HzbGenerator.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #if ANKI_COMPILER_GCC_COMPATIBLE
  8. # pragma GCC diagnostic push
  9. # pragma GCC diagnostic ignored "-Wunused-function"
  10. # pragma GCC diagnostic ignored "-Wignored-qualifiers"
  11. #elif ANKI_COMPILER_MSVC
  12. # pragma warning(push)
  13. # pragma warning(disable : 4505)
  14. #endif
  15. #define A_CPU
  16. #include <ThirdParty/FidelityFX/ffx_a.h>
  17. #include <ThirdParty/FidelityFX/ffx_spd.h>
  18. #if ANKI_COMPILER_GCC_COMPATIBLE
  19. # pragma GCC diagnostic pop
  20. #elif ANKI_COMPILER_MSVC
  21. # pragma warning(pop)
  22. #endif
  23. namespace anki {
  24. // 7 +----+ 6
  25. // /| /|
  26. // 3 +----+2|
  27. // | *--| + 5
  28. // |/4 |/
  29. // 0 +----+ 1
  30. static constexpr U16 kBoxIndices[] = {1, 2, 5, 2, 6, 5, 0, 4, 3, 4, 7, 3, 3, 7, 2, 7, 6, 2, 0, 1, 4, 1, 5, 4, 0, 3, 1, 3, 2, 1, 4, 5, 7, 5, 6, 7};
  31. Error HzbGenerator::init()
  32. {
  33. if(GrManager::getSingleton().getDeviceCapabilities().m_samplingFilterMinMax)
  34. {
  35. SamplerInitInfo sinit("HzbReductionMax");
  36. sinit.m_addressing = SamplingAddressing::kClamp;
  37. sinit.m_mipmapFilter = SamplingFilter::kMax;
  38. sinit.m_minMagFilter = SamplingFilter::kMax;
  39. m_maxSampler = GrManager::getSingleton().newSampler(sinit);
  40. }
  41. ANKI_CHECK(loadShaderProgram("ShaderBinaries/HzbGenPyramid.ankiprogbin", {{"REDUCTION_TYPE", 1}, {"MIN_MAX_SAMPLER", m_maxSampler.isCreated()}},
  42. m_genPyramidProg, m_genPyramidGrProg));
  43. ANKI_CHECK(loadShaderProgram("ShaderBinaries/HzbMaxDepth.ankiprogbin", m_maxDepthProg, m_maxDepthGrProg));
  44. ANKI_CHECK(loadShaderProgram("ShaderBinaries/HzbMaxDepthProject.ankiprogbin", m_maxBoxProg, m_maxBoxGrProg));
  45. m_counterBufferElementSize = max<U32>(sizeof(U32), GrManager::getSingleton().getDeviceCapabilities().m_storageBufferBindOffsetAlignment);
  46. BufferInitInfo buffInit("HzbCounterBuffer");
  47. buffInit.m_size = m_counterBufferElementSize * kCounterBufferElementCount;
  48. buffInit.m_usage = BufferUsageBit::kUavCompute | BufferUsageBit::kCopyDestination;
  49. m_counterBuffer = GrManager::getSingleton().newBuffer(buffInit);
  50. // Zero counter buffer
  51. zeroBuffer(m_counterBuffer.get());
  52. // Boxes buffer
  53. buffInit = BufferInitInfo("HzbBoxIndices");
  54. buffInit.m_size = sizeof(kBoxIndices);
  55. buffInit.m_usage = BufferUsageBit::kIndex;
  56. buffInit.m_mapAccess = BufferMapAccessBit::kWrite;
  57. m_boxIndexBuffer = GrManager::getSingleton().newBuffer(buffInit);
  58. void* mappedMem = m_boxIndexBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  59. memcpy(mappedMem, kBoxIndices, sizeof(kBoxIndices));
  60. m_boxIndexBuffer->unmap();
  61. return Error::kNone;
  62. }
  63. void HzbGenerator::populateRenderGraphInternal(ConstWeakArray<DispatchInput> dispatchInputs, CString customName, RenderGraphBuilder& rgraph)
  64. {
  65. const U32 dispatchCount = dispatchInputs.getSize();
  66. if(m_crntFrame != getRenderer().getFrameCount())
  67. {
  68. m_crntFrame = getRenderer().getFrameCount();
  69. m_counterBufferCrntElementCount = 0;
  70. }
  71. const U32 counterBufferElement = m_counterBufferCrntElementCount;
  72. m_counterBufferCrntElementCount += dispatchCount;
  73. ANKI_ASSERT(counterBufferElement < kCounterBufferElementCount);
  74. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass((customName.isEmpty()) ? "HZB generation" : customName);
  75. Array<DispatchInput, kMaxShadowCascades> dispatchInputsCopy;
  76. for(U32 i = 0; i < dispatchCount; ++i)
  77. {
  78. const TextureSubresourceDesc firstMipSubresource = TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth);
  79. pass.newTextureDependency(dispatchInputs[i].m_srcDepthRt, TextureUsageBit::kSrvCompute, firstMipSubresource);
  80. pass.newTextureDependency(dispatchInputs[i].m_dstHzbRt, TextureUsageBit::kUavCompute);
  81. dispatchInputsCopy[i] = dispatchInputs[i];
  82. }
  83. pass.setWork([this, dispatchInputsCopy, dispatchCount, counterBufferElement](RenderPassWorkContext& rgraphCtx) {
  84. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  85. cmdb.bindShaderProgram(m_genPyramidGrProg.get());
  86. cmdb.bindSampler(ANKI_REG(s0), m_maxSampler.isCreated() ? m_maxSampler.get() : getRenderer().getSamplers().m_trilinearClamp.get());
  87. for(U32 dispatch = 0; dispatch < dispatchCount; ++dispatch)
  88. {
  89. const DispatchInput& in = dispatchInputsCopy[dispatch];
  90. const U32 hzbMipCount =
  91. min(kMaxMipsSinglePassDownsamplerCanProduce, computeMaxMipmapCount2d(in.m_dstHzbRtSize.x(), in.m_dstHzbRtSize.y()));
  92. const U32 mipsToCompute = hzbMipCount;
  93. varAU2(dispatchThreadGroupCountXY);
  94. varAU2(workGroupOffset); // needed if Left and Top are not 0,0
  95. varAU2(numWorkGroupsAndMips);
  96. varAU4(rectInfo) = initAU4(0, 0, in.m_dstHzbRtSize.x() * 2, in.m_dstHzbRtSize.y() * 2);
  97. SpdSetup(dispatchThreadGroupCountXY, workGroupOffset, numWorkGroupsAndMips, rectInfo, mipsToCompute);
  98. struct Uniforms
  99. {
  100. Vec2 m_invSrcTexSize;
  101. U32 m_threadGroupCount;
  102. U32 m_mipmapCount;
  103. } pc;
  104. pc.m_invSrcTexSize = 1.0f / Vec2(in.m_dstHzbRtSize * 2);
  105. pc.m_threadGroupCount = numWorkGroupsAndMips[0];
  106. pc.m_mipmapCount = numWorkGroupsAndMips[1];
  107. cmdb.setPushConstants(&pc, sizeof(pc));
  108. Register mipsReg(ANKI_REG(u1));
  109. for(U32 mip = 0; mip < kMaxMipsSinglePassDownsamplerCanProduce; ++mip)
  110. {
  111. TextureSubresourceDesc subresource = TextureSubresourceDesc::firstSurface();
  112. if(mip < mipsToCompute)
  113. {
  114. subresource.m_mipmap = mip;
  115. }
  116. else
  117. {
  118. subresource.m_mipmap = 0; // Put something random
  119. }
  120. rgraphCtx.bindTexture(mipsReg, in.m_dstHzbRt, subresource);
  121. ++mipsReg.m_bindPoint;
  122. }
  123. cmdb.bindStorageBuffer(ANKI_REG(u0), BufferView(m_counterBuffer.get())
  124. .incrementOffset((counterBufferElement + dispatch) * m_counterBufferElementSize)
  125. .setRange(sizeof(U32)));
  126. rgraphCtx.bindTexture(ANKI_REG(t0), in.m_srcDepthRt, TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  127. cmdb.dispatchCompute(dispatchThreadGroupCountXY[0], dispatchThreadGroupCountXY[1], 1);
  128. }
  129. });
  130. }
  131. void HzbGenerator::populateRenderGraph(RenderTargetHandle srcDepthRt, UVec2 srcDepthRtSize, RenderTargetHandle dstHzbRt, UVec2 dstHzbRtSize,
  132. RenderGraphBuilder& rgraph, CString customName)
  133. {
  134. DispatchInput in;
  135. in.m_dstHzbRt = dstHzbRt;
  136. in.m_dstHzbRtSize = dstHzbRtSize;
  137. in.m_srcDepthRt = srcDepthRt;
  138. in.m_srcDepthRtSize = srcDepthRtSize;
  139. populateRenderGraphInternal({&in, 1}, customName, rgraph);
  140. }
  141. void HzbGenerator::populateRenderGraphDirectionalLight(const HzbDirectionalLightInput& in, RenderGraphBuilder& rgraph)
  142. {
  143. const U32 cascadeCount = in.m_cascadeCount;
  144. ANKI_ASSERT(cascadeCount > 0);
  145. // Generate a temp RT with the max depth of each 64x64 tile of the depth buffer
  146. RenderTargetHandle maxDepthRt;
  147. constexpr U32 kTileSize = 64;
  148. const UVec2 maxDepthRtSize = (in.m_depthBufferRtSize + kTileSize - 1) / kTileSize;
  149. {
  150. RenderTargetDesc maxDepthRtDescr("HZB max tile depth");
  151. maxDepthRtDescr.m_width = maxDepthRtSize.x();
  152. maxDepthRtDescr.m_height = maxDepthRtSize.y();
  153. maxDepthRtDescr.m_format = Format::kR32_Sfloat;
  154. maxDepthRtDescr.bake();
  155. maxDepthRt = rgraph.newRenderTarget(maxDepthRtDescr);
  156. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass("HZB max tile depth");
  157. pass.newTextureDependency(in.m_depthBufferRt, TextureUsageBit::kSrvCompute, DepthStencilAspectBit::kDepth);
  158. pass.newTextureDependency(maxDepthRt, TextureUsageBit::kUavCompute);
  159. pass.setWork([this, depthBufferRt = in.m_depthBufferRt, maxDepthRt, maxDepthRtSize](RenderPassWorkContext& rgraphCtx) {
  160. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  161. rgraphCtx.bindTexture(ANKI_REG(t0), depthBufferRt, TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  162. cmdb.bindSampler(ANKI_REG(s0), getRenderer().getSamplers().m_trilinearClamp.get());
  163. rgraphCtx.bindTexture(ANKI_REG(u0), maxDepthRt);
  164. cmdb.bindShaderProgram(m_maxDepthGrProg.get());
  165. cmdb.dispatchCompute(maxDepthRtSize.x(), maxDepthRtSize.y(), 1);
  166. });
  167. }
  168. // Project a box for each tile on each cascade's HZB
  169. Array<RenderTargetHandle, kMaxShadowCascades> depthRts;
  170. for(U32 i = 0; i < cascadeCount; ++i)
  171. {
  172. const HzbDirectionalLightInput::Cascade& cascade = in.m_cascades[i];
  173. // Compute the cascade's min and max depth as seen by the camera
  174. F32 cascadeMinDepth, cascadeMaxDepth;
  175. {
  176. if(i > 0)
  177. {
  178. // Do the reverse of computeShadowCascadeIndex2 to find the actual distance of this cascade. computeShadowCascadeIndex2 makes the min
  179. // distance of a cascade to become even less. See https://www.desmos.com/calculator/g1ibye6ebg
  180. // F = ((x-m)/(M-m))^16 and solving for x we have the new minDist
  181. const F32 m = (i >= 2) ? in.m_cascades[i - 2].m_cascadeMaxDistance : 0.0f; // Prev cascade min dist
  182. const F32 M = in.m_cascades[i - 1].m_cascadeMaxDistance; // Prev cascade max dist
  183. constexpr F32 F = 0.01f; // Desired factor
  184. const F32 minDist = pow(F, 1.0f / 16.0f) * (M - m) + m;
  185. ANKI_ASSERT(minDist < M);
  186. Vec4 v4 = in.m_cameraProjectionMatrix * Vec4(0.0f, 0.0f, -minDist, 1.0f);
  187. cascadeMinDepth = saturate(v4.z() / v4.w());
  188. }
  189. else
  190. {
  191. cascadeMinDepth = 0.0f;
  192. }
  193. const F32 maxDist = cascade.m_cascadeMaxDistance;
  194. const Vec4 v4 = in.m_cameraProjectionMatrix * Vec4(0.0f, 0.0f, -maxDist, 1.0f);
  195. cascadeMaxDepth = saturate(v4.z() / v4.w());
  196. ANKI_ASSERT(cascadeMinDepth <= cascadeMaxDepth);
  197. }
  198. RenderTargetDesc depthRtDescr(generateTempPassName("HZB boxes depth cascade:%u", i));
  199. depthRtDescr.m_width = cascade.m_hzbRtSize.x() * 2;
  200. depthRtDescr.m_height = cascade.m_hzbRtSize.y() * 2;
  201. depthRtDescr.m_format = Format::kD16_Unorm;
  202. depthRtDescr.bake();
  203. depthRts[i] = rgraph.newRenderTarget(depthRtDescr);
  204. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass("HZB boxes");
  205. GraphicsRenderPassTargetDesc depthRt(depthRts[i]);
  206. depthRt.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  207. depthRt.m_clearValue.m_depthStencil.m_depth = 0.0f;
  208. depthRt.m_loadOperation = RenderTargetLoadOperation::kClear;
  209. pass.setRenderpassInfo({}, &depthRt);
  210. pass.newTextureDependency(maxDepthRt, TextureUsageBit::kSrvFragment);
  211. pass.newTextureDependency(depthRts[i], TextureUsageBit::kRtvDsvWrite, DepthStencilAspectBit::kDepth);
  212. pass.setWork([this, maxDepthRt, invViewProjMat = in.m_cameraInverseViewProjectionMatrix,
  213. lightViewProjMat = cascade.m_projectionMatrix * Mat4(cascade.m_viewMatrix, Vec4(0.0f, 0.0f, 0.0f, 1.0f)),
  214. viewport = cascade.m_hzbRtSize * 2, maxDepthRtSize, cascadeMinDepth, cascadeMaxDepth](RenderPassWorkContext& rgraphCtx) {
  215. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  216. cmdb.setDepthCompareOperation(CompareOperation::kGreater);
  217. cmdb.setViewport(0, 0, viewport.x(), viewport.y());
  218. cmdb.bindShaderProgram(m_maxBoxGrProg.get());
  219. rgraphCtx.bindTexture(ANKI_REG(t0), maxDepthRt);
  220. struct Uniforms
  221. {
  222. Mat4 m_reprojectionMat;
  223. F32 m_cascadeMinDepth;
  224. F32 m_cascadeMaxDepth;
  225. F32 m_padding0;
  226. F32 m_padding1;
  227. } unis;
  228. unis.m_reprojectionMat = lightViewProjMat * invViewProjMat;
  229. unis.m_cascadeMinDepth = cascadeMinDepth;
  230. unis.m_cascadeMaxDepth = cascadeMaxDepth;
  231. cmdb.setPushConstants(&unis, sizeof(unis));
  232. cmdb.bindIndexBuffer(BufferView(m_boxIndexBuffer.get()), IndexType::kU16);
  233. cmdb.drawIndexed(PrimitiveTopology::kTriangles, sizeof(kBoxIndices) / sizeof(kBoxIndices[0]), maxDepthRtSize.x() * maxDepthRtSize.y());
  234. // Restore state
  235. cmdb.setDepthCompareOperation(CompareOperation::kLess);
  236. });
  237. }
  238. // Generate the HZBs
  239. Array<DispatchInput, kMaxShadowCascades> inputs;
  240. for(U32 i = 0; i < cascadeCount; ++i)
  241. {
  242. const HzbDirectionalLightInput::Cascade& cascade = in.m_cascades[i];
  243. inputs[i].m_dstHzbRt = cascade.m_hzbRt;
  244. inputs[i].m_dstHzbRtSize = cascade.m_hzbRtSize;
  245. inputs[i].m_srcDepthRt = depthRts[i];
  246. inputs[i].m_srcDepthRtSize = cascade.m_hzbRtSize * 2;
  247. }
  248. populateRenderGraphInternal({&inputs[0], cascadeCount}, "HZB generation shadow cascades", rgraph);
  249. }
  250. } // end namespace anki