VolumetricLightingAccumulation.cpp 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  6. #include <AnKi/Renderer/ShadowMapping.h>
  7. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  8. #include <AnKi/Renderer/Renderer.h>
  9. #include <AnKi/Renderer/ClusterBinning.h>
  10. #include <AnKi/Resource/ImageResource.h>
  11. #include <AnKi/Core/CVarSet.h>
  12. #include <AnKi/Scene/Components/SkyboxComponent.h>
  13. #include <AnKi/Util/Tracer.h>
  14. namespace anki {
  15. NumericCVar<F32> g_volumetricLightingAccumulationQualityXYCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationQualityXY", 4.0f, 1.0f, 16.0f,
  16. "Quality of XY dimensions of volumetric lights");
  17. NumericCVar<F32> g_volumetricLightingAccumulationQualityZCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationQualityZ", 4.0f, 1.0f, 16.0f,
  18. "Quality of Z dimension of volumetric lights");
  19. NumericCVar<U32> g_volumetricLightingAccumulationFinalZSplitCVar(CVarSubsystem::kRenderer, "VolumetricLightingAccumulationFinalZSplit", 26, 1, 256,
  20. "Final cluster split that will recieve volumetric lights");
  21. Error VolumetricLightingAccumulation::init()
  22. {
  23. // Misc
  24. const F32 qualityXY = g_volumetricLightingAccumulationQualityXYCVar.get();
  25. const F32 qualityZ = g_volumetricLightingAccumulationQualityZCVar.get();
  26. const U32 finalZSplit = min(getRenderer().getZSplitCount() - 1, g_volumetricLightingAccumulationFinalZSplitCVar.get());
  27. m_volumeSize[0] = U32(F32(getRenderer().getTileCounts().x()) * qualityXY);
  28. m_volumeSize[1] = U32(F32(getRenderer().getTileCounts().y()) * qualityXY);
  29. m_volumeSize[2] = U32(F32(finalZSplit + 1) * qualityZ);
  30. ANKI_R_LOGV("Initializing volumetric lighting accumulation. Size %ux%ux%u", m_volumeSize[0], m_volumeSize[1], m_volumeSize[2]);
  31. if(!isAligned(getRenderer().getTileCounts().x(), m_volumeSize[0]) || !isAligned(getRenderer().getTileCounts().y(), m_volumeSize[1])
  32. || m_volumeSize[0] == 0 || m_volumeSize[1] == 0 || m_volumeSize[2] == 0)
  33. {
  34. ANKI_R_LOGE("Wrong input");
  35. return Error::kUserData;
  36. }
  37. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/BlueNoise_Rgba8_64x64.png", m_noiseImage));
  38. // Shaders
  39. ANKI_CHECK(loadShaderProgram("ShaderBinaries/VolumetricLightingAccumulation.ankiprogbin", {{"ENABLE_SHADOWS", 1}}, m_prog, m_grProg));
  40. // Create RTs
  41. TextureInitInfo texinit = getRenderer().create2DRenderTargetInitInfo(
  42. m_volumeSize[0], m_volumeSize[1], Format::kR16G16B16A16_Sfloat,
  43. TextureUsageBit::kUavCompute | TextureUsageBit::kSrvFragment | TextureUsageBit::kSrvCompute, "VolLight");
  44. texinit.m_depth = m_volumeSize[2];
  45. texinit.m_type = TextureType::k3D;
  46. m_rtTextures[0] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvFragment);
  47. m_rtTextures[1] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvFragment);
  48. return Error::kNone;
  49. }
  50. void VolumetricLightingAccumulation::populateRenderGraph(RenderingContext& ctx)
  51. {
  52. ANKI_TRACE_SCOPED_EVENT(VolumetricLightingAccumulation);
  53. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  54. const U readRtIdx = getRenderer().getFrameCount() & 1;
  55. m_runCtx.m_rts[0] = rgraph.importRenderTarget(m_rtTextures[readRtIdx].get(), TextureUsageBit::kSrvFragment);
  56. m_runCtx.m_rts[1] = rgraph.importRenderTarget(m_rtTextures[!readRtIdx].get(), TextureUsageBit::kNone);
  57. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass("Vol light");
  58. pass.newTextureDependency(m_runCtx.m_rts[0], TextureUsageBit::kSrvCompute);
  59. pass.newTextureDependency(m_runCtx.m_rts[1], TextureUsageBit::kUavCompute);
  60. pass.newTextureDependency(getRenderer().getShadowMapping().getShadowmapRt(), TextureUsageBit::kSrvCompute);
  61. pass.newBufferDependency(getRenderer().getClusterBinning().getClustersBufferHandle(), BufferUsageBit::kSrvCompute);
  62. pass.newBufferDependency(getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kLight),
  63. BufferUsageBit::kSrvCompute);
  64. pass.newBufferDependency(
  65. getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kGlobalIlluminationProbe),
  66. BufferUsageBit::kSrvCompute);
  67. pass.newBufferDependency(getRenderer().getClusterBinning().getPackedObjectsBufferHandle(GpuSceneNonRenderableObjectType::kFogDensityVolume),
  68. BufferUsageBit::kSrvCompute);
  69. if(getRenderer().getIndirectDiffuseProbes().hasCurrentlyRefreshedVolumeRt())
  70. {
  71. pass.newTextureDependency(getRenderer().getIndirectDiffuseProbes().getCurrentlyRefreshedVolumeRt(), TextureUsageBit::kSrvCompute);
  72. }
  73. pass.setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  74. ANKI_TRACE_SCOPED_EVENT(VolumetricLightingAccumulation);
  75. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  76. cmdb.bindShaderProgram(m_grProg.get());
  77. // Bind all
  78. cmdb.bindSampler(ANKI_REG(s0), getRenderer().getSamplers().m_trilinearRepeat.get());
  79. cmdb.bindSampler(ANKI_REG(s1), getRenderer().getSamplers().m_trilinearClamp.get());
  80. cmdb.bindSampler(ANKI_REG(s2), getRenderer().getSamplers().m_trilinearClampShadow.get());
  81. rgraphCtx.bindTexture(ANKI_REG(u0), m_runCtx.m_rts[1]);
  82. cmdb.bindTexture(ANKI_REG(t0), TextureView(&m_noiseImage->getTexture(), TextureSubresourceDesc::all()));
  83. rgraphCtx.bindTexture(ANKI_REG(t1), m_runCtx.m_rts[0]);
  84. cmdb.bindUniformBuffer(ANKI_REG(b0), ctx.m_globalRenderingUniformsBuffer);
  85. cmdb.bindStorageBuffer(ANKI_REG(t2), getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kLight));
  86. cmdb.bindStorageBuffer(ANKI_REG(t3), getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kLight));
  87. rgraphCtx.bindTexture(ANKI_REG(t4), getRenderer().getShadowMapping().getShadowmapRt());
  88. cmdb.bindStorageBuffer(ANKI_REG(t5),
  89. getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kGlobalIlluminationProbe));
  90. cmdb.bindStorageBuffer(ANKI_REG(t6),
  91. getRenderer().getClusterBinning().getPackedObjectsBuffer(GpuSceneNonRenderableObjectType::kFogDensityVolume));
  92. cmdb.bindStorageBuffer(ANKI_REG(t7), getRenderer().getClusterBinning().getClustersBuffer());
  93. const SkyboxComponent* sky = SceneGraph::getSingleton().getSkybox();
  94. VolumetricLightingUniforms unis;
  95. if(!sky)
  96. {
  97. unis.m_minHeight = 0.0f;
  98. unis.m_oneOverMaxMinusMinHeight = 0.0f;
  99. unis.m_densityAtMinHeight = 0.0f;
  100. unis.m_densityAtMaxHeight = 0.0f;
  101. }
  102. else if(sky->getHeightOfMaxFogDensity() > sky->getHeightOfMaxFogDensity())
  103. {
  104. unis.m_minHeight = sky->getHeightOfMinFogDensity();
  105. unis.m_oneOverMaxMinusMinHeight = 1.0f / (sky->getHeightOfMaxFogDensity() - unis.m_minHeight + kEpsilonf);
  106. unis.m_densityAtMinHeight = sky->getMinFogDensity();
  107. unis.m_densityAtMaxHeight = sky->getMaxFogDensity();
  108. }
  109. else
  110. {
  111. unis.m_minHeight = sky->getHeightOfMaxFogDensity();
  112. unis.m_oneOverMaxMinusMinHeight = 1.0f / (sky->getHeightOfMinFogDensity() - unis.m_minHeight + kEpsilonf);
  113. unis.m_densityAtMinHeight = sky->getMaxFogDensity();
  114. unis.m_densityAtMaxHeight = sky->getMinFogDensity();
  115. }
  116. unis.m_volumeSize = UVec3(m_volumeSize);
  117. const U32 finalZSplit = min(getRenderer().getZSplitCount() - 1, g_volumetricLightingAccumulationFinalZSplitCVar.get());
  118. unis.m_maxZSplitsToProcessf = F32(finalZSplit + 1);
  119. cmdb.setPushConstants(&unis, sizeof(unis));
  120. dispatchPPCompute(cmdb, 8, 8, 8, m_volumeSize[0], m_volumeSize[1], m_volumeSize[2]);
  121. });
  122. }
  123. } // end namespace anki