IndirectDiffuseProbes.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  8. #include <AnKi/Scene/SceneGraph.h>
  9. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  10. #include <AnKi/Scene/Components/LightComponent.h>
  11. #include <AnKi/Core/CVarSet.h>
  12. #include <AnKi/Core/StatsSet.h>
  13. #include <AnKi/Util/Tracer.h>
  14. #include <AnKi/Collision/Aabb.h>
  15. #include <AnKi/Collision/Functions.h>
  16. #include <AnKi/Resource/AsyncLoader.h>
  17. namespace anki {
  18. static NumericCVar<U32> g_indirectDiffuseProbeTileResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeTileResolution",
  19. (ANKI_PLATFORM_MOBILE) ? 16 : 32, 8, 32, "GI tile resolution");
  20. static NumericCVar<U32> g_indirectDiffuseProbeShadowMapResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeShadowMapResolution", 128, 4,
  21. 2048, "GI shadowmap resolution");
  22. static StatCounter g_giProbeRenderCountStatVar(StatCategory::kRenderer, "GI probes rendered", StatFlag::kMainThreadUpdates);
  23. static StatCounter g_giProbeCellsRenderCountStatVar(StatCategory::kRenderer, "GI probes cells rendered", StatFlag::kMainThreadUpdates);
  24. static Vec3 computeCellCenter(U32 cellIdx, const GlobalIlluminationProbeComponent& probe)
  25. {
  26. const Vec3 halfAabbSize = probe.getBoxVolumeSize() / 2.0f;
  27. const Vec3 aabbMin = -halfAabbSize + probe.getWorldPosition();
  28. U32 x, y, z;
  29. unflatten3dArrayIndex(probe.getCellCountsPerDimension().x(), probe.getCellCountsPerDimension().y(), probe.getCellCountsPerDimension().z(),
  30. cellIdx, x, y, z);
  31. const Vec3 cellSize = probe.getBoxVolumeSize() / Vec3(probe.getCellCountsPerDimension());
  32. const Vec3 halfCellSize = cellSize / 2.0f;
  33. const Vec3 cellCenter = aabbMin + halfCellSize + cellSize * Vec3(UVec3(x, y, z));
  34. return cellCenter;
  35. }
  36. Error IndirectDiffuseProbes::init()
  37. {
  38. const Error err = initInternal();
  39. if(err)
  40. {
  41. ANKI_R_LOGE("Failed to initialize global illumination");
  42. }
  43. return err;
  44. }
  45. Error IndirectDiffuseProbes::initInternal()
  46. {
  47. m_tileSize = g_indirectDiffuseProbeTileResolutionCVar.get();
  48. ANKI_CHECK(initGBuffer());
  49. ANKI_CHECK(initLightShading());
  50. ANKI_CHECK(initShadowMapping());
  51. ANKI_CHECK(initIrradiance());
  52. return Error::kNone;
  53. }
  54. Error IndirectDiffuseProbes::initGBuffer()
  55. {
  56. // Create RT descriptions
  57. {
  58. RenderTargetDescription texinit =
  59. getRenderer().create2DRenderTargetDescription(m_tileSize * 6, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  60. // Create color RT descriptions
  61. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  62. {
  63. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  64. m_gbuffer.m_colorRtDescrs[i] = texinit;
  65. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  66. m_gbuffer.m_colorRtDescrs[i].bake();
  67. }
  68. // Create depth RT
  69. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  70. texinit.setName("GI GBuff Depth");
  71. m_gbuffer.m_depthRtDescr = texinit;
  72. m_gbuffer.m_depthRtDescr.bake();
  73. }
  74. // Create FB descr
  75. {
  76. m_gbuffer.m_fbDescr.m_colorAttachmentCount = kGBufferColorRenderTargetCount;
  77. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  78. {
  79. m_gbuffer.m_fbDescr.m_colorAttachments[j].m_loadOperation = AttachmentLoadOperation::kClear;
  80. }
  81. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  82. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  83. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  84. m_gbuffer.m_fbDescr.bake();
  85. }
  86. return Error::kNone;
  87. }
  88. Error IndirectDiffuseProbes::initShadowMapping()
  89. {
  90. const U32 resolution = g_indirectDiffuseProbeShadowMapResolutionCVar.get();
  91. ANKI_ASSERT(resolution > 8);
  92. // RT descr
  93. m_shadowMapping.m_rtDescr =
  94. getRenderer().create2DRenderTargetDescription(resolution * 6, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  95. m_shadowMapping.m_rtDescr.bake();
  96. // FB descr
  97. m_shadowMapping.m_fbDescr.m_colorAttachmentCount = 0;
  98. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  99. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  100. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  101. m_shadowMapping.m_fbDescr.bake();
  102. return Error::kNone;
  103. }
  104. Error IndirectDiffuseProbes::initLightShading()
  105. {
  106. // Init RT descr
  107. {
  108. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize * 6, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  109. m_lightShading.m_rtDescr.bake();
  110. }
  111. // Create FB descr
  112. {
  113. m_lightShading.m_fbDescr.m_colorAttachmentCount = 1;
  114. m_lightShading.m_fbDescr.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  115. m_lightShading.m_fbDescr.bake();
  116. }
  117. // Init deferred
  118. ANKI_CHECK(m_lightShading.m_deferred.init());
  119. return Error::kNone;
  120. }
  121. Error IndirectDiffuseProbes::initIrradiance()
  122. {
  123. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/IrradianceDice.ankiprogbin", m_irradiance.m_prog));
  124. ShaderProgramResourceVariantInitInfo variantInitInfo(m_irradiance.m_prog);
  125. variantInitInfo.addMutation("WORKGROUP_SIZE_XY", m_tileSize);
  126. variantInitInfo.addMutation("LIGHT_SHADING_TEX", 0);
  127. variantInitInfo.addMutation("STORE_LOCATION", 0);
  128. variantInitInfo.addMutation("SECOND_BOUNCE", 1);
  129. const ShaderProgramResourceVariant* variant;
  130. m_irradiance.m_prog->getOrCreateVariant(variantInitInfo, variant);
  131. m_irradiance.m_grProg.reset(&variant->getProgram());
  132. return Error::kNone;
  133. }
  134. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  135. {
  136. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuse);
  137. // Iterate the visible probes to find a candidate for update
  138. WeakArray<GlobalIlluminationProbeComponent*> visibleProbes =
  139. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_globalIlluminationProbes;
  140. GlobalIlluminationProbeComponent* bestCandidateProbe = nullptr;
  141. GlobalIlluminationProbeComponent* secondBestCandidateProbe = nullptr;
  142. for(GlobalIlluminationProbeComponent* probe : visibleProbes)
  143. {
  144. if(probe->getCellsNeedsRefresh())
  145. {
  146. if(probe->getNextCellForRefresh() != 0)
  147. {
  148. bestCandidateProbe = probe;
  149. break;
  150. }
  151. else
  152. {
  153. secondBestCandidateProbe = probe;
  154. }
  155. }
  156. }
  157. GlobalIlluminationProbeComponent* probeToRefresh = (bestCandidateProbe) ? bestCandidateProbe : secondBestCandidateProbe;
  158. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  159. {
  160. // Nothing to update or can't update right now, early exit
  161. m_runCtx = {};
  162. return;
  163. }
  164. const Bool probeTouchedFirstTime = probeToRefresh->getNextCellForRefresh() == 0;
  165. if(probeTouchedFirstTime)
  166. {
  167. g_giProbeRenderCountStatVar.increment(1);
  168. }
  169. RenderGraphDescription& rgraph = rctx.m_renderGraphDescr;
  170. // Create some common resources to save on memory
  171. Array<RenderTargetHandle, kMaxColorRenderTargets> gbufferColorRts;
  172. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  173. {
  174. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  175. }
  176. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  177. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  178. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  179. const RenderTargetHandle shadowsRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  180. const RenderTargetHandle lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  181. const RenderTargetHandle irradianceVolume = rgraph.importRenderTarget(&probeToRefresh->getVolumeTexture(), TextureUsageBit::kNone);
  182. m_runCtx.m_probeVolumeHandle = irradianceVolume;
  183. const U32 beginCellIdx = probeToRefresh->getNextCellForRefresh();
  184. for(U32 cellIdx = beginCellIdx; cellIdx < min(beginCellIdx + kProbeCellRefreshesPerFrame, probeToRefresh->getCellCount()); ++cellIdx)
  185. {
  186. const Vec3 cellCenter = computeCellCenter(cellIdx, *probeToRefresh);
  187. // GBuffer visibility
  188. Array<GpuVisibilityOutput, 6> visOuts;
  189. Array<Frustum, 6> frustums;
  190. for(U32 i = 0; i < 6; ++i)
  191. {
  192. Frustum& frustum = frustums[i];
  193. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  194. frustum.setWorldTransform(Transform(cellCenter.xyz0(), Frustum::getOmnidirectionalFrustumRotations()[i], 1.0f));
  195. frustum.update();
  196. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  197. FrustumGpuVisibilityInput visIn;
  198. visIn.m_passesName = "GI GBuffer visibility";
  199. visIn.m_technique = RenderingTechnique::kGBuffer;
  200. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  201. visIn.m_lodReferencePoint = cellCenter;
  202. visIn.m_lodDistances = lodDistances;
  203. visIn.m_rgraph = &rgraph;
  204. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOuts[i]);
  205. }
  206. // GBuffer
  207. Array<Mat4, 6> viewProjMats;
  208. Array<Mat3x4, 6> viewMats;
  209. {
  210. // Prepare the matrices
  211. for(U32 f = 0; f < 6; ++f)
  212. {
  213. viewProjMats[f] = frustums[f].getViewProjectionMatrix();
  214. viewMats[f] = frustums[f].getViewMatrix();
  215. }
  216. // Create the pass
  217. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI GBuffer");
  218. pass.setFramebufferInfo(m_gbuffer.m_fbDescr, gbufferColorRts, gbufferDepthRt);
  219. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  220. {
  221. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kFramebufferWrite);
  222. }
  223. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllFramebuffer, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  224. for(U32 i = 0; i < 6; ++i)
  225. {
  226. pass.newBufferDependency(visOuts[i].m_someBufferHandle, BufferUsageBit::kIndirectDraw);
  227. }
  228. pass.setWork(6, [this, visOuts, viewProjMats, viewMats](RenderPassWorkContext& rgraphCtx) {
  229. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  230. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  231. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  232. const U32 viewportX = faceIdx * m_tileSize;
  233. cmdb.setViewport(viewportX, 0, m_tileSize, m_tileSize);
  234. cmdb.setScissor(viewportX, 0, m_tileSize, m_tileSize);
  235. RenderableDrawerArguments args;
  236. args.m_viewMatrix = viewMats[faceIdx];
  237. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  238. args.m_viewProjectionMatrix = viewProjMats[faceIdx];
  239. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  240. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  241. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  242. args.fillMdi(visOuts[faceIdx]);
  243. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  244. // It's secondary, no need to restore any state
  245. });
  246. }
  247. // Shadow visibility. Optional
  248. Array<GpuVisibilityOutput, 6> shadowVisOuts;
  249. Array<Mat4, 6> cascadeProjMats;
  250. Array<Mat3x4, 6> cascadeViewMats;
  251. Array<Mat4, 6> cascadeViewProjMats;
  252. if(doShadows)
  253. {
  254. for(U32 i = 0; i < 6; ++i)
  255. {
  256. constexpr U32 kCascadeCount = 1;
  257. dirLightc->computeCascadeFrustums(frustums[i], Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  258. WeakArray<Mat4>(&cascadeProjMats[i], kCascadeCount),
  259. WeakArray<Mat3x4>(&cascadeViewMats[i], kCascadeCount));
  260. cascadeViewProjMats[i] = cascadeProjMats[i] * Mat4(cascadeViewMats[i], Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  261. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  262. FrustumGpuVisibilityInput visIn;
  263. visIn.m_passesName = "GI shadows visibility";
  264. visIn.m_technique = RenderingTechnique::kDepth;
  265. visIn.m_viewProjectionMatrix = cascadeViewProjMats[i];
  266. visIn.m_lodReferencePoint = cellCenter;
  267. visIn.m_lodDistances = lodDistances;
  268. visIn.m_rgraph = &rgraph;
  269. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOuts[i]);
  270. }
  271. }
  272. // Shadow pass. Optional
  273. if(doShadows)
  274. {
  275. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI shadows");
  276. pass.setFramebufferInfo(m_shadowMapping.m_fbDescr, {}, shadowsRt);
  277. pass.newTextureDependency(shadowsRt, TextureUsageBit::kAllFramebuffer, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  278. for(U32 i = 0; i < 6; ++i)
  279. {
  280. pass.newBufferDependency(shadowVisOuts[i].m_someBufferHandle, BufferUsageBit::kIndirectDraw);
  281. }
  282. pass.setWork(6, [this, shadowVisOuts, cascadeViewProjMats, cascadeViewMats](RenderPassWorkContext& rgraphCtx) {
  283. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  284. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  285. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  286. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  287. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  288. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  289. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  290. RenderableDrawerArguments args;
  291. args.m_viewMatrix = cascadeViewMats[faceIdx];
  292. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  293. args.m_viewProjectionMatrix = cascadeViewProjMats[faceIdx];
  294. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  295. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  296. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  297. args.fillMdi(shadowVisOuts[faceIdx]);
  298. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  299. // It's secondary, no need to restore the state
  300. });
  301. }
  302. // Light visibility
  303. Array<GpuVisibilityNonRenderablesOutput, 6> lightVis;
  304. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  305. {
  306. GpuVisibilityNonRenderablesInput in;
  307. in.m_passesName = "GI light visibility";
  308. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  309. in.m_viewProjectionMat = frustums[faceIdx].getViewProjectionMatrix();
  310. in.m_rgraph = &rgraph;
  311. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis[faceIdx]);
  312. }
  313. // Light shading pass
  314. {
  315. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI light shading");
  316. pass.setFramebufferInfo(m_lightShading.m_fbDescr, {lightShadingRt});
  317. Array<BufferOffsetRange, 6> visibleLightsBuffers;
  318. for(U32 f = 0; f < 6; ++f)
  319. {
  320. visibleLightsBuffers[f] = lightVis[f].m_visiblesBuffer;
  321. pass.newBufferDependency(lightVis[f].m_visiblesBufferHandle, BufferUsageBit::kUavFragmentRead);
  322. }
  323. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kFramebufferWrite);
  324. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  325. {
  326. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledFragment);
  327. }
  328. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSampledFragment, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  329. if(shadowsRt.isValid())
  330. {
  331. pass.newTextureDependency(shadowsRt, TextureUsageBit::kSampledFragment);
  332. }
  333. pass.setWork(1, [this, visibleLightsBuffers, viewProjMats, cellCenter, gbufferColorRts, gbufferDepthRt, probeToRefresh,
  334. cascadeViewProjMats, shadowsRt](RenderPassWorkContext& rgraphCtx) {
  335. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  336. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  337. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  338. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  339. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  340. {
  341. const U32 rez = m_tileSize;
  342. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  343. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  344. // Draw light shading
  345. TraditionalDeferredLightShadingDrawInfo dsInfo;
  346. dsInfo.m_viewProjectionMatrix = viewProjMats[faceIdx];
  347. dsInfo.m_invViewProjectionMatrix = viewProjMats[faceIdx].getInverse();
  348. dsInfo.m_cameraPosWSpace = cellCenter.xyz1();
  349. dsInfo.m_viewport = UVec4(faceIdx * m_tileSize, 0, m_tileSize, m_tileSize);
  350. dsInfo.m_gbufferTexCoordsScale = Vec2(1.0f / F32(m_tileSize * 6), 1.0f / F32(m_tileSize));
  351. dsInfo.m_gbufferTexCoordsBias = Vec2(0.0f, 0.0f);
  352. dsInfo.m_lightbufferTexCoordsBias = Vec2(-F32(faceIdx), 0.0f);
  353. dsInfo.m_lightbufferTexCoordsScale = Vec2(1.0f / F32(m_tileSize), 1.0f / F32(m_tileSize));
  354. dsInfo.m_effectiveShadowDistance = (doShadows) ? probeToRefresh->getShadowsRenderRadius() : -1.0f;
  355. if(doShadows)
  356. {
  357. const F32 xScale = 1.0f / 6.0f;
  358. const F32 yScale = 1.0f;
  359. const F32 xOffset = F32(faceIdx) * (1.0f / 6.0f);
  360. const F32 yOffset = 0.0f;
  361. const Mat4 atlasMtx(xScale, 0.0f, 0.0f, xOffset, 0.0f, yScale, 0.0f, yOffset, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  362. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  363. dsInfo.m_dirLightMatrix = atlasMtx * biasMat4 * cascadeViewProjMats[faceIdx];
  364. }
  365. else
  366. {
  367. dsInfo.m_dirLightMatrix = Mat4::getIdentity();
  368. }
  369. dsInfo.m_visibleLightsBuffer = visibleLightsBuffers[faceIdx];
  370. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  371. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  372. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  373. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  374. dsInfo.m_directionalLightShadowmapRenderTarget = shadowsRt;
  375. dsInfo.m_renderpassContext = &rgraphCtx;
  376. m_lightShading.m_deferred.drawLights(dsInfo);
  377. }
  378. });
  379. }
  380. // Irradiance pass. First & 2nd bounce
  381. {
  382. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("GI irradiance");
  383. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kSampledCompute);
  384. pass.newTextureDependency(irradianceVolume, TextureUsageBit::kUavComputeWrite);
  385. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  386. {
  387. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  388. }
  389. pass.setWork([this, lightShadingRt, gbufferColorRts, irradianceVolume, cellIdx, probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  390. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  391. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  392. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  393. // Bind resources
  394. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  395. rgraphCtx.bindColorTexture(0, 1, lightShadingRt);
  396. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  397. {
  398. rgraphCtx.bindColorTexture(0, 2, gbufferColorRts[i], i);
  399. }
  400. rgraphCtx.bindUavTexture(0, 3, irradianceVolume, TextureSubresourceInfo());
  401. class
  402. {
  403. public:
  404. IVec3 m_volumeTexel;
  405. I32 m_nextTexelOffsetInU;
  406. } unis;
  407. U32 x, y, z;
  408. unflatten3dArrayIndex(probeToRefresh->getCellCountsPerDimension().x(), probeToRefresh->getCellCountsPerDimension().y(),
  409. probeToRefresh->getCellCountsPerDimension().z(), cellIdx, x, y, z);
  410. unis.m_volumeTexel = IVec3(x, y, z);
  411. unis.m_nextTexelOffsetInU = probeToRefresh->getCellCountsPerDimension().x();
  412. cmdb.setPushConstants(&unis, sizeof(unis));
  413. // Dispatch
  414. cmdb.dispatchCompute(1, 1, 1);
  415. });
  416. }
  417. probeToRefresh->incrementRefreshedCells(1);
  418. g_giProbeCellsRenderCountStatVar.increment(1);
  419. }
  420. }
  421. } // end namespace anki