
  388. m_gpuSceneRenderableAabbForward.uploadToGpuScene(gpuVolume);
  389. break;
  390. default:
  391. ANKI_ASSERT(0);
  392. }
  393. }
  394. else if(!!(RenderingTechniqueBit(1 << t) & RenderingTechniqueBit::kAllRt))
  395. {
  396. continue;
  397. }
  398. else
  399. {
  400. switch(t)
  401. {
  402. case RenderingTechnique::kGBuffer:
  403. m_gpuSceneRenderableAabbGBuffer.free();
  404. break;
  405. case RenderingTechnique::kDepth:
  406. m_gpuSceneRenderableAabbDepth.free();
  407. break;
  408. case RenderingTechnique::kForward:
  409. m_gpuSceneRenderableAabbForward.free();
  410. break;
  411. default:
  412. ANKI_ASSERT(0);
  413. }
  414. }
  415. }
  416. m_resourceUpdated = false;
  417. return Error::kNone;
  418. }
  419. template<typename TParticle>
  420. void ParticleEmitterComponent::simulate(Second prevUpdateTime, Second crntTime, const Transform& worldTransform, WeakArray<TParticle> particles,
  421. Vec3*& positions, F32*& scales, F32*& alphas, Aabb& aabbWorld)
  422. {
  423. // - Deactivate the dead particles
  424. // - Calc the AABB
  425. // - Calc the instancing stuff
  426. Vec3 aabbMin(kMaxF32);
  427. Vec3 aabbMax(kMinF32);
  428. m_aliveParticleCount = 0;
  429. positions =
  430. static_cast<Vec3*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(Vec3), alignof(Vec3)));
  431. scales = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  432. alphas = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  433. F32 maxParticleSize = -1.0f;
  434. for(TParticle& particle : particles)
  435. {
  436. if(particle.isDead())
  437. {
  438. // if its already dead so dont deactivate it again
  439. continue;
  440. }
  441. if(particle.m_timeOfDeath < crntTime)
  442. {
  443. // Just died
  444. particle.kill();
  445. }
  446. else
  447. {
  448. // It's alive
  449. // This will calculate a new world transformation
  450. particle.simulate(prevUpdateTime, crntTime);
  451. const Vec3& origin = particle.m_crntPosition;
  452. aabbMin = aabbMin.min(origin);
  453. aabbMax = aabbMax.max(origin);
  454. positions[m_aliveParticleCount] = origin;
  455. scales[m_aliveParticleCount] = particle.m_crntSize;
  456. maxParticleSize = max(maxParticleSize, particle.m_crntSize);
  457. alphas[m_aliveParticleCount] = clamp(particle.m_crntAlpha, 0.0f, 1.0f);
  458. ++m_aliveParticleCount;
  459. }
  460. }
  461. // AABB
  462. if(m_aliveParticleCount != 0)
  463. {
  464. ANKI_ASSERT(maxParticleSize > 0.0f);
  465. const Vec3 min = aabbMin - maxParticleSize;
  466. const Vec3 max = aabbMax + maxParticleSize;
  467. aabbWorld = Aabb(min, max);
  468. }
  469. else
  470. {
  471. aabbWorld = Aabb(Vec3(0.0f), Vec3(0.001f));
  472. positions = nullptr;
  473. alphas = scales = nullptr;
  474. }
  475. //
  476. // Emit new particles
  477. //
  478. if(m_timeLeftForNextEmission <= 0.0)
  479. {
  480. U particleCount = 0; // How many particles I am allowed to emmit
  481. for(TParticle& particle : particles)
  482. {
  483. if(!particle.isDead())
  484. {
  485. // its alive so skip it
  486. continue;
  487. }
  488. particle.revive(m_props, worldTransform, crntTime);
  489. // do the rest
  490. ++particleCount;
  491. if(particleCount >= m_props.m_particlesPerEmission)
  492. {
  493. break;
  494. }
  495. } // end for all particles
  496. m_timeLeftForNextEmission = m_props.m_emissionPeriod;
  497. } // end if can emit
  498. else
  499. {
  500. m_timeLeftForNextEmission -= crntTime - prevUpdateTime;
  501. }
  502. }
  503. } // end namespace anki