Renderer.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Util/Tracer.h>
  7. #include <AnKi/Util/CVarSet.h>
  8. #include <AnKi/Util/HighRezTimer.h>
  9. #include <AnKi/Collision/Aabb.h>
  10. #include <AnKi/Collision/Plane.h>
  11. #include <AnKi/Collision/Functions.h>
  12. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  13. #include <AnKi/GpuMemory/GpuSceneBuffer.h>
  14. #include <AnKi/Scene/Components/CameraComponent.h>
  15. #include <AnKi/Scene/Components/LightComponent.h>
  16. #include <AnKi/Scene/Components/SkyboxComponent.h>
  17. #include <AnKi/Core/StatsSet.h>
  18. #include <AnKi/Core/App.h>
  19. #include <AnKi/Renderer/ProbeReflections.h>
  20. #include <AnKi/Renderer/GBuffer.h>
  21. #include <AnKi/Renderer/GBufferPost.h>
  22. #include <AnKi/Renderer/LightShading.h>
  23. #include <AnKi/Renderer/ShadowMapping.h>
  24. #include <AnKi/Renderer/FinalComposite.h>
  25. #include <AnKi/Renderer/Bloom.h>
  26. #include <AnKi/Renderer/Tonemapping.h>
  27. #include <AnKi/Renderer/ForwardShading.h>
  28. #include <AnKi/Renderer/LensFlare.h>
  29. #include <AnKi/Renderer/Dbg.h>
  30. #include <AnKi/Renderer/VolumetricFog.h>
  31. #include <AnKi/Renderer/DepthDownscale.h>
  32. #include <AnKi/Renderer/TemporalAA.h>
  33. #include <AnKi/Renderer/UiStage.h>
  34. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  35. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  36. #include <AnKi/Renderer/ShadowmapsResolve.h>
  37. #include <AnKi/Renderer/RtShadows.h>
  38. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  39. #include <AnKi/Renderer/MotionVectors.h>
  40. #include <AnKi/Renderer/TemporalUpscaler.h>
  41. #include <AnKi/Renderer/VrsSriGeneration.h>
  42. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  43. #include <AnKi/Renderer/ClusterBinning.h>
  44. #include <AnKi/Renderer/Ssao.h>
  45. #include <AnKi/Renderer/Sky.h>
  46. #include <AnKi/Renderer/MotionBlur.h>
  47. #include <AnKi/Renderer/RtMaterialFetchDbg.h>
  48. #include <AnKi/Renderer/Reflections.h>
  49. #include <AnKi/Renderer/IndirectDiffuse.h>
  50. #include <AnKi/Renderer/IndirectDiffuseClipmaps.h>
  51. #include <AnKi/Renderer/HistoryLength.h>
  52. #include <AnKi/Renderer/Utils/Drawer.h>
  53. #include <AnKi/Renderer/Utils/GpuVisibility.h>
  54. #include <AnKi/Renderer/Utils/MipmapGenerator.h>
  55. #include <AnKi/Renderer/Utils/Readback.h>
  56. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  57. namespace anki {
  58. ANKI_SVAR(PrimitivesDrawn, StatCategory::kRenderer, "Primitives drawn", StatFlag::kMainThreadUpdates | StatFlag::kZeroEveryFrame)
  59. ANKI_SVAR(RendererCpuTime, StatCategory::kTime, "Renderer", StatFlag::kMilisecond | StatFlag::kShowAverage | StatFlag::kMainThreadUpdates)
  60. /// Generate a Halton jitter in [-0.5, 0.5]
  61. static Vec2 generateJitter(U32 frame)
  62. {
  63. // Halton jitter
  64. Vec2 result(0.0f);
  65. constexpr U32 baseX = 2;
  66. U32 index = frame + 1;
  67. F32 invBase = 1.0f / baseX;
  68. F32 fraction = invBase;
  69. while(index > 0)
  70. {
  71. result.x() += F32(index % baseX) * fraction;
  72. index /= baseX;
  73. fraction *= invBase;
  74. }
  75. constexpr U32 baseY = 3;
  76. index = frame + 1;
  77. invBase = 1.0f / baseY;
  78. fraction = invBase;
  79. while(index > 0)
  80. {
  81. result.y() += F32(index % baseY) * fraction;
  82. index /= baseY;
  83. fraction *= invBase;
  84. }
  85. result.x() -= 0.5f;
  86. result.y() -= 0.5f;
  87. return result;
  88. }
  89. Renderer::Renderer()
  90. {
  91. }
  92. Renderer::~Renderer()
  93. {
  94. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) deleteInstance(RendererMemoryPool::getSingleton(), m_##name2);
  95. #include <AnKi/Renderer/RendererObject.def.h>
  96. }
  97. Error Renderer::init(const RendererInitInfo& inf)
  98. {
  99. ANKI_TRACE_SCOPED_EVENT(RInit);
  100. const Error err = initInternal(inf);
  101. if(err)
  102. {
  103. ANKI_R_LOGE("Failed to initialize the renderer");
  104. }
  105. return err;
  106. }
  107. Error Renderer::initInternal(const RendererInitInfo& inf)
  108. {
  109. RendererMemoryPool::allocateSingleton(inf.m_allocCallback, inf.m_allocCallbackUserData);
  110. m_framePool.init(inf.m_allocCallback, inf.m_allocCallbackUserData, 10_MB, 1.0f);
  111. m_frameCount = 0;
  112. m_swapchainResolution = inf.m_swapchainSize;
  113. m_rgraph = GrManager::getSingleton().newRenderGraph();
  114. // Set from the config
  115. m_postProcessResolution = UVec2(Vec2(m_swapchainResolution) * g_cvarRenderRenderScaling);
  116. alignRoundDown(2, m_postProcessResolution.x());
  117. alignRoundDown(2, m_postProcessResolution.y());
  118. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_cvarRenderInternalRenderScaling);
  119. alignRoundDown(2, m_internalResolution.x());
  120. alignRoundDown(2, m_internalResolution.y());
  121. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  122. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  123. m_tileCounts.x() = (m_internalResolution.x() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  124. m_tileCounts.y() = (m_internalResolution.y() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  125. m_zSplitCount = g_cvarRenderZSplitCount;
  126. if(g_cvarCoreMeshletRendering && !GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  127. {
  128. m_meshletRenderingType = MeshletRenderingType::kSoftware;
  129. }
  130. else if(GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  131. {
  132. m_meshletRenderingType = MeshletRenderingType::kMeshShaders;
  133. }
  134. else
  135. {
  136. m_meshletRenderingType = MeshletRenderingType::kNone;
  137. }
  138. // A few sanity checks
  139. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  140. {
  141. ANKI_R_LOGE("Incorrect sizes");
  142. return Error::kUserData;
  143. }
  144. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  145. // Dummy resources
  146. {
  147. TextureInitInfo texinit("DummyTexture");
  148. texinit.m_width = texinit.m_height = 4;
  149. texinit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kRtvDsvWrite;
  150. texinit.m_format = Format::kR8G8B8A8_Unorm;
  151. m_dummyResources.m_texture2DSrv = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  152. texinit.m_depth = 4;
  153. texinit.m_type = TextureType::k3D;
  154. texinit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllUav;
  155. m_dummyResources.m_texture3DSrv = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  156. texinit.m_type = TextureType::k2D;
  157. texinit.m_usage = TextureUsageBit::kAllUav;
  158. texinit.m_depth = 1;
  159. m_dummyResources.m_texture2DUav = createAndClearRenderTarget(texinit, TextureUsageBit::kAllUav);
  160. texinit.m_depth = 4;
  161. texinit.m_type = TextureType::k3D;
  162. m_dummyResources.m_texture3DUav = createAndClearRenderTarget(texinit, TextureUsageBit::kAllUav);
  163. m_dummyResources.m_buffer = GrManager::getSingleton().newBuffer(
  164. BufferInitInfo(1024, BufferUsageBit::kAllConstant | BufferUsageBit::kAllUav, BufferMapAccessBit::kNone, "DummyBuffer"));
  165. }
  166. {
  167. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/FillBuffer.ankiprogbin", m_fillBufferProg));
  168. ShaderProgramResourceVariantInitInfo initInf(m_fillBufferProg);
  169. const ShaderProgramResourceVariant* variant;
  170. m_fillBufferProg->getOrCreateVariant(initInf, variant);
  171. m_fillBufferGrProg.reset(&variant->getProgram());
  172. }
  173. // Init the stages
  174. #define ANKI_RENDERER_OBJECT_DEF(type, name, initCondition) \
  175. if(initCondition) \
  176. { \
  177. m_##name = newInstance<type>(RendererMemoryPool::getSingleton()); \
  178. ANKI_R_LOGV("Initializing " ANKI_STRINGIZE(type)); \
  179. const Error err = m_##name->init(); \
  180. if(err) \
  181. { \
  182. ANKI_R_LOGE("Initialization failed: " ANKI_STRINGIZE(type)); \
  183. return err; \
  184. } \
  185. } \
  186. else \
  187. { \
  188. m_##name = nullptr; \
  189. }
  190. #include <AnKi/Renderer/RendererObject.def.h>
  191. // Init samplers
  192. {
  193. SamplerInitInfo sinit("NearestNearestClamp");
  194. sinit.m_addressing = SamplingAddressing::kClamp;
  195. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  196. sinit.m_minMagFilter = SamplingFilter::kNearest;
  197. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  198. sinit.setName("NearestNearestRepeat");
  199. sinit.m_addressing = SamplingAddressing::kRepeat;
  200. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  201. sinit.m_minMagFilter = SamplingFilter::kNearest;
  202. m_samplers.m_nearestNearestRepeat = GrManager::getSingleton().newSampler(sinit);
  203. sinit.setName("TrilinearClamp");
  204. sinit.m_addressing = SamplingAddressing::kClamp;
  205. sinit.m_minMagFilter = SamplingFilter::kLinear;
  206. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  207. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  208. sinit.setName("TrilinearRepeat");
  209. sinit.m_addressing = SamplingAddressing::kRepeat;
  210. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  211. if(g_cvarRenderTextureAnisotropy <= 1u)
  212. {
  213. m_samplers.m_trilinearRepeatAniso = m_samplers.m_trilinearRepeat;
  214. }
  215. else
  216. {
  217. sinit.setName("TrilinearRepeatAniso");
  218. sinit.m_anisotropyLevel = g_cvarRenderTextureAnisotropy;
  219. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  220. }
  221. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  222. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  223. if(getTemporalUpscaler().getEnabled())
  224. {
  225. // DLSS wants more bias
  226. scalingMipBias -= 1.0f;
  227. }
  228. sinit.m_lodBias = scalingMipBias;
  229. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  230. sinit = {};
  231. sinit.setName("TrilinearClampShadow");
  232. sinit.m_minMagFilter = SamplingFilter::kLinear;
  233. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  234. sinit.m_compareOperation = CompareOperation::kLessEqual;
  235. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  236. }
  237. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  238. {
  239. m_jitterOffsets[i] = generateJitter(i);
  240. }
  241. if(m_swapchainResolution != m_postProcessResolution)
  242. {
  243. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/Blit.ankiprogbin", m_blitProg));
  244. ShaderProgramResourceVariantInitInfo varInit(m_blitProg);
  245. const ShaderProgramResourceVariant* variant;
  246. varInit.requestTechniqueAndTypes(ShaderTypeBit::kVertex | ShaderTypeBit::kPixel);
  247. m_blitProg->getOrCreateVariant(varInit, variant);
  248. m_blitGrProg.reset(&variant->getProgram());
  249. ANKI_R_LOGI("There will be a blit pass to the swapchain because render scaling is not 1.0");
  250. }
  251. return Error::kNone;
  252. }
  253. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  254. {
  255. // Import RTs first
  256. m_bloom2->importRenderTargets(ctx);
  257. m_tonemapping->importRenderTargets(ctx);
  258. m_vrsSriGeneration->importRenderTargets(ctx);
  259. m_gbuffer->importRenderTargets(ctx);
  260. // Populate render graph. WARNING Watch the order
  261. gpuSceneCopy(ctx);
  262. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  263. if(m_accelerationStructureBuilder)
  264. {
  265. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  266. }
  267. m_gbuffer->populateRenderGraph(ctx);
  268. m_motionVectors->populateRenderGraph(ctx);
  269. m_historyLength->populateRenderGraph(ctx);
  270. m_depthDownscale->populateRenderGraph(ctx);
  271. m_shadowMapping->populateRenderGraph(ctx);
  272. m_clusterBinning2->populateRenderGraph(ctx);
  273. m_generatedSky->populateRenderGraph(ctx);
  274. if(m_indirectDiffuseProbes)
  275. {
  276. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  277. }
  278. if(m_indirectDiffuseClipmaps)
  279. {
  280. m_indirectDiffuseClipmaps->populateRenderGraph(ctx);
  281. }
  282. m_probeReflections->populateRenderGraph(ctx);
  283. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  284. m_gbufferPost->populateRenderGraph(ctx);
  285. if(m_rtShadows)
  286. {
  287. m_rtShadows->populateRenderGraph(ctx);
  288. }
  289. if(m_rtMaterialFetchDbg)
  290. {
  291. m_rtMaterialFetchDbg->populateRenderGraph(ctx);
  292. }
  293. m_indirectDiffuse->populateRenderGraph(ctx);
  294. m_reflections->populateRenderGraph(ctx);
  295. m_shadowmapsResolve->populateRenderGraph(ctx);
  296. m_volumetricFog->populateRenderGraph(ctx);
  297. m_lensFlare->populateRenderGraph(ctx);
  298. m_ssao->populateRenderGraph(ctx);
  299. m_forwardShading->populateRenderGraph(ctx); // This may feel out of place but it's only visibility. Keep it just before light shading
  300. m_lightShading->populateRenderGraph(ctx);
  301. if(getTemporalUpscaler().getEnabled())
  302. {
  303. m_temporalUpscaler->populateRenderGraph(ctx);
  304. }
  305. else
  306. {
  307. m_temporalAA->populateRenderGraph(ctx);
  308. }
  309. m_vrsSriGeneration->populateRenderGraph(ctx);
  310. m_tonemapping->populateRenderGraph(ctx);
  311. m_motionBlur->populateRenderGraph(ctx);
  312. m_bloom2->populateRenderGraph(ctx);
  313. m_dbg->populateRenderGraph(ctx);
  314. m_finalComposite->populateRenderGraph(ctx);
  315. return Error::kNone;
  316. }
  317. void Renderer::writeGlobalRendererConstants(RenderingContext& ctx, GlobalRendererConstants& outConsts)
  318. {
  319. ANKI_TRACE_SCOPED_EVENT(RWriteGlobalRendererConstants);
  320. GlobalRendererConstants consts;
  321. memset(&consts, 0, sizeof(consts));
  322. consts.m_renderingSize = Vec2(F32(m_internalResolution.x()), F32(m_internalResolution.y()));
  323. consts.m_time = F32(HighRezTimer::getCurrentTime());
  324. consts.m_frame = m_frameCount & kMaxU32;
  325. Plane nearPlane;
  326. extractClipPlane(ctx.m_matrices.m_viewProjection, FrustumPlaneType::kNear, nearPlane);
  327. consts.m_nearPlaneWSpace = Vec4(nearPlane.getNormal().xyz(), nearPlane.getOffset());
  328. consts.m_cameraPosition = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  329. consts.m_tileCounts = m_tileCounts;
  330. consts.m_zSplitCount = m_zSplitCount;
  331. consts.m_zSplitCountOverFrustumLength = F32(m_zSplitCount) / (ctx.m_matrices.m_far - ctx.m_matrices.m_near);
  332. consts.m_zSplitMagic.x() = (ctx.m_matrices.m_near - ctx.m_matrices.m_far) / (ctx.m_matrices.m_near * F32(m_zSplitCount));
  333. consts.m_zSplitMagic.y() = ctx.m_matrices.m_far / (ctx.m_matrices.m_near * F32(m_zSplitCount));
  334. consts.m_lightVolumeLastZSplit = min(g_cvarRenderVolumetricLightingAccumulationFinalZSplit - 1, m_zSplitCount);
  335. consts.m_reflectionProbesMipCount = F32(m_probeReflections->getReflectionTextureMipmapCount());
  336. consts.m_matrices = ctx.m_matrices;
  337. consts.m_previousMatrices = ctx.m_prevMatrices;
  338. // Directional light
  339. const LightComponent* dirLight = SceneGraph::getSingleton().getDirectionalLight();
  340. if(dirLight)
  341. {
  342. DirectionalLight& out = consts.m_directionalLight;
  343. const U32 shadowCascadeCount = (dirLight->getShadowEnabled()) ? g_cvarRenderShadowCascadeCount : 0;
  344. out.m_diffuseColor = dirLight->getDiffuseColor().xyz();
  345. out.m_power = dirLight->getLightPower();
  346. out.m_shadowCascadeCount = shadowCascadeCount;
  347. out.m_active = 1;
  348. out.m_direction = dirLight->getDirection();
  349. out.m_shadowCascadeDistances = Vec4(g_cvarRenderShadowCascade0Distance, g_cvarRenderShadowCascade1Distance,
  350. g_cvarRenderShadowCascade2Distance, g_cvarRenderShadowCascade3Distance);
  351. for(U cascade = 0; cascade < shadowCascadeCount; ++cascade)
  352. {
  353. ANKI_ASSERT(ctx.m_dirLightTextureMatrices[cascade] != Mat4::getZero());
  354. out.m_textureMatrices[cascade] = ctx.m_dirLightTextureMatrices[cascade];
  355. out.m_cascadeFarPlanes[cascade] = ctx.m_dirLightFarPlanes[cascade];
  356. out.m_cascadePcfTexelRadius[cascade] = ctx.m_dirLightPcfTexelRadius[cascade];
  357. }
  358. }
  359. else
  360. {
  361. zeroMemory(consts.m_directionalLight);
  362. }
  363. // Sky
  364. const SkyboxComponent* sky = SceneGraph::getSingleton().getSkybox();
  365. const Bool isSolidColor =
  366. (!sky || sky->getSkyboxType() == SkyboxType::kSolidColor || (!dirLight && sky->getSkyboxType() == SkyboxType::kGenerated));
  367. if(isSolidColor)
  368. {
  369. consts.m_sky.m_solidColor = (sky) ? sky->getSolidColor() : Vec3(0.0);
  370. consts.m_sky.m_type = 0;
  371. }
  372. else if(sky->getSkyboxType() == SkyboxType::kImage2D)
  373. {
  374. consts.m_sky.m_type = 1;
  375. }
  376. else
  377. {
  378. consts.m_sky.m_type = 2;
  379. }
  380. if(m_indirectDiffuseClipmaps)
  381. {
  382. memcpy(&consts.m_indirectDiffuseClipmaps, &m_indirectDiffuseClipmaps->getClipmapConsts(), sizeof(consts.m_indirectDiffuseClipmaps));
  383. }
  384. if(m_accelerationStructureBuilder)
  385. {
  386. memcpy(&consts.m_localLightsGrid, &m_accelerationStructureBuilder->getLocalLightsGridConstants(), sizeof(consts.m_localLightsGrid));
  387. }
  388. outConsts = consts;
  389. }
  390. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  391. {
  392. ANKI_ASSERT(!!(usage & TextureUsageBit::kRtvDsvWrite) || !!(usage & TextureUsageBit::kUavCompute));
  393. TextureInitInfo init(name);
  394. init.m_width = w;
  395. init.m_height = h;
  396. init.m_depth = 1;
  397. init.m_layerCount = 1;
  398. init.m_type = TextureType::k2D;
  399. init.m_format = format;
  400. init.m_mipmapCount = 1;
  401. init.m_samples = 1;
  402. init.m_usage = usage;
  403. return init;
  404. }
  405. RenderTargetDesc Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  406. {
  407. RenderTargetDesc init(name);
  408. init.m_width = w;
  409. init.m_height = h;
  410. init.m_depth = 1;
  411. init.m_layerCount = 1;
  412. init.m_type = TextureType::k2D;
  413. init.m_format = format;
  414. init.m_mipmapCount = 1;
  415. init.m_samples = 1;
  416. init.m_usage = TextureUsageBit::kNone;
  417. return init;
  418. }
  419. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  420. {
  421. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite) || !!(inf.m_usage & TextureUsageBit::kUavCompute));
  422. const U faceCount = textureTypeIsCube(inf.m_type) ? 6 : 1;
  423. Bool useCompute = false;
  424. if(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite))
  425. {
  426. useCompute = false;
  427. }
  428. else if(!!(inf.m_usage & TextureUsageBit::kUavCompute))
  429. {
  430. useCompute = true;
  431. }
  432. else
  433. {
  434. ANKI_ASSERT(!"Can't handle that");
  435. }
  436. // Create tex
  437. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  438. // Clear all surfaces
  439. CommandBufferInitInfo cmdbinit;
  440. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  441. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  442. {
  443. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  444. }
  445. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  446. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  447. {
  448. for(U32 face = 0; face < faceCount; ++face)
  449. {
  450. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  451. {
  452. if(!useCompute)
  453. {
  454. RenderTarget rt;
  455. rt.m_clearValue = clearVal;
  456. if(getFormatInfo(inf.m_format).isDepthStencil())
  457. {
  458. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  459. if(getFormatInfo(inf.m_format).isDepth())
  460. {
  461. aspect |= DepthStencilAspectBit::kDepth;
  462. }
  463. if(getFormatInfo(inf.m_format).isStencil())
  464. {
  465. aspect |= DepthStencilAspectBit::kStencil;
  466. }
  467. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer, aspect));
  468. }
  469. else
  470. {
  471. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  472. }
  473. TextureBarrierInfo barrier = {rt.m_textureView, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite};
  474. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  475. if(getFormatInfo(inf.m_format).isDepthStencil())
  476. {
  477. cmdb->beginRenderPass({}, &rt);
  478. }
  479. else
  480. {
  481. cmdb->beginRenderPass({rt});
  482. }
  483. cmdb->endRenderPass();
  484. if(!!initialUsage)
  485. {
  486. barrier.m_previousUsage = TextureUsageBit::kRtvDsvWrite;
  487. barrier.m_nextUsage = initialUsage;
  488. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  489. }
  490. }
  491. else
  492. {
  493. // Compute
  494. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  495. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  496. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  497. I32 componentType = 0;
  498. if(formatInfo.m_shaderType == 0)
  499. {
  500. componentType = 0;
  501. }
  502. else if(formatInfo.m_shaderType == 1)
  503. {
  504. componentType = 1;
  505. }
  506. else
  507. {
  508. ANKI_ASSERT(!"Not supported");
  509. }
  510. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  511. const ShaderProgramResourceVariant* variant;
  512. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  513. cmdb->bindShaderProgram(&variant->getProgram());
  514. cmdb->setFastConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  515. const TextureView view(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  516. cmdb->bindUav(0, 0, view);
  517. const TextureBarrierInfo barrier = {view, TextureUsageBit::kNone, TextureUsageBit::kUavCompute};
  518. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  519. UVec3 wgSize;
  520. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  521. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  522. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  523. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  524. if(!!initialUsage)
  525. {
  526. const TextureBarrierInfo barrier = {view, TextureUsageBit::kUavCompute, initialUsage};
  527. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  528. }
  529. }
  530. }
  531. }
  532. }
  533. cmdb->endRecording();
  534. FencePtr fence;
  535. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  536. fence->clientWait(10.0_sec);
  537. return tex;
  538. }
  539. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  540. {
  541. #if ANKI_ASSERTIONS_ENABLED
  542. for(const DebugRtInfo& inf : m_debugRts)
  543. {
  544. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  545. }
  546. #endif
  547. ANKI_ASSERT(obj);
  548. DebugRtInfo inf;
  549. inf.m_obj = obj;
  550. inf.m_rtName = rtName;
  551. m_debugRts.emplaceBack(std::move(inf));
  552. }
  553. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  554. {
  555. if(m_currentDebugRtName.isEmpty()) [[likely]]
  556. {
  557. return false;
  558. }
  559. RendererObject* obj = nullptr;
  560. for(const DebugRtInfo& inf : m_debugRts)
  561. {
  562. if(inf.m_rtName == m_currentDebugRtName)
  563. {
  564. obj = inf.m_obj;
  565. }
  566. }
  567. if(obj)
  568. {
  569. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  570. return true;
  571. }
  572. else
  573. {
  574. ANKI_R_LOGE("Debug rendertarget doesn't exist: %s", m_currentDebugRtName.cstr());
  575. m_currentDebugRtName = {};
  576. return false;
  577. }
  578. }
  579. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  580. {
  581. m_currentDebugRtName.destroy();
  582. if(!rtName.isEmpty() && rtName.getLength() > 0)
  583. {
  584. m_currentDebugRtName = rtName;
  585. }
  586. }
  587. Format Renderer::getHdrFormat() const
  588. {
  589. Format out;
  590. if(!g_cvarRenderHighQualityHdr)
  591. {
  592. out = Format::kB10G11R11_Ufloat_Pack32;
  593. }
  594. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  595. {
  596. out = Format::kR16G16B16_Sfloat;
  597. }
  598. else
  599. {
  600. out = Format::kR16G16B16A16_Sfloat;
  601. }
  602. return out;
  603. }
  604. Format Renderer::getDepthNoStencilFormat() const
  605. {
  606. if(ANKI_PLATFORM_MOBILE)
  607. {
  608. return Format::kX8D24_Unorm_Pack32;
  609. }
  610. else
  611. {
  612. return Format::kD32_Sfloat;
  613. }
  614. }
  615. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  616. {
  617. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  618. m_runCtx.m_gpuSceneHandle =
  619. rgraph.importBuffer(GpuSceneBuffer::getSingleton().getBufferView(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  620. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  621. {
  622. NonGraphicsRenderPass& rpass = rgraph.newNonGraphicsRenderPass("GPU scene patching");
  623. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kUavCompute);
  624. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  625. ANKI_TRACE_SCOPED_EVENT(GpuSceneCopy);
  626. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  627. });
  628. }
  629. }
  630. #if ANKI_STATS_ENABLED
  631. void Renderer::updatePipelineStats()
  632. {
  633. RendererDynamicArray<PipelineQueryPtr>& arr = m_pipelineQueries[m_frameCount % kMaxFramesInFlight];
  634. U64 sum = 0;
  635. for(PipelineQueryPtr& q : arr)
  636. {
  637. U64 value;
  638. const PipelineQueryResult res = q->getResult(value);
  639. if(res == PipelineQueryResult::kNotAvailable)
  640. {
  641. ANKI_R_LOGW("Pipeline query result is not available");
  642. }
  643. else
  644. {
  645. sum += value;
  646. }
  647. }
  648. arr.destroy();
  649. g_svarPrimitivesDrawn.set(sum);
  650. }
  651. #endif
  652. Error Renderer::render()
  653. {
  654. ANKI_TRACE_SCOPED_EVENT(Render);
  655. const Second startTime = HighRezTimer::getCurrentTime();
  656. // First thing, reset the temp mem pool
  657. m_framePool.reset();
  658. RenderingContext ctx(&m_framePool);
  659. ctx.m_renderGraphDescr.setStatisticsEnabled(ANKI_STATS_ENABLED);
  660. #if ANKI_STATS_ENABLED
  661. updatePipelineStats();
  662. #endif
  663. const CameraComponent& cam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  664. ctx.m_prevMatrices = m_prevMatrices;
  665. ctx.m_matrices.m_cameraTransform = Mat3x4(cam.getFrustum().getWorldTransform());
  666. ctx.m_matrices.m_view = cam.getFrustum().getViewMatrix();
  667. ctx.m_matrices.m_projection = cam.getFrustum().getProjectionMatrix();
  668. ctx.m_matrices.m_viewProjection = cam.getFrustum().getViewProjectionMatrix();
  669. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  670. jitter *= 2.0f; // In [-1, 1]
  671. const Vec2 ndcPixelSize = 1.0f / Vec2(m_internalResolution);
  672. jitter *= ndcPixelSize;
  673. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  674. ctx.m_matrices.m_jitter.setTranslationPart(Vec3(jitter, 0.0f));
  675. ctx.m_matrices.m_jitterOffsetNdc = jitter;
  676. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  677. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  678. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.invert();
  679. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.invert();
  680. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.invert();
  681. ctx.m_matrices.m_reprojection = ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjection;
  682. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  683. ctx.m_matrices.m_projMat00_11_22_23 = Vec4(ctx.m_matrices.m_projection(0, 0), ctx.m_matrices.m_projection(1, 1),
  684. ctx.m_matrices.m_projection(2, 2), ctx.m_matrices.m_projection(2, 3));
  685. ctx.m_matrices.m_near = cam.getNear();
  686. ctx.m_matrices.m_far = cam.getFar();
  687. // Allocate global constants
  688. GlobalRendererConstants* globalConsts;
  689. {
  690. U32 alignment = (GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferNaturalAlignment)
  691. ? sizeof(*globalConsts)
  692. : GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferBindOffsetAlignment;
  693. alignment = computeCompoundAlignment(alignment, GrManager::getSingleton().getDeviceCapabilities().m_constantBufferBindOffsetAlignment);
  694. ctx.m_globalRenderingConstantsBuffer = RebarTransientMemoryPool::getSingleton().allocate(sizeof(*globalConsts), alignment, globalConsts);
  695. }
  696. ANKI_CHECK(populateRenderGraph(ctx));
  697. // Blit renderer's result to swapchain
  698. if(!ctx.m_swapchainRenderTarget.isValid())
  699. {
  700. TexturePtr presentableTex = GrManager::getSingleton().acquireNextPresentableTexture();
  701. ctx.m_swapchainRenderTarget = ctx.m_renderGraphDescr.importRenderTarget(presentableTex.get(), TextureUsageBit::kNone);
  702. }
  703. const Bool bNeedsBlit = m_postProcessResolution != m_swapchainResolution;
  704. if(bNeedsBlit)
  705. {
  706. GraphicsRenderPass& pass = ctx.m_renderGraphDescr.newGraphicsRenderPass("Final Blit");
  707. pass.setRenderpassInfo({GraphicsRenderPassTargetDesc(ctx.m_swapchainRenderTarget)});
  708. pass.setWritesToSwapchain();
  709. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kRtvDsvWrite);
  710. pass.newTextureDependency(m_finalComposite->getRenderTarget(), TextureUsageBit::kSrvPixel);
  711. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  712. ANKI_TRACE_SCOPED_EVENT(BlitAndUi);
  713. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  714. cmdb.setViewport(0, 0, m_swapchainResolution.x(), m_swapchainResolution.y());
  715. cmdb.bindShaderProgram(m_blitGrProg.get());
  716. cmdb.bindSampler(0, 0, m_samplers.m_trilinearClamp.get());
  717. rgraphCtx.bindSrv(0, 0, m_finalComposite->getRenderTarget());
  718. cmdb.draw(PrimitiveTopology::kTriangles, 3);
  719. // Draw the UI
  720. m_uiStage->draw(m_swapchainResolution.x(), m_swapchainResolution.y(), cmdb);
  721. });
  722. }
  723. // Create a dummy pass to transition the presentable image to present
  724. {
  725. NonGraphicsRenderPass& pass = ctx.m_renderGraphDescr.newNonGraphicsRenderPass("Present");
  726. pass.setWork([]([[maybe_unused]] RenderPassWorkContext& rgraphCtx) {
  727. // Do nothing. This pass is dummy
  728. });
  729. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kPresent);
  730. }
  731. writeGlobalRendererConstants(ctx, *globalConsts);
  732. // Bake the render graph
  733. m_rgraph->compileNewGraph(ctx.m_renderGraphDescr, m_framePool);
  734. // Flush
  735. FencePtr fence;
  736. m_rgraph->recordAndSubmitCommandBuffers(&fence);
  737. // Misc
  738. m_rgraph->reset();
  739. ++m_frameCount;
  740. m_prevMatrices = ctx.m_matrices;
  741. m_readbackManager->endFrame(fence.get());
  742. // Stats
  743. if(ANKI_STATS_ENABLED || ANKI_TRACING_ENABLED)
  744. {
  745. g_svarRendererCpuTime.set((HighRezTimer::getCurrentTime() - startTime) * 1000.0);
  746. RenderGraphStatistics rgraphStats;
  747. m_rgraph->getStatistics(rgraphStats);
  748. g_svarRendererGpuTime.set(rgraphStats.m_gpuTime * 1000.0);
  749. if(rgraphStats.m_gpuTime > 0.0)
  750. {
  751. // WARNING: The name of the event is somewhat special. Search it to see why
  752. ANKI_TRACE_CUSTOM_EVENT(GpuFrameTime, rgraphStats.m_cpuStartTime, rgraphStats.m_gpuTime);
  753. }
  754. }
  755. return Error::kNone;
  756. }
  757. } // end namespace anki