VolumetricLightingAccumulation.cpp 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  6. #include <AnKi/Renderer/ShadowMapping.h>
  7. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  8. #include <AnKi/Renderer/Renderer.h>
  9. #include <AnKi/Renderer/ClusterBinning.h>
  10. #include <AnKi/Resource/ImageResource.h>
  11. #include <AnKi/Core/CVarSet.h>
  12. #include <AnKi/Scene/Components/SkyboxComponent.h>
  13. #include <AnKi/Util/Tracer.h>
  14. namespace anki {
  15. NumericCVar<F32> g_volumetricLightingAccumulationQualityXYCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationQualityXY", 4.0f, 1.0f, 16.0f,
  16. "Quality of XY dimensions of volumetric lights");
  17. NumericCVar<F32> g_volumetricLightingAccumulationQualityZCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationQualityZ", 4.0f, 1.0f, 16.0f,
  18. "Quality of Z dimension of volumetric lights");
  19. NumericCVar<U32> g_volumetricLightingAccumulationFinalZSplitCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationFinalZSplit", 26, 1, 256,
  20. "Final cluster split that will recieve volumetric lights");
  21. Error VolumetricLightingAccumulation::init()
  22. {
  23. // Misc
  24. const F32 qualityXY = g_volumetricLightingAccumulationQualityXYCVar.get();
  25. const F32 qualityZ = g_volumetricLightingAccumulationQualityZCVar.get();
  26. m_finalZSplit = min(getRenderer().getZSplitCount() - 1, g_volumetricLightingAccumulationFinalZSplitCVar.get());
  27. m_volumeSize[0] = U32(F32(getRenderer().getTileCounts().x()) * qualityXY);
  28. m_volumeSize[1] = U32(F32(getRenderer().getTileCounts().y()) * qualityXY);
  29. m_volumeSize[2] = U32(F32(m_finalZSplit + 1) * qualityZ);
  30. ANKI_R_LOGV("Initializing volumetric lighting accumulation. Size %ux%ux%u", m_volumeSize[0], m_volumeSize[1], m_volumeSize[2]);
  31. if(!isAligned(getRenderer().getTileCounts().x(), m_volumeSize[0]) || !isAligned(getRenderer().getTileCounts().y(), m_volumeSize[1])
  32. || m_volumeSize[0] == 0 || m_volumeSize[1] == 0 || m_volumeSize[2] == 0)
  33. {
  34. ANKI_R_LOGE("Wrong input");
  35. return Error::kUserData;
  36. }
  37. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/BlueNoise_Rgba8_64x64.png", m_noiseImage));
  38. // Shaders
  39. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/VolumetricLightingAccumulation.ankiprogbin", m_prog));
  40. ShaderProgramResourceVariantInitInfo variantInitInfo(m_prog);
  41. variantInitInfo.addMutation("ENABLE_SHADOWS", 1);
  42. const ShaderProgramResourceVariant* variant;
  43. m_prog->getOrCreateVariant(variantInitInfo, variant);
  44. m_grProg.reset(&variant->getProgram());
  45. m_workgroupSize = variant->getWorkgroupSizes();
  46. // Create RTs
  47. TextureInitInfo texinit = getRenderer().create2DRenderTargetInitInfo(m_volumeSize[0], m_volumeSize[1], Format::kR16G16B16A16_Sfloat,
  48. TextureUsageBit::kUavComputeRead | TextureUsageBit::kUavComputeWrite
  49. | TextureUsageBit::kSampledFragment | TextureUsageBit::kSampledCompute,
  50. "VolLight");
  51. texinit.m_depth = m_volumeSize[2];
  52. texinit.m_type = TextureType::k3D;
  53. m_rtTextures[0] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSampledFragment);
  54. m_rtTextures[1] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSampledFragment);
  55. return Error::kNone;
  56. }
  57. void VolumetricLightingAccumulation::populateRenderGraph(RenderingContext& ctx)
  58. {
  59. ANKI_TRACE_SCOPED_EVENT(VolumetricLightingAccumulation);
  60. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  61. const U readRtIdx = getRenderer().getFrameCount() & 1;
  62. m_runCtx.m_rts[0] = rgraph.importRenderTarget(m_rtTextures[readRtIdx].get(), TextureUsageBit::kSampledFragment);
  63. m_runCtx.m_rts[1] = rgraph.importRenderTarget(m_rtTextures[!readRtIdx].get(), TextureUsageBit::kNone);
  64. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("Vol light");
  65. pass.newTextureDependency(m_runCtx.m_rts[0], TextureUsageBit::kSampledCompute);
  66. pass.newTextureDependency(m_runCtx.m_rts[1], TextureUsageBit::kUavComputeWrite);
  67. pass.newTextureDependency(getRenderer().getShadowMapping().getShadowmapRt(), TextureUsageBit::kSampledCompute);
  68. pass.newBufferDependency(getRenderer().getClusterBinning().getClustersBufferHandle(), BufferUsageBit::kUavComputeRead);
  69. pass.newBufferDependency(getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kLight),
  70. BufferUsageBit::kUavComputeRead);
  71. pass.newBufferDependency(
  72. getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kGlobalIlluminationProbe),
  73. BufferUsageBit::kUavComputeRead);
  74. pass.newBufferDependency(getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kFogDensityVolume),
  75. BufferUsageBit::kUavComputeRead);
  76. if(getRenderer().getIndirectDiffuseProbes().hasCurrentlyRefreshedVolumeRt())
  77. {
  78. pass.newTextureDependency(getRenderer().getIndirectDiffuseProbes().getCurrentlyRefreshedVolumeRt(), TextureUsageBit::kSampledCompute);
  79. }
  80. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  81. ANKI_TRACE_SCOPED_EVENT(VolumetricLightingAccumulation);
  82. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  83. cmdb.bindShaderProgram(m_grProg.get());
  84. // Bind all
  85. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_trilinearRepeat.get());
  86. cmdb.bindSampler(0, 1, getRenderer().getSamplers().m_trilinearClamp.get());
  87. cmdb.bindSampler(0, 2, getRenderer().getSamplers().m_trilinearClampShadow.get());
  88. rgraphCtx.bindUavTexture(0, 3, m_runCtx.m_rts[1], TextureSubresourceInfo());
  89. cmdb.bindTexture(0, 4, &m_noiseImage->getTextureView());
  90. rgraphCtx.bindColorTexture(0, 5, m_runCtx.m_rts[0]);
  91. cmdb.bindConstantBuffer(0, 6, getRenderer().getClusterBinning().getClusteredShadingConstants());
  92. cmdb.bindUavBuffer(0, 7, getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kLight));
  93. rgraphCtx.bindColorTexture(0, 8, getRenderer().getShadowMapping().getShadowmapRt());
  94. cmdb.bindUavBuffer(0, 9, getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kGlobalIlluminationProbe));
  95. cmdb.bindUavBuffer(0, 10, getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kFogDensityVolume));
  96. cmdb.bindUavBuffer(0, 11, getRenderer().getClusterBinning().getClustersBuffer());
  97. cmdb.bindAllBindless(1);
  98. const SkyboxComponent* sky = SceneGraph::getSingleton().getSkybox();
  99. VolumetricLightingConstants unis;
  100. if(!sky)
  101. {
  102. unis.m_minHeight = 0.0f;
  103. unis.m_oneOverMaxMinusMinHeight = 0.0f;
  104. unis.m_densityAtMinHeight = 0.0f;
  105. unis.m_densityAtMaxHeight = 0.0f;
  106. }
  107. else if(sky->getHeightOfMaxFogDensity() > sky->getHeightOfMaxFogDensity())
  108. {
  109. unis.m_minHeight = sky->getHeightOfMinFogDensity();
  110. unis.m_oneOverMaxMinusMinHeight = 1.0f / (sky->getHeightOfMaxFogDensity() - unis.m_minHeight + kEpsilonf);
  111. unis.m_densityAtMinHeight = sky->getMinFogDensity();
  112. unis.m_densityAtMaxHeight = sky->getMaxFogDensity();
  113. }
  114. else
  115. {
  116. unis.m_minHeight = sky->getHeightOfMaxFogDensity();
  117. unis.m_oneOverMaxMinusMinHeight = 1.0f / (sky->getHeightOfMinFogDensity() - unis.m_minHeight + kEpsilonf);
  118. unis.m_densityAtMinHeight = sky->getMaxFogDensity();
  119. unis.m_densityAtMaxHeight = sky->getMinFogDensity();
  120. }
  121. unis.m_volumeSize = UVec3(m_volumeSize);
  122. unis.m_maxZSplitsToProcessf = F32(m_finalZSplit + 1);
  123. cmdb.setPushConstants(&unis, sizeof(unis));
  124. dispatchPPCompute(cmdb, m_workgroupSize[0], m_workgroupSize[1], m_workgroupSize[2], m_volumeSize[0], m_volumeSize[1], m_volumeSize[2]);
  125. });
  126. }
  127. } // end namespace anki