ParticleEmitterComponent.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Scene/Components/ParticleEmitterComponent.h>
  6. #include <AnKi/Scene/SceneGraph.h>
  7. #include <AnKi/Scene/SceneNode.h>
  8. #include <AnKi/Scene/Components/MoveComponent.h>
  9. #include <AnKi/Resource/ParticleEmitterResource.h>
  10. #include <AnKi/Resource/ResourceManager.h>
  11. #include <AnKi/Physics/PhysicsBody.h>
  12. #include <AnKi/Physics/PhysicsCollisionShape.h>
  13. #include <AnKi/Physics/PhysicsWorld.h>
  14. #include <AnKi/Math.h>
  15. #include <AnKi/Shaders/Include/GpuSceneFunctions.h>
  16. #include <AnKi/Core/GpuMemory/RebarTransientMemoryPool.h>
  17. namespace anki {
  18. static Vec3 getRandom(const Vec3& min, const Vec3& max)
  19. {
  20. Vec3 out;
  21. out.x() = mix(min.x(), max.x(), getRandomRange(0.0f, 1.0f));
  22. out.y() = mix(min.y(), max.y(), getRandomRange(0.0f, 1.0f));
  23. out.z() = mix(min.z(), max.z(), getRandomRange(0.0f, 1.0f));
  24. return out;
  25. }
  26. /// Particle base
  27. class ParticleEmitterComponent::ParticleBase
  28. {
  29. public:
  30. Second m_timeOfBirth; ///< Keep the time of birth for nice effects
  31. Second m_timeOfDeath = -1.0; ///< Time of death. If < 0.0 then dead
  32. F32 m_initialSize;
  33. F32 m_finalSize;
  34. F32 m_crntSize;
  35. F32 m_initialAlpha;
  36. F32 m_finalAlpha;
  37. F32 m_crntAlpha;
  38. Vec3 m_crntPosition;
  39. Bool isDead() const
  40. {
  41. return m_timeOfDeath < 0.0;
  42. }
  43. /// Kill the particle
  44. void killCommon()
  45. {
  46. ANKI_ASSERT(m_timeOfDeath > 0.0);
  47. m_timeOfDeath = -1.0;
  48. }
  49. /// Revive the particle
  50. void reviveCommon(const ParticleEmitterProperties& props, Second crntTime)
  51. {
  52. ANKI_ASSERT(isDead());
  53. // life
  54. m_timeOfDeath = crntTime + getRandomRange(props.m_particle.m_minLife, props.m_particle.m_maxLife);
  55. m_timeOfBirth = crntTime;
  56. // Size
  57. m_initialSize = getRandomRange(props.m_particle.m_minInitialSize, props.m_particle.m_maxInitialSize);
  58. m_finalSize = getRandomRange(props.m_particle.m_minFinalSize, props.m_particle.m_maxFinalSize);
  59. // Alpha
  60. m_initialAlpha = getRandomRange(props.m_particle.m_minInitialAlpha, props.m_particle.m_maxInitialAlpha);
  61. m_finalAlpha = getRandomRange(props.m_particle.m_minFinalAlpha, props.m_particle.m_maxFinalAlpha);
  62. }
  63. /// Common sumulation code
  64. void simulateCommon(Second crntTime)
  65. {
  66. const F32 lifeFactor = F32((crntTime - m_timeOfBirth) / (m_timeOfDeath - m_timeOfBirth));
  67. m_crntSize = mix(m_initialSize, m_finalSize, lifeFactor);
  68. m_crntAlpha = mix(m_initialAlpha, m_finalAlpha, lifeFactor);
  69. }
  70. };
  71. /// Simple particle for simple simulation
  72. class ParticleEmitterComponent::SimpleParticle : public ParticleEmitterComponent::ParticleBase
  73. {
  74. public:
  75. Vec3 m_velocity = Vec3(0.0f);
  76. Vec3 m_acceleration = Vec3(0.0f);
  77. void kill()
  78. {
  79. killCommon();
  80. }
  81. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  82. {
  83. reviveCommon(props, crntTime);
  84. m_velocity = Vec3(0.0f);
  85. m_acceleration = getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity);
  86. // Set the initial position
  87. m_crntPosition = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  88. m_crntPosition += trf.getOrigin().xyz();
  89. }
  90. void simulate(Second prevUpdateTime, Second crntTime)
  91. {
  92. simulateCommon(crntTime);
  93. const F32 dt = F32(crntTime - prevUpdateTime);
  94. const Vec3 xp = m_crntPosition;
  95. const Vec3 xc = m_acceleration * (dt * dt) + m_velocity * dt + xp;
  96. m_crntPosition = xc;
  97. m_velocity += m_acceleration * dt;
  98. }
  99. };
  100. /// Particle for bullet simulations
  101. class ParticleEmitterComponent::PhysicsParticle : public ParticleEmitterComponent::ParticleBase
  102. {
  103. public:
  104. PhysicsBodyPtr m_body;
  105. PhysicsParticle(const PhysicsBodyInitInfo& init, ParticleEmitterComponent* component)
  106. {
  107. m_body = PhysicsWorld::getSingleton().newInstance<PhysicsBody>(init);
  108. m_body->setUserData(component);
  109. m_body->activate(false);
  110. m_body->setMaterialGroup(PhysicsMaterialBit::kParticle);
  111. m_body->setMaterialMask(PhysicsMaterialBit::kStaticGeometry);
  112. m_body->setAngularFactor(Vec3(0.0f));
  113. }
  114. void kill()
  115. {
  116. killCommon();
  117. m_body->activate(false);
  118. }
  119. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  120. {
  121. reviveCommon(props, crntTime);
  122. // pre calculate
  123. const Bool forceFlag = props.forceEnabled();
  124. const Bool worldGravFlag = props.wordGravityEnabled();
  125. // Activate it
  126. m_body->activate(true);
  127. m_body->setLinearVelocity(Vec3(0.0f));
  128. m_body->setAngularVelocity(Vec3(0.0f));
  129. m_body->clearForces();
  130. // force
  131. if(forceFlag)
  132. {
  133. Vec3 forceDir = getRandom(props.m_particle.m_minForceDirection, props.m_particle.m_maxForceDirection);
  134. forceDir.normalize();
  135. // The forceDir depends on the particle emitter rotation
  136. forceDir = trf.getRotation().getRotationPart() * forceDir;
  137. const F32 forceMag = getRandomRange(props.m_particle.m_minForceMagnitude, props.m_particle.m_maxForceMagnitude);
  138. m_body->applyForce(forceDir * forceMag, Vec3(0.0f));
  139. }
  140. // gravity
  141. if(!worldGravFlag)
  142. {
  143. m_body->setGravity(getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity));
  144. }
  145. // Starting pos. In local space
  146. Vec3 pos = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  147. pos = trf.transform(pos);
  148. m_body->setTransform(Transform(pos.xyz0(), trf.getRotation(), 1.0f));
  149. m_crntPosition = pos;
  150. }
  151. void simulate([[maybe_unused]] Second prevUpdateTime, Second crntTime)
  152. {
  153. simulateCommon(crntTime);
  154. m_crntPosition = m_body->getTransform().getOrigin().xyz();
  155. }
  156. };
  157. ParticleEmitterComponent::ParticleEmitterComponent(SceneNode* node)
  158. : SceneComponent(node, kClassType)
  159. {
  160. // Allocate and populate a quad
  161. const U32 vertCount = 4;
  162. const U32 indexCount = 6;
  163. m_quadPositions = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition], vertCount);
  164. m_quadUvs = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv], vertCount);
  165. m_quadIndices = UnifiedGeometryBuffer::getSingleton().allocateFormat(Format::kR16_Uint, indexCount);
  166. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition] == Format::kR16G16B16A16_Unorm);
  167. WeakArray<U16Vec4> transientPositions;
  168. const RebarAllocation positionsAlloc = RebarTransientMemoryPool::getSingleton().allocateFrame(vertCount, transientPositions);
  169. transientPositions[0] = U16Vec4(0, 0, 0, 0);
  170. transientPositions[1] = U16Vec4(kMaxU16, 0, 0, 0);
  171. transientPositions[2] = U16Vec4(kMaxU16, kMaxU16, 0, 0);
  172. transientPositions[3] = U16Vec4(0, kMaxU16, 0, 0);
  173. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv] == Format::kR32G32_Sfloat);
  174. WeakArray<Vec2> transientUvs;
  175. const RebarAllocation uvsAlloc = RebarTransientMemoryPool::getSingleton().allocateFrame(vertCount, transientUvs);
  176. transientUvs[0] = Vec2(0.0f);
  177. transientUvs[1] = Vec2(1.0f, 0.0f);
  178. transientUvs[2] = Vec2(1.0f, 1.0f);
  179. transientUvs[3] = Vec2(0.0f, 1.0f);
  180. WeakArray<U16> transientIndices;
  181. const RebarAllocation indicesAlloc = RebarTransientMemoryPool::getSingleton().allocateFrame(indexCount, transientIndices);
  182. transientIndices[0] = 0;
  183. transientIndices[1] = 1;
  184. transientIndices[2] = 3;
  185. transientIndices[3] = 1;
  186. transientIndices[4] = 2;
  187. transientIndices[5] = 3;
  188. CommandBufferInitInfo cmdbInit("Particle quad upload");
  189. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  190. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  191. Buffer* srcBuff = &RebarTransientMemoryPool::getSingleton().getBuffer();
  192. Buffer* dstBuff = &UnifiedGeometryBuffer::getSingleton().getBuffer();
  193. cmdb->copyBufferToBuffer(srcBuff, positionsAlloc.getOffset(), dstBuff, m_quadPositions.getOffset(), positionsAlloc.getRange());
  194. cmdb->copyBufferToBuffer(srcBuff, uvsAlloc.getOffset(), dstBuff, m_quadUvs.getOffset(), uvsAlloc.getRange());
  195. cmdb->copyBufferToBuffer(srcBuff, indicesAlloc.getOffset(), dstBuff, m_quadIndices.getOffset(), indicesAlloc.getRange());
  196. BufferBarrierInfo barrier;
  197. barrier.m_buffer = dstBuff;
  198. barrier.m_offset = 0;
  199. barrier.m_range = kMaxPtrSize;
  200. barrier.m_previousUsage = BufferUsageBit::kTransferDestination;
  201. barrier.m_nextUsage = dstBuff->getBufferUsage();
  202. cmdb->setPipelineBarrier({}, {&barrier, 1}, {});
  203. cmdb->flush();
  204. }
  205. ParticleEmitterComponent::~ParticleEmitterComponent()
  206. {
  207. }
  208. void ParticleEmitterComponent::loadParticleEmitterResource(CString filename)
  209. {
  210. // Load
  211. ParticleEmitterResourcePtr rsrc;
  212. const Error err = ResourceManager::getSingleton().loadResource(filename, rsrc);
  213. if(err)
  214. {
  215. ANKI_SCENE_LOGE("Failed to load particle emitter");
  216. return;
  217. }
  218. m_particleEmitterResource = std::move(rsrc);
  219. m_props = m_particleEmitterResource->getProperties();
  220. m_resourceUpdated = true;
  221. // Cleanup
  222. m_simpleParticles.destroy();
  223. m_physicsParticles.destroy();
  224. GpuSceneBuffer::getSingleton().deferredFree(m_gpuScenePositions);
  225. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneScales);
  226. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneAlphas);
  227. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneUniforms);
  228. for(RenderStateBucketIndex& idx : m_renderStateBuckets)
  229. {
  230. RenderStateBucketContainer::getSingleton().removeUser(idx);
  231. }
  232. // Init particles
  233. m_simulationType = (m_props.m_usePhysicsEngine) ? SimulationType::kPhysicsEngine : SimulationType::kSimple;
  234. if(m_simulationType == SimulationType::kPhysicsEngine)
  235. {
  236. PhysicsCollisionShapePtr collisionShape = PhysicsWorld::getSingleton().newInstance<PhysicsSphere>(m_props.m_particle.m_minInitialSize / 2.0f);
  237. PhysicsBodyInitInfo binit;
  238. binit.m_shape = std::move(collisionShape);
  239. m_physicsParticles.resizeStorage(m_props.m_maxNumOfParticles);
  240. for(U32 i = 0; i < m_props.m_maxNumOfParticles; i++)
  241. {
  242. binit.m_mass = getRandomRange(m_props.m_particle.m_minMass, m_props.m_particle.m_maxMass);
  243. m_physicsParticles.emplaceBack(binit, this);
  244. }
  245. }
  246. else
  247. {
  248. m_simpleParticles.resize(m_props.m_maxNumOfParticles);
  249. }
  250. // GPU scene allocations
  251. m_gpuScenePositions = GpuSceneBuffer::getSingleton().allocate(sizeof(Vec3) * m_props.m_maxNumOfParticles, alignof(F32));
  252. m_gpuSceneAlphas = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  253. m_gpuSceneScales = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  254. m_gpuSceneUniforms =
  255. GpuSceneBuffer::getSingleton().allocate(m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(), alignof(U32));
  256. // Allocate buckets
  257. for(RenderingTechnique t :
  258. EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  259. {
  260. RenderingKey key;
  261. key.setRenderingTechnique(t);
  262. ShaderProgramPtr prog;
  263. m_particleEmitterResource->getRenderingInfo(key, prog);
  264. RenderStateInfo state;
  265. state.m_program = prog;
  266. state.m_primitiveTopology = PrimitiveTopology::kTriangles;
  267. state.m_indexedDrawcall = false;
  268. m_renderStateBuckets[t] = RenderStateBucketContainer::getSingleton().addUser(state, t, 0);
  269. }
  270. }
  271. Error ParticleEmitterComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
  272. {
  273. if(!m_particleEmitterResource.isCreated()) [[unlikely]]
  274. {
  275. updated = false;
  276. return Error::kNone;
  277. }
  278. updated = true;
  279. Vec3* positions;
  280. F32* scales;
  281. F32* alphas;
  282. Aabb aabbWorld;
  283. if(m_simulationType == SimulationType::kSimple)
  284. {
  285. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<SimpleParticle>(m_simpleParticles), positions,
  286. scales, alphas, aabbWorld);
  287. }
  288. else
  289. {
  290. ANKI_ASSERT(m_simulationType == SimulationType::kPhysicsEngine);
  291. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<PhysicsParticle>(m_physicsParticles), positions,
  292. scales, alphas, aabbWorld);
  293. }
  294. // Upload particles to the GPU scene
  295. GpuSceneMicroPatcher& patcher = GpuSceneMicroPatcher::getSingleton();
  296. if(m_aliveParticleCount > 0)
  297. {
  298. patcher.newCopy(*info.m_framePool, m_gpuScenePositions, sizeof(Vec3) * m_aliveParticleCount, positions);
  299. patcher.newCopy(*info.m_framePool, m_gpuSceneScales, sizeof(F32) * m_aliveParticleCount, scales);
  300. patcher.newCopy(*info.m_framePool, m_gpuSceneAlphas, sizeof(F32) * m_aliveParticleCount, alphas);
  301. }
  302. if(m_resourceUpdated)
  303. {
  304. // Upload GpuSceneParticleEmitter
  305. GpuSceneParticleEmitter particles = {};
  306. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  307. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  308. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  309. particles.m_aliveParticleCount = m_aliveParticleCount;
  310. if(!m_gpuSceneParticleEmitter.isValid())
  311. {
  312. m_gpuSceneParticleEmitter.allocate();
  313. }
  314. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  315. // Upload uniforms
  316. patcher.newCopy(*info.m_framePool, m_gpuSceneUniforms, m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(),
  317. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getBegin());
  318. // Upload mesh LODs
  319. GpuSceneMeshLod meshLod = {};
  320. meshLod.m_vertexOffsets[U32(VertexStreamId::kPosition)] =
  321. m_quadPositions.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition]).m_texelSize;
  322. meshLod.m_vertexOffsets[U32(VertexStreamId::kUv)] =
  323. m_quadUvs.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv]).m_texelSize;
  324. meshLod.m_indexCount = 6;
  325. meshLod.m_firstIndex = m_quadIndices.getOffset() / sizeof(U16);
  326. meshLod.m_positionScale = 1.0f;
  327. meshLod.m_positionTranslation = Vec3(-0.5f, -0.5f, 0.0f);
  328. Array<GpuSceneMeshLod, kMaxLodCount> meshLods;
  329. meshLods.fill(meshLod);
  330. if(!m_gpuSceneMeshLods.isValid())
  331. {
  332. m_gpuSceneMeshLods.allocate();
  333. }
  334. m_gpuSceneMeshLods.uploadToGpuScene(meshLods);
  335. // Upload the GpuSceneRenderable
  336. GpuSceneRenderable renderable;
  337. renderable.m_boneTransformsOffset = 0;
  338. renderable.m_constantsOffset = m_gpuSceneUniforms.getOffset();
  339. renderable.m_meshLodsIndex = m_gpuSceneMeshLods.getIndex() * kMaxLodCount;
  340. renderable.m_particleEmitterOffset = m_gpuSceneParticleEmitter.getGpuSceneOffset();
  341. renderable.m_worldTransformsOffset = 0;
  342. renderable.m_uuid = SceneGraph::getSingleton().getNewUuid();
  343. if(!m_gpuSceneRenderable.isValid())
  344. {
  345. m_gpuSceneRenderable.allocate();
  346. }
  347. m_gpuSceneRenderable.uploadToGpuScene(renderable);
  348. }
  349. if(!m_resourceUpdated)
  350. {
  351. // Always upload GpuSceneParticleEmitter
  352. GpuSceneParticleEmitter particles = {};
  353. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  354. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  355. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  356. particles.m_aliveParticleCount = m_aliveParticleCount;
  357. if(!m_gpuSceneParticleEmitter.isValid())
  358. {
  359. m_gpuSceneParticleEmitter.allocate();
  360. }
  361. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  362. }
  363. // Upload the GpuSceneRenderableBoundingVolume always
  364. for(RenderingTechnique t : EnumIterable<RenderingTechnique>())
  365. {
  366. if(!!(RenderingTechniqueBit(1 << t) & m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  367. {
  368. const GpuSceneRenderableBoundingVolume gpuVolume = initGpuSceneRenderableBoundingVolume(
  369. aabbWorld.getMin().xyz(), aabbWorld.getMax().xyz(), m_gpuSceneRenderable.getIndex(), m_renderStateBuckets[t].get());
  370. switch(t)
  371. {
  372. case RenderingTechnique::kGBuffer:
  373. if(!m_gpuSceneRenderableAabbGBuffer.isValid())
  374. {
  375. m_gpuSceneRenderableAabbGBuffer.allocate();
  376. }
  377. m_gpuSceneRenderableAabbGBuffer.uploadToGpuScene(gpuVolume);
  378. break;
  379. case RenderingTechnique::kDepth:
  380. if(!m_gpuSceneRenderableAabbDepth.isValid())
  381. {
  382. m_gpuSceneRenderableAabbDepth.allocate();
  383. }
  384. m_gpuSceneRenderableAabbDepth.uploadToGpuScene(gpuVolume);
  385. break;
  386. case RenderingTechnique::kForward:
  387. if(!m_gpuSceneRenderableAabbForward.isValid())
  388. {
  389. m_gpuSceneRenderableAabbForward.allocate();
  390. }
  391. m_gpuSceneRenderableAabbForward.uploadToGpuScene(gpuVolume);
  392. break;
  393. default:
  394. ANKI_ASSERT(0);
  395. }
  396. }
  397. else if(!!(RenderingTechniqueBit(1 << t) & RenderingTechniqueBit::kAllRt))
  398. {
  399. continue;
  400. }
  401. else
  402. {
  403. switch(t)
  404. {
  405. case RenderingTechnique::kGBuffer:
  406. m_gpuSceneRenderableAabbGBuffer.free();
  407. break;
  408. case RenderingTechnique::kDepth:
  409. m_gpuSceneRenderableAabbDepth.free();
  410. break;
  411. case RenderingTechnique::kForward:
  412. m_gpuSceneRenderableAabbForward.free();
  413. break;
  414. default:
  415. ANKI_ASSERT(0);
  416. }
  417. }
  418. }
  419. m_resourceUpdated = false;
  420. return Error::kNone;
  421. }
  422. template<typename TParticle>
  423. void ParticleEmitterComponent::simulate(Second prevUpdateTime, Second crntTime, const Transform& worldTransform, WeakArray<TParticle> particles,
  424. Vec3*& positions, F32*& scales, F32*& alphas, Aabb& aabbWorld)
  425. {
  426. // - Deactivate the dead particles
  427. // - Calc the AABB
  428. // - Calc the instancing stuff
  429. Vec3 aabbMin(kMaxF32);
  430. Vec3 aabbMax(kMinF32);
  431. m_aliveParticleCount = 0;
  432. positions =
  433. static_cast<Vec3*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(Vec3), alignof(Vec3)));
  434. scales = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  435. alphas = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  436. F32 maxParticleSize = -1.0f;
  437. for(TParticle& particle : particles)
  438. {
  439. if(particle.isDead())
  440. {
  441. // if its already dead so dont deactivate it again
  442. continue;
  443. }
  444. if(particle.m_timeOfDeath < crntTime)
  445. {
  446. // Just died
  447. particle.kill();
  448. }
  449. else
  450. {
  451. // It's alive
  452. // This will calculate a new world transformation
  453. particle.simulate(prevUpdateTime, crntTime);
  454. const Vec3& origin = particle.m_crntPosition;
  455. aabbMin = aabbMin.min(origin);
  456. aabbMax = aabbMax.max(origin);
  457. positions[m_aliveParticleCount] = origin;
  458. scales[m_aliveParticleCount] = particle.m_crntSize;
  459. maxParticleSize = max(maxParticleSize, particle.m_crntSize);
  460. alphas[m_aliveParticleCount] = clamp(particle.m_crntAlpha, 0.0f, 1.0f);
  461. ++m_aliveParticleCount;
  462. }
  463. }
  464. // AABB
  465. if(m_aliveParticleCount != 0)
  466. {
  467. ANKI_ASSERT(maxParticleSize > 0.0f);
  468. const Vec3 min = aabbMin - maxParticleSize;
  469. const Vec3 max = aabbMax + maxParticleSize;
  470. aabbWorld = Aabb(min, max);
  471. }
  472. else
  473. {
  474. aabbWorld = Aabb(Vec3(0.0f), Vec3(0.001f));
  475. positions = nullptr;
  476. alphas = scales = nullptr;
  477. }
  478. //
  479. // Emit new particles
  480. //
  481. if(m_timeLeftForNextEmission <= 0.0)
  482. {
  483. U particleCount = 0; // How many particles I am allowed to emmit
  484. for(TParticle& particle : particles)
  485. {
  486. if(!particle.isDead())
  487. {
  488. // its alive so skip it
  489. continue;
  490. }
  491. particle.revive(m_props, worldTransform, crntTime);
  492. // do the rest
  493. ++particleCount;
  494. if(particleCount >= m_props.m_particlesPerEmission)
  495. {
  496. break;
  497. }
  498. } // end for all particles
  499. m_timeLeftForNextEmission = m_props.m_emissionPeriod;
  500. } // end if can emit
  501. else
  502. {
  503. m_timeLeftForNextEmission -= crntTime - prevUpdateTime;
  504. }
  505. }
  506. } // end namespace anki