ParticleEmitterComponent.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Scene/Components/ParticleEmitterComponent.h>
  6. #include <AnKi/Scene/SceneGraph.h>
  7. #include <AnKi/Scene/SceneNode.h>
  8. #include <AnKi/Scene/Components/MoveComponent.h>
  9. #include <AnKi/Resource/ParticleEmitterResource.h>
  10. #include <AnKi/Resource/ResourceManager.h>
  11. #include <AnKi/Physics/PhysicsBody.h>
  12. #include <AnKi/Physics/PhysicsCollisionShape.h>
  13. #include <AnKi/Physics/PhysicsWorld.h>
  14. #include <AnKi/Math.h>
  15. #include <AnKi/Renderer/RenderQueue.h>
  16. namespace anki {
  17. static Vec3 getRandom(const Vec3& min, const Vec3& max)
  18. {
  19. Vec3 out;
  20. out.x() = mix(min.x(), max.x(), getRandomRange(0.0f, 1.0f));
  21. out.y() = mix(min.y(), max.y(), getRandomRange(0.0f, 1.0f));
  22. out.z() = mix(min.z(), max.z(), getRandomRange(0.0f, 1.0f));
  23. return out;
  24. }
  25. /// Particle base
  26. class ParticleEmitterComponent::ParticleBase
  27. {
  28. public:
  29. Second m_timeOfBirth; ///< Keep the time of birth for nice effects
  30. Second m_timeOfDeath = -1.0; ///< Time of death. If < 0.0 then dead
  31. F32 m_initialSize;
  32. F32 m_finalSize;
  33. F32 m_crntSize;
  34. F32 m_initialAlpha;
  35. F32 m_finalAlpha;
  36. F32 m_crntAlpha;
  37. Vec3 m_crntPosition;
  38. Bool isDead() const
  39. {
  40. return m_timeOfDeath < 0.0;
  41. }
  42. /// Kill the particle
  43. void killCommon()
  44. {
  45. ANKI_ASSERT(m_timeOfDeath > 0.0);
  46. m_timeOfDeath = -1.0;
  47. }
  48. /// Revive the particle
  49. void reviveCommon(const ParticleEmitterProperties& props, Second crntTime)
  50. {
  51. ANKI_ASSERT(isDead());
  52. // life
  53. m_timeOfDeath = crntTime + getRandomRange(props.m_particle.m_minLife, props.m_particle.m_maxLife);
  54. m_timeOfBirth = crntTime;
  55. // Size
  56. m_initialSize = getRandomRange(props.m_particle.m_minInitialSize, props.m_particle.m_maxInitialSize);
  57. m_finalSize = getRandomRange(props.m_particle.m_minFinalSize, props.m_particle.m_maxFinalSize);
  58. // Alpha
  59. m_initialAlpha = getRandomRange(props.m_particle.m_minInitialAlpha, props.m_particle.m_maxInitialAlpha);
  60. m_finalAlpha = getRandomRange(props.m_particle.m_minFinalAlpha, props.m_particle.m_maxFinalAlpha);
  61. }
  62. /// Common sumulation code
  63. void simulateCommon(Second crntTime)
  64. {
  65. const F32 lifeFactor = F32((crntTime - m_timeOfBirth) / (m_timeOfDeath - m_timeOfBirth));
  66. m_crntSize = mix(m_initialSize, m_finalSize, lifeFactor);
  67. m_crntAlpha = mix(m_initialAlpha, m_finalAlpha, lifeFactor);
  68. }
  69. };
  70. /// Simple particle for simple simulation
  71. class ParticleEmitterComponent::SimpleParticle : public ParticleEmitterComponent::ParticleBase
  72. {
  73. public:
  74. Vec3 m_velocity = Vec3(0.0f);
  75. Vec3 m_acceleration = Vec3(0.0f);
  76. void kill()
  77. {
  78. killCommon();
  79. }
  80. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  81. {
  82. reviveCommon(props, crntTime);
  83. m_velocity = Vec3(0.0f);
  84. m_acceleration = getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity);
  85. // Set the initial position
  86. m_crntPosition = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  87. m_crntPosition += trf.getOrigin().xyz();
  88. }
  89. void simulate(Second prevUpdateTime, Second crntTime)
  90. {
  91. simulateCommon(crntTime);
  92. const F32 dt = F32(crntTime - prevUpdateTime);
  93. const Vec3 xp = m_crntPosition;
  94. const Vec3 xc = m_acceleration * (dt * dt) + m_velocity * dt + xp;
  95. m_crntPosition = xc;
  96. m_velocity += m_acceleration * dt;
  97. }
  98. };
  99. /// Particle for bullet simulations
  100. class ParticleEmitterComponent::PhysicsParticle : public ParticleEmitterComponent::ParticleBase
  101. {
  102. public:
  103. PhysicsBodyPtr m_body;
  104. PhysicsParticle(const PhysicsBodyInitInfo& init, ParticleEmitterComponent* component)
  105. {
  106. m_body = PhysicsWorld::getSingleton().newInstance<PhysicsBody>(init);
  107. m_body->setUserData(component);
  108. m_body->activate(false);
  109. m_body->setMaterialGroup(PhysicsMaterialBit::kParticle);
  110. m_body->setMaterialMask(PhysicsMaterialBit::kStaticGeometry);
  111. m_body->setAngularFactor(Vec3(0.0f));
  112. }
  113. void kill()
  114. {
  115. killCommon();
  116. m_body->activate(false);
  117. }
  118. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  119. {
  120. reviveCommon(props, crntTime);
  121. // pre calculate
  122. const Bool forceFlag = props.forceEnabled();
  123. const Bool worldGravFlag = props.wordGravityEnabled();
  124. // Activate it
  125. m_body->activate(true);
  126. m_body->setLinearVelocity(Vec3(0.0f));
  127. m_body->setAngularVelocity(Vec3(0.0f));
  128. m_body->clearForces();
  129. // force
  130. if(forceFlag)
  131. {
  132. Vec3 forceDir = getRandom(props.m_particle.m_minForceDirection, props.m_particle.m_maxForceDirection);
  133. forceDir.normalize();
  134. // The forceDir depends on the particle emitter rotation
  135. forceDir = trf.getRotation().getRotationPart() * forceDir;
  136. const F32 forceMag =
  137. getRandomRange(props.m_particle.m_minForceMagnitude, props.m_particle.m_maxForceMagnitude);
  138. m_body->applyForce(forceDir * forceMag, Vec3(0.0f));
  139. }
  140. // gravity
  141. if(!worldGravFlag)
  142. {
  143. m_body->setGravity(getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity));
  144. }
  145. // Starting pos. In local space
  146. Vec3 pos = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  147. pos = trf.transform(pos);
  148. m_body->setTransform(Transform(pos.xyz0(), trf.getRotation(), 1.0f));
  149. m_crntPosition = pos;
  150. }
  151. void simulate([[maybe_unused]] Second prevUpdateTime, Second crntTime)
  152. {
  153. simulateCommon(crntTime);
  154. m_crntPosition = m_body->getTransform().getOrigin().xyz();
  155. }
  156. };
  157. ParticleEmitterComponent::ParticleEmitterComponent(SceneNode* node)
  158. : SceneComponent(node, getStaticClassId())
  159. , m_spatial(this)
  160. {
  161. }
  162. ParticleEmitterComponent::~ParticleEmitterComponent()
  163. {
  164. m_spatial.removeFromOctree(SceneGraph::getSingleton().getOctree());
  165. }
  166. void ParticleEmitterComponent::loadParticleEmitterResource(CString filename)
  167. {
  168. // Load
  169. ParticleEmitterResourcePtr rsrc;
  170. const Error err = ResourceManager::getSingleton().loadResource(filename, rsrc);
  171. if(err)
  172. {
  173. ANKI_SCENE_LOGE("Failed to load particle emitter");
  174. return;
  175. }
  176. m_particleEmitterResource = std::move(rsrc);
  177. m_props = m_particleEmitterResource->getProperties();
  178. m_resourceUpdated = true;
  179. // Cleanup
  180. m_simpleParticles.destroy();
  181. m_physicsParticles.destroy();
  182. GpuSceneBuffer::getSingleton().deferredFree(m_gpuScenePositions);
  183. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneScales);
  184. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneAlphas);
  185. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneUniforms);
  186. AllGpuSceneContiguousArrays::getSingleton().deferredFree(m_gpuSceneIndexParticleEmitter);
  187. AllGpuSceneContiguousArrays::getSingleton().deferredFree(m_gpuSceneIndexRenderable);
  188. for(GpuSceneContiguousArrayIndex& idx : m_gpuSceneIndexAabbs)
  189. {
  190. AllGpuSceneContiguousArrays::getSingleton().deferredFree(idx);
  191. }
  192. for(RenderStateBucketIndex& idx : m_renderStateBuckets)
  193. {
  194. RenderStateBucketContainer::getSingleton().removeUser(idx);
  195. }
  196. // Init particles
  197. m_simulationType = (m_props.m_usePhysicsEngine) ? SimulationType::kPhysicsEngine : SimulationType::kSimple;
  198. if(m_simulationType == SimulationType::kPhysicsEngine)
  199. {
  200. PhysicsCollisionShapePtr collisionShape =
  201. PhysicsWorld::getSingleton().newInstance<PhysicsSphere>(m_props.m_particle.m_minInitialSize / 2.0f);
  202. PhysicsBodyInitInfo binit;
  203. binit.m_shape = std::move(collisionShape);
  204. m_physicsParticles.resizeStorage(m_props.m_maxNumOfParticles);
  205. for(U32 i = 0; i < m_props.m_maxNumOfParticles; i++)
  206. {
  207. binit.m_mass = getRandomRange(m_props.m_particle.m_minMass, m_props.m_particle.m_maxMass);
  208. m_physicsParticles.emplaceBack(binit, this);
  209. }
  210. }
  211. else
  212. {
  213. m_simpleParticles.resize(m_props.m_maxNumOfParticles);
  214. }
  215. // GPU scene allocations
  216. GpuSceneBuffer::getSingleton().allocate(sizeof(Vec3) * m_props.m_maxNumOfParticles, alignof(F32),
  217. m_gpuScenePositions);
  218. GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32), m_gpuSceneAlphas);
  219. GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32), m_gpuSceneScales);
  220. GpuSceneBuffer::getSingleton().allocate(
  221. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(), alignof(U32),
  222. m_gpuSceneUniforms);
  223. m_gpuSceneIndexRenderable =
  224. AllGpuSceneContiguousArrays::getSingleton().allocate(GpuSceneContiguousArrayType::kRenderables);
  225. m_gpuSceneIndexParticleEmitter =
  226. AllGpuSceneContiguousArrays::getSingleton().allocate(GpuSceneContiguousArrayType::kParticleEmitters);
  227. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  228. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  229. {
  230. GpuSceneContiguousArrayType allocType = GpuSceneContiguousArrayType::kCount;
  231. switch(t)
  232. {
  233. case RenderingTechnique::kGBuffer:
  234. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesGBuffer;
  235. break;
  236. case RenderingTechnique::kForward:
  237. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesForward;
  238. break;
  239. case RenderingTechnique::kDepth:
  240. allocType = GpuSceneContiguousArrayType::kRenderableBoundingVolumesDepth;
  241. break;
  242. default:
  243. ANKI_ASSERT(0);
  244. }
  245. m_gpuSceneIndexAabbs[t] = AllGpuSceneContiguousArrays::getSingleton().allocate(allocType);
  246. }
  247. // Allocate buckets
  248. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  249. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  250. {
  251. RenderingKey key;
  252. key.setRenderingTechnique(t);
  253. ShaderProgramPtr prog;
  254. m_particleEmitterResource->getRenderingInfo(key, prog);
  255. RenderStateInfo state;
  256. state.m_program = prog;
  257. state.m_primitiveTopology = PrimitiveTopology::kTriangles;
  258. state.m_indexedDrawcall = false;
  259. m_renderStateBuckets[t] = RenderStateBucketContainer::getSingleton().addUser(state, t);
  260. }
  261. }
  262. Error ParticleEmitterComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
  263. {
  264. if(!m_particleEmitterResource.isCreated()) [[unlikely]]
  265. {
  266. updated = false;
  267. return Error::kNone;
  268. }
  269. updated = true;
  270. Vec3* positions;
  271. F32* scales;
  272. F32* alphas;
  273. Aabb aabbWorld;
  274. if(m_simulationType == SimulationType::kSimple)
  275. {
  276. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(),
  277. WeakArray<SimpleParticle>(m_simpleParticles), positions, scales, alphas, aabbWorld);
  278. }
  279. else
  280. {
  281. ANKI_ASSERT(m_simulationType == SimulationType::kPhysicsEngine);
  282. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(),
  283. WeakArray<PhysicsParticle>(m_physicsParticles), positions, scales, alphas, aabbWorld);
  284. }
  285. m_spatial.setBoundingShape(aabbWorld);
  286. m_spatial.update(SceneGraph::getSingleton().getOctree());
  287. // Upload particles to the GPU scene
  288. GpuSceneMicroPatcher& patcher = GpuSceneMicroPatcher::getSingleton();
  289. if(m_aliveParticleCount > 0)
  290. {
  291. patcher.newCopy(*info.m_framePool, m_gpuScenePositions, sizeof(Vec3) * m_aliveParticleCount, positions);
  292. patcher.newCopy(*info.m_framePool, m_gpuSceneScales, sizeof(F32) * m_aliveParticleCount, scales);
  293. patcher.newCopy(*info.m_framePool, m_gpuSceneAlphas, sizeof(F32) * m_aliveParticleCount, alphas);
  294. }
  295. if(m_resourceUpdated)
  296. {
  297. // Upload GpuSceneParticleEmitter
  298. GpuSceneParticleEmitter particles = {};
  299. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  300. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  301. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  302. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene(), particles);
  303. // Upload uniforms
  304. patcher.newCopy(*info.m_framePool, m_gpuSceneUniforms,
  305. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getSizeInBytes(),
  306. m_particleEmitterResource->getMaterial()->getPrefilledLocalUniforms().getBegin());
  307. // Upload the GpuSceneRenderable
  308. GpuSceneRenderable renderable;
  309. renderable.m_boneTransformsOffset = 0;
  310. renderable.m_geometryOffset = m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene();
  311. renderable.m_uniformsOffset = m_gpuSceneUniforms.getOffset();
  312. renderable.m_worldTransformsOffset = 0;
  313. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexRenderable.getOffsetInGpuScene(), renderable);
  314. }
  315. // Upload the GpuSceneRenderableAabb always
  316. for(RenderingTechnique t : EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(
  317. m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  318. {
  319. GpuSceneRenderableAabb aabb;
  320. aabb.m_aabbMin = m_spatial.getAabbWorldSpace().getMin().xyz();
  321. aabb.m_aabbMax = m_spatial.getAabbWorldSpace().getMax().xyz();
  322. aabb.m_renderableIndex = m_gpuSceneIndexRenderable.get();
  323. aabb.m_renderStateBucket = m_renderStateBuckets[t].get();
  324. patcher.newCopy(*info.m_framePool, m_gpuSceneIndexAabbs[t].getOffsetInGpuScene(), aabb);
  325. }
  326. m_resourceUpdated = false;
  327. return Error::kNone;
  328. }
  329. template<typename TParticle>
  330. void ParticleEmitterComponent::simulate(Second prevUpdateTime, Second crntTime, const Transform& worldTransform,
  331. WeakArray<TParticle> particles, Vec3*& positions, F32*& scales, F32*& alphas,
  332. Aabb& aabbWorld)
  333. {
  334. // - Deactivate the dead particles
  335. // - Calc the AABB
  336. // - Calc the instancing stuff
  337. Vec3 aabbMin(kMaxF32);
  338. Vec3 aabbMax(kMinF32);
  339. m_aliveParticleCount = 0;
  340. positions = static_cast<Vec3*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  341. m_props.m_maxNumOfParticles * sizeof(Vec3), alignof(Vec3)));
  342. scales = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  343. m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  344. alphas = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  345. m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  346. F32 maxParticleSize = -1.0f;
  347. for(TParticle& particle : particles)
  348. {
  349. if(particle.isDead())
  350. {
  351. // if its already dead so dont deactivate it again
  352. continue;
  353. }
  354. if(particle.m_timeOfDeath < crntTime)
  355. {
  356. // Just died
  357. particle.kill();
  358. }
  359. else
  360. {
  361. // It's alive
  362. // This will calculate a new world transformation
  363. particle.simulate(prevUpdateTime, crntTime);
  364. const Vec3& origin = particle.m_crntPosition;
  365. aabbMin = aabbMin.min(origin);
  366. aabbMax = aabbMax.max(origin);
  367. positions[m_aliveParticleCount] = origin;
  368. scales[m_aliveParticleCount] = particle.m_crntSize;
  369. maxParticleSize = max(maxParticleSize, particle.m_crntSize);
  370. alphas[m_aliveParticleCount] = clamp(particle.m_crntAlpha, 0.0f, 1.0f);
  371. ++m_aliveParticleCount;
  372. }
  373. }
  374. // AABB
  375. if(m_aliveParticleCount != 0)
  376. {
  377. ANKI_ASSERT(maxParticleSize > 0.0f);
  378. const Vec3 min = aabbMin - maxParticleSize;
  379. const Vec3 max = aabbMax + maxParticleSize;
  380. aabbWorld = Aabb(min, max);
  381. }
  382. else
  383. {
  384. aabbWorld = Aabb(Vec3(0.0f), Vec3(0.001f));
  385. positions = nullptr;
  386. alphas = scales = nullptr;
  387. }
  388. //
  389. // Emit new particles
  390. //
  391. if(m_timeLeftForNextEmission <= 0.0)
  392. {
  393. U particleCount = 0; // How many particles I am allowed to emmit
  394. for(TParticle& particle : particles)
  395. {
  396. if(!particle.isDead())
  397. {
  398. // its alive so skip it
  399. continue;
  400. }
  401. particle.revive(m_props, worldTransform, crntTime);
  402. // do the rest
  403. ++particleCount;
  404. if(particleCount >= m_props.m_particlesPerEmission)
  405. {
  406. break;
  407. }
  408. } // end for all particles
  409. m_timeLeftForNextEmission = m_props.m_emissionPeriod;
  410. } // end if can emit
  411. else
  412. {
  413. m_timeLeftForNextEmission -= crntTime - prevUpdateTime;
  414. }
  415. }
  416. void ParticleEmitterComponent::setupRenderableQueueElements(RenderingTechnique technique,
  417. WeakArray<RenderableQueueElement>& outRenderables) const
  418. {
  419. if(!(m_particleEmitterResource->getMaterial()->getRenderingTechniques() & RenderingTechniqueBit(1 << technique))
  420. || m_aliveParticleCount == 0)
  421. {
  422. outRenderables.setArray(nullptr, 0);
  423. return;
  424. }
  425. RenderingKey key;
  426. key.setRenderingTechnique(technique);
  427. ShaderProgramPtr prog;
  428. m_particleEmitterResource->getRenderingInfo(key, prog);
  429. RenderableQueueElement* el =
  430. static_cast<RenderableQueueElement*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(
  431. sizeof(RenderableQueueElement), alignof(RenderableQueueElement)));
  432. el->m_mergeKey = 0; // Not mergable
  433. el->m_program = prog.get();
  434. el->m_worldTransformsOffset = 0;
  435. el->m_uniformsOffset = m_gpuSceneUniforms.getOffset();
  436. el->m_geometryOffset = m_gpuSceneIndexParticleEmitter.getOffsetInGpuScene();
  437. el->m_boneTransformsOffset = 0;
  438. el->m_vertexCount = 6 * m_aliveParticleCount;
  439. el->m_firstVertex = 0;
  440. el->m_indexed = false;
  441. el->m_primitiveTopology = PrimitiveTopology::kTriangles;
  442. el->m_aabbMin = m_spatial.getAabbWorldSpace().getMin().xyz();
  443. el->m_aabbMax = m_spatial.getAabbWorldSpace().getMax().xyz();
  444. outRenderables.setArray(el, 1);
  445. }
  446. } // end namespace anki