GBuffer.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/GBuffer.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/VrsSriGeneration.h>
  8. #include <AnKi/Renderer/Dbg.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  11. #include <AnKi/Util/Logger.h>
  12. #include <AnKi/Util/Tracer.h>
  13. #include <AnKi/Util/CVarSet.h>
  14. #include <AnKi/Core/App.h>
  15. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  16. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  17. namespace anki {
  18. GBuffer::~GBuffer()
  19. {
  20. }
  21. Error GBuffer::init()
  22. {
  23. // RTs
  24. static constexpr Array<const char*, 2> depthRtNames = {{"GBuffer depth #0", "GBuffer depth #1"}};
  25. for(U32 i = 0; i < 2; ++i)
  26. {
  27. const TextureUsageBit usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllRtvDsv;
  28. TextureInitInfo texinit =
  29. getRenderer().create2DRenderTargetInitInfo(getRenderer().getInternalResolution().x(), getRenderer().getInternalResolution().y(),
  30. getRenderer().getDepthNoStencilFormat(), usage, depthRtNames[i]);
  31. m_depthRts[i] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvPixel);
  32. }
  33. static constexpr Array<const char*, kGBufferColorRenderTargetCount> rtNames = {{"GBuffer rt0", "GBuffer rt1", "GBuffer rt2", "GBuffer rt3"}};
  34. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  35. {
  36. m_colorRtDescrs[i] = getRenderer().create2DRenderTargetDescription(
  37. getRenderer().getInternalResolution().x(), getRenderer().getInternalResolution().y(), kGBufferColorRenderTargetFormats[i], rtNames[i]);
  38. m_colorRtDescrs[i].bake();
  39. }
  40. {
  41. const TextureUsageBit usage = TextureUsageBit::kSrvCompute | TextureUsageBit::kUavCompute | TextureUsageBit::kSrvGeometry;
  42. TextureInitInfo texinit = getRenderer().create2DRenderTargetInitInfo(previousPowerOfTwo(getRenderer().getInternalResolution().x()),
  43. previousPowerOfTwo(getRenderer().getInternalResolution().y()),
  44. Format::kR32_Sfloat, usage, "GBuffer HZB");
  45. texinit.m_mipmapCount = computeMaxMipmapCount2d(texinit.m_width, texinit.m_height);
  46. ClearValue clear;
  47. clear.m_colorf = {1.0f, 1.0f, 1.0f, 1.0f};
  48. m_hzbRt = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvCompute, clear);
  49. }
  50. ANKI_CHECK(loadShaderProgram("ShaderBinaries/VisualizeGBufferNormal.ankiprogbin", m_visNormalProg, m_visNormalGrProg));
  51. ANKI_CHECK(
  52. loadShaderProgram("ShaderBinaries/GBufferVisualizeProbe.ankiprogbin", {{"PROBE_TYPE", 0}}, m_visualizeProbeProg, m_visualizeGiProbeGrProg));
  53. ANKI_CHECK(
  54. loadShaderProgram("ShaderBinaries/GBufferVisualizeProbe.ankiprogbin", {{"PROBE_TYPE", 1}}, m_visualizeProbeProg, m_visualizeReflProbeGrProg));
  55. return Error::kNone;
  56. }
  57. void GBuffer::importRenderTargets(RenderingContext& ctx)
  58. {
  59. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  60. if(m_runCtx.m_crntFrameDepthRt.isValid()) [[likely]]
  61. {
  62. // Already imported once
  63. m_runCtx.m_crntFrameDepthRt = rgraph.importRenderTarget(m_depthRts[getRenderer().getFrameCount() & 1].get(), TextureUsageBit::kNone);
  64. m_runCtx.m_prevFrameDepthRt = rgraph.importRenderTarget(m_depthRts[(getRenderer().getFrameCount() + 1) & 1].get());
  65. m_runCtx.m_hzbRt = rgraph.importRenderTarget(m_hzbRt.get());
  66. }
  67. else
  68. {
  69. m_runCtx.m_crntFrameDepthRt = rgraph.importRenderTarget(m_depthRts[getRenderer().getFrameCount() & 1].get(), TextureUsageBit::kNone);
  70. m_runCtx.m_prevFrameDepthRt =
  71. rgraph.importRenderTarget(m_depthRts[(getRenderer().getFrameCount() + 1) & 1].get(), TextureUsageBit::kSrvPixel);
  72. m_runCtx.m_hzbRt = rgraph.importRenderTarget(m_hzbRt.get(), TextureUsageBit::kSrvCompute);
  73. }
  74. }
  75. void GBuffer::populateRenderGraph(RenderingContext& ctx)
  76. {
  77. ANKI_TRACE_SCOPED_EVENT(GBuffer);
  78. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  79. // Visibility
  80. GpuVisibilityOutput visOut;
  81. FrustumGpuVisibilityInput visIn;
  82. {
  83. const CommonMatrices& matrices = ctx.m_matrices;
  84. const Array<F32, kMaxLodCount - 1> lodDistances = {g_cvarRenderLod0MaxDistance, g_cvarRenderLod1MaxDistance};
  85. visIn.m_passesName = "GBuffer";
  86. visIn.m_technique = RenderingTechnique::kGBuffer;
  87. visIn.m_viewProjectionMatrix = matrices.m_viewProjection;
  88. visIn.m_lodReferencePoint = matrices.m_cameraTransform.getTranslationPart().xyz();
  89. visIn.m_lodDistances = lodDistances;
  90. visIn.m_rgraph = &rgraph;
  91. visIn.m_hzbRt = &m_runCtx.m_hzbRt;
  92. visIn.m_gatherAabbIndices = g_cvarRenderDbgScene;
  93. visIn.m_viewportSize = getRenderer().getInternalResolution();
  94. visIn.m_twoPhaseOcclusionCulling = getRenderer().getMeshletRenderingType() != MeshletRenderingType::kNone;
  95. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  96. m_runCtx.m_visibleAaabbIndicesBuffer = visOut.m_visibleAaabbIndicesBuffer;
  97. m_runCtx.m_visibleAaabbIndicesBufferDepedency = visOut.m_dependency;
  98. }
  99. // Create RTs
  100. Array<RenderTargetHandle, kMaxColorRenderTargets> rts;
  101. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  102. {
  103. m_runCtx.m_colorRts[i] = rgraph.newRenderTarget(m_colorRtDescrs[i]);
  104. rts[i] = m_runCtx.m_colorRts[i];
  105. }
  106. // Create the GBuffer pass
  107. auto genGBuffer = [&](Bool firstPass) {
  108. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass((firstPass) ? "GBuffer" : "GBuffer 2nd phase");
  109. const TextureUsageBit rtUsage = (firstPass) ? TextureUsageBit::kRtvDsvWrite : (TextureUsageBit::kRtvDsvRead | TextureUsageBit::kRtvDsvWrite);
  110. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  111. {
  112. pass.newTextureDependency(m_runCtx.m_colorRts[i], rtUsage);
  113. }
  114. pass.newTextureDependency(m_runCtx.m_crntFrameDepthRt, rtUsage);
  115. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(), BufferUsageBit::kSrvGeometry | BufferUsageBit::kSrvPixel);
  116. // Only add one depedency to the GPU visibility. No need to track all buffers
  117. if(visOut.containsDrawcalls())
  118. {
  119. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw | BufferUsageBit::kSrvGeometry);
  120. }
  121. else
  122. {
  123. // Weird, make a check
  124. ANKI_ASSERT(GpuSceneArrays::RenderableBoundingVolumeGBuffer::getSingleton().getElementCount() == 0);
  125. }
  126. const RenderTargetLoadOperation loadOp = (firstPass) ? RenderTargetLoadOperation::kClear : RenderTargetLoadOperation::kLoad;
  127. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRti;
  128. for(U32 i = 0; i < 4; ++i)
  129. {
  130. colorRti[i].m_handle = rts[i];
  131. colorRti[i].m_loadOperation = loadOp;
  132. }
  133. colorRti[3].m_clearValue.m_colorf = {1.0f, 1.0f, 1.0f, 1.0f};
  134. GraphicsRenderPassTargetDesc depthRti(m_runCtx.m_crntFrameDepthRt);
  135. depthRti.m_loadOperation = loadOp;
  136. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  137. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  138. pass.setRenderpassInfo(WeakArray{colorRti}, &depthRti);
  139. pass.setWork([&ctx, visOut, this](RenderPassWorkContext& rgraphCtx) {
  140. ANKI_TRACE_SCOPED_EVENT(GBuffer);
  141. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  142. // Set some state, leave the rest to default
  143. cmdb.setViewport(0, 0, getRenderer().getInternalResolution().x(), getRenderer().getInternalResolution().y());
  144. RenderableDrawerArguments args;
  145. args.m_viewMatrix = ctx.m_matrices.m_view;
  146. args.m_cameraTransform = ctx.m_matrices.m_cameraTransform;
  147. args.m_viewProjectionMatrix = ctx.m_matrices.m_viewProjectionJitter;
  148. args.m_previousViewProjectionMatrix = ctx.m_matrices.m_jitter * ctx.m_prevMatrices.m_viewProjection;
  149. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAnisoResolutionScalingBias.get();
  150. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  151. args.m_viewport = UVec4(0, 0, getRenderer().getInternalResolution());
  152. args.fill(visOut);
  153. cmdb.setDepthCompareOperation(CompareOperation::kLessEqual);
  154. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  155. {
  156. struct Consts
  157. {
  158. Mat4 m_viewProjMat;
  159. Mat4 m_invViewProjMat;
  160. Vec2 m_viewportSize;
  161. U32 m_probeIdx;
  162. F32 m_sphereRadius;
  163. Vec3 m_cameraPos;
  164. F32 m_pixelShift;
  165. };
  166. // Visualize GI probes
  167. if(g_cvarRenderVisualizeGiProbes && GpuSceneArrays::GlobalIlluminationProbe::getSingleton().getElementCount())
  168. {
  169. cmdb.bindShaderProgram(m_visualizeGiProbeGrProg.get());
  170. cmdb.bindSrv(0, 0, GpuSceneArrays::GlobalIlluminationProbe::getSingleton().getBufferView());
  171. for(const auto& probe : SceneGraph::getSingleton().getComponentArrays().getGlobalIlluminationProbes())
  172. {
  173. Consts* consts = allocateAndBindConstants<Consts>(cmdb, 0, 0);
  174. consts->m_viewProjMat = ctx.m_matrices.m_viewProjectionJitter;
  175. consts->m_invViewProjMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  176. consts->m_viewportSize = Vec2(getRenderer().getInternalResolution());
  177. consts->m_probeIdx = probe.getGpuSceneAllocation().getIndex();
  178. consts->m_sphereRadius = 0.5f;
  179. consts->m_cameraPos = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  180. consts->m_pixelShift = (getRenderer().getFrameCount() & 1) ? 1.0f : 0.0f;
  181. cmdb.draw(PrimitiveTopology::kTriangles, 6, probe.getCellCount());
  182. }
  183. }
  184. // Visualize refl probes
  185. if(g_cvarRenderVisualizeReflectionProbes && GpuSceneArrays::ReflectionProbe::getSingleton().getElementCount())
  186. {
  187. cmdb.bindShaderProgram(m_visualizeReflProbeGrProg.get());
  188. cmdb.bindSrv(0, 0, GpuSceneArrays::ReflectionProbe::getSingleton().getBufferView());
  189. for(const auto& probe : SceneGraph::getSingleton().getComponentArrays().getReflectionProbes())
  190. {
  191. Consts* consts = allocateAndBindConstants<Consts>(cmdb, 0, 0);
  192. consts->m_viewProjMat = ctx.m_matrices.m_viewProjectionJitter;
  193. consts->m_invViewProjMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  194. consts->m_viewportSize = Vec2(getRenderer().getInternalResolution());
  195. consts->m_probeIdx = probe.getGpuSceneAllocation().getIndex();
  196. consts->m_sphereRadius = 0.5f;
  197. consts->m_cameraPos = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  198. consts->m_pixelShift = (getRenderer().getFrameCount() & 1) ? 1.0f : 0.0f;
  199. cmdb.draw(PrimitiveTopology::kTriangles, 6);
  200. }
  201. }
  202. }
  203. });
  204. };
  205. genGBuffer(true);
  206. // HZB generation for the 3rd stage or next frame
  207. getRenderer().getHzbGenerator().populateRenderGraph(m_runCtx.m_crntFrameDepthRt, getRenderer().getInternalResolution(), m_runCtx.m_hzbRt,
  208. UVec2(m_hzbRt->getWidth(), m_hzbRt->getHeight()), rgraph);
  209. // 2nd phase
  210. if(visIn.m_twoPhaseOcclusionCulling)
  211. {
  212. // Visibility (again)
  213. getRenderer().getGpuVisibility().populateRenderGraphStage3(visIn, visOut);
  214. // GBuffer again
  215. genGBuffer(false);
  216. // HZB generation for the next frame
  217. getRenderer().getHzbGenerator().populateRenderGraph(m_runCtx.m_crntFrameDepthRt, getRenderer().getInternalResolution(), m_runCtx.m_hzbRt,
  218. UVec2(m_hzbRt->getWidth(), m_hzbRt->getHeight()), rgraph);
  219. }
  220. }
  221. void GBuffer::getDebugRenderTarget(CString rtName, Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles,
  222. ShaderProgramPtr& optionalShaderProgram) const
  223. {
  224. if(rtName == "GBufferAlbedo")
  225. {
  226. handles[0] = m_runCtx.m_colorRts[0];
  227. }
  228. else if(rtName == "GBufferNormals")
  229. {
  230. handles[0] = m_runCtx.m_colorRts[2];
  231. optionalShaderProgram = m_visNormalGrProg;
  232. }
  233. else if(rtName == "GBufferVelocity")
  234. {
  235. handles[0] = m_runCtx.m_colorRts[3];
  236. }
  237. else
  238. {
  239. ANKI_ASSERT(!"See file");
  240. }
  241. }
  242. } // end namespace anki