Gr.cpp 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <Tests/Gr/GrCommon.h>
  7. #include <AnKi/Gr.h>
  8. #include <AnKi/Window/NativeWindow.h>
  9. #include <AnKi/Window/Input.h>
  10. #include <AnKi/Core/CVarSet.h>
  11. #include <AnKi/Core/GpuMemory/RebarTransientMemoryPool.h>
  12. #include <AnKi/Util/HighRezTimer.h>
  13. #include <AnKi/Resource/TransferGpuAllocator.h>
  14. #include <AnKi/ShaderCompiler/ShaderParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <AnKi/Util/WeakArray.h>
  17. #include <ctime>
  18. using namespace anki;
  19. ANKI_TEST(Gr, GrManager)
  20. {
  21. g_validationCVar.set(true);
  22. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr);
  23. initWindow();
  24. ANKI_TEST_EXPECT_NO_ERR(Input::allocateSingleton().init());
  25. initGrManager();
  26. GrManager::freeSingleton();
  27. Input::freeSingleton();
  28. NativeWindow::freeSingleton();
  29. DefaultMemoryPool::freeSingleton();
  30. }
  31. ANKI_TEST(Gr, Shader)
  32. {
  33. #if 0
  34. COMMON_BEGIN()
  35. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::kFragment, *g_gr);
  36. COMMON_END()
  37. #endif
  38. }
  39. ANKI_TEST(Gr, ShaderProgram)
  40. {
  41. #if 0
  42. COMMON_BEGIN()
  43. constexpr const char* kVertSrc = R"(
  44. out gl_PerVertex
  45. {
  46. vec4 gl_Position;
  47. };
  48. void main()
  49. {
  50. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  51. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  52. })";
  53. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  54. void main()
  55. {
  56. out_color = vec4(0.5);
  57. })";
  58. ShaderProgramPtr ppline = createProgram(kVertSrc, kFragSrc, *g_gr);
  59. COMMON_END()
  60. #endif
  61. }
  62. ANKI_TEST(Gr, ClearScreen)
  63. {
  64. commonInit();
  65. ANKI_TEST_LOGI("Expect to see a magenta background");
  66. constexpr U kIterations = 100;
  67. U iterations = kIterations;
  68. while(iterations--)
  69. {
  70. HighRezTimer timer;
  71. timer.start();
  72. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  73. CommandBufferInitInfo cinit;
  74. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  75. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  76. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  77. TextureUsageBit::kRtvDsvWrite};
  78. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  79. RenderTarget rt;
  80. rt.m_textureView = TextureView(presentTex.get(), TextureSubresourceDesc::all());
  81. const F32 col = 1.0f - F32(iterations) / F32(kIterations);
  82. rt.m_clearValue.m_colorf = {col, 0.0f, col, 1.0f};
  83. cmdb->beginRenderPass({rt});
  84. cmdb->endRenderPass();
  85. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  86. TextureUsageBit::kPresent};
  87. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  88. cmdb->endRecording();
  89. GrManager::getSingleton().submit(cmdb.get());
  90. GrManager::getSingleton().swapBuffers();
  91. timer.stop();
  92. const F32 TICK = 1.0f / 30.0f;
  93. if(timer.getElapsedTime() < TICK)
  94. {
  95. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  96. }
  97. }
  98. commonDestroy();
  99. }
  100. ANKI_TEST(Gr, SimpleCompute)
  101. {
  102. commonInit();
  103. {
  104. BufferInitInfo buffInit;
  105. buffInit.m_mapAccess = BufferMapAccessBit::kWrite;
  106. buffInit.m_size = sizeof(Vec4);
  107. buffInit.m_usage = BufferUsageBit::kSrvCompute;
  108. BufferPtr readBuff = GrManager::getSingleton().newBuffer(buffInit);
  109. Vec4* inData = static_cast<Vec4*>(readBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite));
  110. const Vec4 kValue(123.456f, -666.666f, 172.2f, -16.0f);
  111. *inData = kValue;
  112. readBuff->unmap();
  113. buffInit.m_mapAccess = BufferMapAccessBit::kRead;
  114. buffInit.m_usage = BufferUsageBit::kUavCompute;
  115. BufferPtr writeBuff = GrManager::getSingleton().newBuffer(buffInit);
  116. constexpr const char* kSrc = R"(
  117. StructuredBuffer<float4> g_in : register(t0);
  118. RWStructuredBuffer<float4> g_out : register(u0);
  119. [numthreads(1, 1, 1)]
  120. void main()
  121. {
  122. g_out[0] = g_in[0];
  123. }
  124. )";
  125. ShaderPtr compShader = createShader(kSrc, ShaderType::kCompute);
  126. ShaderProgramInitInfo progInit("Program");
  127. progInit.m_computeShader = compShader.get();
  128. ShaderProgramPtr prog = GrManager::getSingleton().newShaderProgram(progInit);
  129. CommandBufferInitInfo cmdbInit;
  130. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  131. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  132. // Record
  133. cmdb->bindShaderProgram(prog.get());
  134. cmdb->bindStorageBuffer(ANKI_REG(t0), BufferView(readBuff.get()));
  135. cmdb->bindStorageBuffer(ANKI_REG(u0), BufferView(writeBuff.get()));
  136. cmdb->dispatchCompute(1, 1, 1);
  137. cmdb->endRecording();
  138. FencePtr signalFence;
  139. GrManager::getSingleton().submit(cmdb.get(), {}, &signalFence);
  140. signalFence->clientWait(kMaxSecond);
  141. // Check results
  142. Vec4* outData = static_cast<Vec4*>(writeBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kRead));
  143. ANKI_TEST_EXPECT_EQ(*outData, kValue);
  144. writeBuff->unmap();
  145. }
  146. commonDestroy();
  147. }
  148. ANKI_TEST(Gr, Bindings)
  149. {
  150. commonInit();
  151. {
  152. constexpr const char* kSrc = R"(
  153. struct Foo3
  154. {
  155. float x;
  156. float y;
  157. float z;
  158. };
  159. StructuredBuffer<float4> g_structured : register(t0);
  160. Texture2D g_tex : register(t2);
  161. Buffer<float4> g_buff : register(t3);
  162. RWStructuredBuffer<Foo3> g_rwstructured : register(u0, space2);
  163. RWTexture2D<float4> g_rwtex[3] : register(u2);
  164. RWBuffer<float4> g_rwbuff : register(u7);
  165. struct Foo
  166. {
  167. float4 m_val;
  168. };
  169. ConstantBuffer<Foo> g_consts : register(b0);
  170. struct Foo2
  171. {
  172. uint4 m_val;
  173. };
  174. #if defined(__spirv__)
  175. [[vk::push_constant]] ConstantBuffer<Foo2> g_pushConsts;
  176. [[vk::binding(0, 1000000)]] Texture2D g_bindless[];
  177. #else
  178. ConstantBuffer<Foo2> g_pushConsts : register(b0, space3000);
  179. #endif
  180. SamplerState g_sampler : register(s2);
  181. [numthreads(1, 1, 1)]
  182. void main()
  183. {
  184. float3 tmp = (g_structured[0] + g_structured[1]).xyz;
  185. Foo3 tmp3 = {tmp.x, tmp.y, tmp.z};
  186. g_rwstructured[0] = tmp3;
  187. tmp *= 2.0f;
  188. Foo3 tmp3_ = {tmp.x, tmp.y, tmp.z};
  189. g_rwstructured[1] = tmp3_;
  190. g_rwtex[0][uint2(0, 0)] = g_consts.m_val;
  191. #if defined(__spirv__)
  192. Texture2D tex = g_bindless[g_pushConsts.m_val.x];
  193. #else
  194. Texture2D tex = ResourceDescriptorHeap[g_pushConsts.m_val.x];
  195. #endif
  196. g_rwtex[1][uint2(0, 0)] = tex.SampleLevel(g_sampler, 0.0f, 0.0f);
  197. g_rwtex[2][uint2(0, 0)] = g_tex.SampleLevel(g_sampler, 0.0f, 0.0f);
  198. g_rwbuff[0] = g_buff[0];
  199. }
  200. )";
  201. struct Foo
  202. {
  203. F32 x;
  204. F32 y;
  205. F32 z;
  206. Foo() = default;
  207. Foo(Vec4 v)
  208. : x(v.x())
  209. , y(v.y())
  210. , z(v.z())
  211. {
  212. }
  213. Bool operator==(const Foo& b) const
  214. {
  215. return x == b.x && y == b.y && z == b.z;
  216. }
  217. };
  218. TextureInitInfo texInit;
  219. texInit.m_width = texInit.m_height = 1;
  220. texInit.m_format = Format::kR32G32B32A32_Sfloat;
  221. ShaderPtr compShader = createShader(kSrc, ShaderType::kCompute);
  222. ShaderProgramInitInfo progInit("Program");
  223. progInit.m_computeShader = compShader.get();
  224. ShaderProgramPtr prog = GrManager::getSingleton().newShaderProgram(progInit);
  225. const Vec4 kMagicVec(1.0f, 2.0f, 3.0f, 4.0f);
  226. const Vec4 kInvalidVec(1.0f, 2.0f, 3.0f, 4.0f);
  227. const Array<Vec4, 2> data = {kMagicVec, kMagicVec * 2.0f};
  228. BufferPtr structured = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, ConstWeakArray<Vec4>(data), "structured");
  229. texInit.m_usage = TextureUsageBit::kSrvCompute | TextureUsageBit::kCopyDestination;
  230. TexturePtr tex = createTexture2d(texInit, kMagicVec * 2.0f);
  231. BufferPtr buff = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, kMagicVec * 2.0f, 1, "buff");
  232. BufferPtr rwstructured = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, Foo(kInvalidVec), 2, "rwstructured");
  233. BufferPtr rwbuff = createBuffer(BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv, kInvalidVec, 1, "rwbuff");
  234. Array<TexturePtr, 3> rwtex;
  235. texInit.m_usage = TextureUsageBit::kUavCompute | TextureUsageBit::kCopyDestination;
  236. rwtex[0] = createTexture2d(texInit, kInvalidVec);
  237. rwtex[1] = createTexture2d(texInit, kInvalidVec);
  238. rwtex[2] = createTexture2d(texInit, kInvalidVec);
  239. BufferPtr consts = createBuffer(BufferUsageBit::kConstantCompute, kMagicVec * 3.0f, 1, "consts");
  240. SamplerInitInfo samplInit;
  241. SamplerPtr sampler = GrManager::getSingleton().newSampler(samplInit);
  242. const U32 bindlessIdx = tex->getOrCreateBindlessTextureIndex(TextureSubresourceDesc::all());
  243. // Record
  244. CommandBufferInitInfo cmdbInit;
  245. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  246. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  247. cmdb->bindShaderProgram(prog.get());
  248. cmdb->bindStorageBuffer(ANKI_REG(t0), BufferView(structured.get()));
  249. cmdb->bindTexture(ANKI_REG(t2), TextureView(tex.get(), TextureSubresourceDesc::all()));
  250. cmdb->bindTexelBuffer(ANKI_REG(t3), BufferView(buff.get()), Format::kR32G32B32A32_Sfloat);
  251. cmdb->bindStorageBuffer(ANKI_REG2(u0, space2), BufferView(rwstructured.get()));
  252. cmdb->bindTexture(ANKI_REG(u2), TextureView(rwtex[0].get(), TextureSubresourceDesc::firstSurface()));
  253. cmdb->bindTexture(ANKI_REG(u3), TextureView(rwtex[1].get(), TextureSubresourceDesc::firstSurface()));
  254. cmdb->bindTexture(ANKI_REG(u4), TextureView(rwtex[2].get(), TextureSubresourceDesc::firstSurface()));
  255. cmdb->bindTexelBuffer(ANKI_REG(u7), BufferView(rwbuff.get()), Format::kR32G32B32A32_Sfloat);
  256. cmdb->bindUniformBuffer(ANKI_REG(b0), BufferView(consts.get()));
  257. cmdb->bindSampler(ANKI_REG(s2), sampler.get());
  258. const UVec4 pc(bindlessIdx);
  259. cmdb->setPushConstants(&pc, sizeof(pc));
  260. cmdb->dispatchCompute(1, 1, 1);
  261. cmdb->endRecording();
  262. FencePtr signalFence;
  263. GrManager::getSingleton().submit(cmdb.get(), {}, &signalFence);
  264. signalFence->clientWait(kMaxSecond);
  265. // Check
  266. validateBuffer(rwstructured, ConstWeakArray(Array<Foo, 2>{kMagicVec + kMagicVec * 2.0f, (kMagicVec + kMagicVec * 2.0f) * 2.0f}));
  267. validateBuffer(rwbuff, ConstWeakArray(Array<Vec4, 1>{kMagicVec * 2.0f}));
  268. }
  269. commonDestroy();
  270. }
  271. ANKI_TEST(Gr, CoordinateSystem)
  272. {
  273. commonInit();
  274. {
  275. constexpr const Char* kVertSrc = R"(
  276. struct VertOut
  277. {
  278. float4 m_svPosition : SV_POSITION;
  279. float2 m_uv : TEXCOORDS;
  280. };
  281. VertOut main(uint svVertexId : SV_VERTEXID)
  282. {
  283. const float2 positions[6] = {float2(-1, -1), float2(1, 1), float2(-1, 1), float2(-1, -1), float2(1, -1), float2(1, 1)};
  284. svVertexId = min(svVertexId, 5u);
  285. VertOut o;
  286. o.m_svPosition = float4(positions[svVertexId], 0.0f, 1.0f);
  287. o.m_uv = positions[svVertexId].xy / 2.0f + 0.5f;
  288. return o;
  289. })";
  290. constexpr const Char* kFragSrc = R"(
  291. struct Viewport
  292. {
  293. float4 m_viewport;
  294. };
  295. #if defined(__spirv__)
  296. [[vk::push_constant]] ConstantBuffer<Viewport> g_viewport;
  297. #else
  298. ConstantBuffer<Viewport> g_viewport : register(b0, space3000);
  299. #endif
  300. Texture2D g_tex : register(t0);
  301. SamplerState g_sampler : register(s0);
  302. float4 main(float4 svPosition : SV_POSITION, float2 uv : TEXCOORDS, uint svPrimId : SV_PRIMITIVEID) : SV_TARGET0
  303. {
  304. if(svPrimId == 1u)
  305. {
  306. return float4(svPosition.xy / g_viewport.m_viewport.zw, 0.0f, 0.0f);
  307. }
  308. else
  309. {
  310. return g_tex.Sample(g_sampler, float2(uv.x, -uv.y) * 2.0f);
  311. }
  312. })";
  313. ShaderProgramPtr prog = createVertFragProg(kVertSrc, kFragSrc);
  314. // Create a texture
  315. TextureInitInfo texInit;
  316. texInit.m_width = 2;
  317. texInit.m_height = 2;
  318. texInit.m_format = Format::kR32G32B32A32_Sfloat;
  319. texInit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllTransfer;
  320. TexturePtr tex = GrManager::getSingleton().newTexture(texInit);
  321. BufferInitInfo buffInit;
  322. buffInit.m_mapAccess = BufferMapAccessBit::kWrite;
  323. buffInit.m_size = sizeof(Vec4) * 4;
  324. buffInit.m_usage = BufferUsageBit::kCopySource;
  325. BufferPtr uploadBuff = GrManager::getSingleton().newBuffer(buffInit);
  326. void* mappedMem = uploadBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  327. const Array<Vec4, 4> texelData = {Vec4(1.0f, 0.0f, 0.0f, 1.0f), Vec4(0.0f, 1.0f, 0.0f, 1.0f), Vec4(0.0f, 0.0f, 1.0f, 1.0f),
  328. Vec4(1.0f, 0.0f, 1.0f, 1.0f)};
  329. memcpy(mappedMem, &texelData[0][0], sizeof(texelData));
  330. uploadBuff->unmap();
  331. CommandBufferInitInfo cmdbInit;
  332. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  333. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  334. TextureBarrierInfo barrier = {TextureView(tex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  335. TextureUsageBit::kCopyDestination};
  336. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  337. cmdb->copyBufferToTexture(BufferView(uploadBuff.get()), TextureView(tex.get(), TextureSubresourceDesc::all()));
  338. barrier = {TextureView(tex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment};
  339. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  340. cmdb->endRecording();
  341. FencePtr fence;
  342. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  343. fence->clientWait(kMaxSecond);
  344. // Create sampler
  345. SamplerInitInfo samplInit;
  346. SamplerPtr sampler = GrManager::getSingleton().newSampler(samplInit);
  347. const U kIterationCount = 100;
  348. U iterations = kIterationCount;
  349. while(iterations--)
  350. {
  351. HighRezTimer timer;
  352. timer.start();
  353. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  354. CommandBufferInitInfo cinit;
  355. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  356. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  357. cmdb->setViewport(0, 0, NativeWindow::getSingleton().getWidth(), NativeWindow::getSingleton().getHeight());
  358. cmdb->bindShaderProgram(prog.get());
  359. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  360. TextureUsageBit::kRtvDsvWrite};
  361. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  362. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  363. const Vec4 viewport(0.0f, 0.0f, F32(NativeWindow::getSingleton().getWidth()), F32(NativeWindow::getSingleton().getHeight()));
  364. cmdb->setPushConstants(&viewport, sizeof(viewport));
  365. cmdb->bindTexture(ANKI_REG(t0), TextureView(tex.get(), TextureSubresourceDesc::all()));
  366. cmdb->bindSampler(ANKI_REG(s0), sampler.get());
  367. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  368. cmdb->endRenderPass();
  369. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  370. TextureUsageBit::kPresent};
  371. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  372. cmdb->endRecording();
  373. GrManager::getSingleton().submit(cmdb.get());
  374. GrManager::getSingleton().swapBuffers();
  375. timer.stop();
  376. const Second kTick = 1.0f / 30.0f;
  377. if(timer.getElapsedTime() < kTick)
  378. {
  379. HighRezTimer::sleep(kTick - timer.getElapsedTime());
  380. }
  381. }
  382. }
  383. commonDestroy();
  384. }
  385. ANKI_TEST(Gr, ViewportAndScissor)
  386. {
  387. #if 0
  388. COMMON_BEGIN()
  389. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  390. "the area around the quad");
  391. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  392. srand(time(nullptr));
  393. Array<FramebufferPtr, 4> fb;
  394. for(FramebufferPtr& f : fb)
  395. {
  396. FramebufferInitInfo fbinit;
  397. fbinit.m_colorAttachmentCount = 1;
  398. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  399. f = gr->newFramebuffer(fbinit);
  400. }
  401. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  402. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  403. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  404. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  405. const U ITERATIONS = 400;
  406. const U SCISSOR_MARGIN = 20;
  407. const U RENDER_AREA_MARGIN = 10;
  408. for(U i = 0; i < ITERATIONS; ++i)
  409. {
  410. HighRezTimer timer;
  411. timer.start();
  412. gr->beginFrame();
  413. CommandBufferInitInfo cinit;
  414. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  415. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  416. U idx = (i / 30) % 4;
  417. auto vp = VIEWPORTS[idx];
  418. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  419. cmdb->setScissor(
  420. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  421. cmdb->bindShaderProgram(prog);
  422. cmdb->beginRenderPass(fb[i % 4],
  423. {},
  424. {},
  425. vp[0] + RENDER_AREA_MARGIN,
  426. vp[1] + RENDER_AREA_MARGIN,
  427. vp[2] - RENDER_AREA_MARGIN * 2,
  428. vp[3] - RENDER_AREA_MARGIN * 2);
  429. cmdb->draw(PrimitiveTopology::TRIANGLE_STRIP, 4);
  430. cmdb->endRenderPass();
  431. cmdb->flush();
  432. gr->swapBuffers();
  433. timer.stop();
  434. const F32 TICK = 1.0f / 30.0f;
  435. if(timer.getElapsedTime() < TICK)
  436. {
  437. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  438. }
  439. }
  440. COMMON_END()
  441. #endif
  442. }
  443. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  444. {
  445. #if 0
  446. srand(U32(time(nullptr)));
  447. COMMON_BEGIN()
  448. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  449. void main()
  450. {
  451. out_color = vec4(0.5);
  452. })";
  453. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  454. "Around that quad is a border that changes color. "
  455. "The quads appear counter-clockwise");
  456. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, kFragSrc, *g_gr);
  457. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *g_gr);
  458. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  459. const U RT_WIDTH = 32;
  460. const U RT_HEIGHT = 16;
  461. TextureInitInfo init;
  462. init.m_depth = 1;
  463. init.m_format = COL_FORMAT;
  464. init.m_usage = TextureUsageBit::kSrvFragment | TextureUsageBit::kAllRtvDsv;
  465. init.m_height = RT_HEIGHT;
  466. init.m_width = RT_WIDTH;
  467. init.m_mipmapCount = 1;
  468. init.m_depth = 1;
  469. init.m_layerCount = 1;
  470. init.m_samples = 1;
  471. init.m_type = TextureType::k2D;
  472. TexturePtr rt = g_gr->newTexture(init);
  473. TextureViewInitInfo viewInit(rt.get());
  474. TextureViewPtr texView = g_gr->newTextureView(viewInit);
  475. Array<FramebufferPtr, 4> fb;
  476. for(FramebufferPtr& f : fb)
  477. {
  478. TextureViewInitInfo viewInf(rt.get());
  479. TextureViewPtr view = g_gr->newTextureView(viewInf);
  480. FramebufferInitInfo fbinit;
  481. fbinit.m_colorAttachmentCount = 1;
  482. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  483. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  484. fbinit.m_colorAttachments[0].m_textureView = view;
  485. f = g_gr->newFramebuffer(fbinit);
  486. }
  487. SamplerInitInfo samplerInit;
  488. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  489. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  490. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  491. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  492. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  493. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  494. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  495. const U32 ITERATIONS = 400;
  496. const U32 SCISSOR_MARGIN = 2;
  497. const U32 RENDER_AREA_MARGIN = 1;
  498. for(U32 i = 0; i < ITERATIONS; ++i)
  499. {
  500. HighRezTimer timer;
  501. timer.start();
  502. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  503. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  504. if(i == 0)
  505. {
  506. CommandBufferInitInfo cinit;
  507. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  508. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  509. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  510. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  511. cmdb->beginRenderPass(fb[0].get(), {{TextureUsageBit::kRtvDsvWrite}}, {});
  512. cmdb->endRenderPass();
  513. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  514. cmdb->endRecording();
  515. GrManager::getSingleton().submit(cmdb.get());
  516. }
  517. CommandBufferInitInfo cinit;
  518. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  519. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  520. // Draw offscreen
  521. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kSrvFragment, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  522. auto vp = VIEWPORTS[(i / 30) % 4];
  523. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  524. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  525. cmdb->bindShaderProgram(prog.get());
  526. cmdb->beginRenderPass(fb[i % 4].get(), {{TextureUsageBit::kRtvDsvWrite}}, {}, vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN,
  527. vp[2] - RENDER_AREA_MARGIN * 2, vp[3] - RENDER_AREA_MARGIN * 2);
  528. cmdb->draw(PrimitiveTopology::kTriangleStrip, 4);
  529. cmdb->endRenderPass();
  530. // Draw onscreen
  531. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  532. cmdb->setScissor(0, 0, g_win->getWidth(), g_win->getHeight());
  533. cmdb->bindShaderProgram(blitProg.get());
  534. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  535. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  536. presentBarrierA(cmdb, presentTex);
  537. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  538. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  539. cmdb->endRenderPass();
  540. presentBarrierB(cmdb, presentTex);
  541. cmdb->endRecording();
  542. GrManager::getSingleton().submit(cmdb.get());
  543. g_gr->swapBuffers();
  544. timer.stop();
  545. const F32 TICK = 1.0f / 30.0f;
  546. if(timer.getElapsedTime() < TICK)
  547. {
  548. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  549. }
  550. }
  551. COMMON_END()
  552. #endif
  553. }
  554. ANKI_TEST(Gr, Buffer)
  555. {
  556. #if 0
  557. COMMON_BEGIN()
  558. BufferInitInfo buffInit("a");
  559. buffInit.m_size = 512;
  560. buffInit.m_usage = BufferUsageBit::kAllConstant;
  561. buffInit.m_mapAccess = BufferMapAccessBit::kNone;
  562. BufferPtr a = g_gr->newBuffer(buffInit);
  563. buffInit.setName("b");
  564. buffInit.m_size = 64;
  565. buffInit.m_usage = BufferUsageBit::kAllStorage;
  566. buffInit.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  567. BufferPtr b = g_gr->newBuffer(buffInit);
  568. void* ptr = b->map(0, 64, BufferMapAccessBit::kWrite);
  569. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  570. U8 ptr2[64];
  571. memset(ptr, 0xCC, 64);
  572. memset(ptr2, 0xCC, 64);
  573. b->unmap();
  574. ptr = b->map(0, 64, BufferMapAccessBit::kRead);
  575. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  576. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  577. b->unmap();
  578. COMMON_END()
  579. #endif
  580. }
  581. ANKI_TEST(Gr, SimpleDrawcall)
  582. {
  583. commonInit();
  584. {
  585. // Prog
  586. constexpr const char* kUboVert = R"(
  587. struct A
  588. {
  589. float4 m_color[3];
  590. float4 m_rotation2d;
  591. };
  592. #if defined(__spirv__)
  593. [[vk::push_constant]] ConstantBuffer<A> g_pushConsts;
  594. #else
  595. ConstantBuffer<A> g_pushConsts : register(b0, space3000);
  596. #endif
  597. struct VertOut
  598. {
  599. float4 m_svPosition : SV_POSITION;
  600. float3 m_color : COLOR;
  601. };
  602. VertOut main(uint svVertexId : SV_VERTEXID)
  603. {
  604. VertOut o;
  605. // No dynamic branching with push constants
  606. float4 color;
  607. switch(svVertexId)
  608. {
  609. case 0:
  610. color = g_pushConsts.m_color[0];
  611. break;
  612. case 1:
  613. color = g_pushConsts.m_color[1];
  614. break;
  615. default:
  616. color = g_pushConsts.m_color[2];
  617. };
  618. o.m_color = color.xyz;
  619. const float2 kPositions[3] = {float2(-1.0, 1.0), float2(0.0, -1.0), float2(1.0, 1.0)};
  620. float2x2 rot = float2x2(
  621. g_pushConsts.m_rotation2d.x, g_pushConsts.m_rotation2d.y, g_pushConsts.m_rotation2d.z, g_pushConsts.m_rotation2d.w);
  622. float2 pos = mul(rot, kPositions[svVertexId % 3]);
  623. o.m_svPosition = float4(pos, 0.0, 1.0);
  624. return o;
  625. })";
  626. constexpr const char* kUboFrag = R"(
  627. struct VertOut
  628. {
  629. float4 m_svPosition : SV_POSITION;
  630. float3 m_color : COLOR;
  631. };
  632. float4 main(VertOut i) : SV_TARGET0
  633. {
  634. return float4(i.m_color, 1.0);
  635. })";
  636. ShaderProgramPtr prog = createVertFragProg(kUboVert, kUboFrag);
  637. const U kIterationCount = 100;
  638. U iterations = kIterationCount;
  639. while(iterations--)
  640. {
  641. HighRezTimer timer;
  642. timer.start();
  643. TexturePtr presentTex = GrManager::getSingleton().acquireNextPresentableTexture();
  644. CommandBufferInitInfo cinit;
  645. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  646. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cinit);
  647. cmdb->setViewport(0, 0, NativeWindow::getSingleton().getWidth(), NativeWindow::getSingleton().getHeight());
  648. cmdb->bindShaderProgram(prog.get());
  649. const TextureBarrierInfo barrier = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kNone,
  650. TextureUsageBit::kRtvDsvWrite};
  651. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  652. cmdb->pushDebugMarker("AnKi", Vec3(1.0f, 0.0f, 0.0f));
  653. cmdb->beginRenderPass({TextureView(presentTex.get(), TextureSubresourceDesc::firstSurface())});
  654. // Set uniforms
  655. class A
  656. {
  657. public:
  658. Array<Vec4, 3> m_color;
  659. Vec4 m_rotation2d;
  660. } pc;
  661. const F32 angle = toRad(360.0f / F32(kIterationCount) * F32(iterations)) / 2.0f;
  662. pc.m_rotation2d[0] = cos(angle);
  663. pc.m_rotation2d[1] = -sin(angle);
  664. pc.m_rotation2d[2] = sin(angle);
  665. pc.m_rotation2d[3] = cos(angle);
  666. pc.m_color[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  667. pc.m_color[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  668. pc.m_color[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  669. cmdb->setPushConstants(&pc, sizeof(pc));
  670. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  671. cmdb->endRenderPass();
  672. const TextureBarrierInfo barrier2 = {TextureView(presentTex.get(), TextureSubresourceDesc::all()), TextureUsageBit::kRtvDsvWrite,
  673. TextureUsageBit::kPresent};
  674. cmdb->setPipelineBarrier({&barrier2, 1}, {}, {});
  675. cmdb->popDebugMarker();
  676. cmdb->endRecording();
  677. GrManager::getSingleton().submit(cmdb.get());
  678. GrManager::getSingleton().swapBuffers();
  679. timer.stop();
  680. const Second kTick = 1.0f / 30.0f;
  681. if(timer.getElapsedTime() < kTick)
  682. {
  683. HighRezTimer::sleep(kTick - timer.getElapsedTime());
  684. }
  685. }
  686. }
  687. commonDestroy();
  688. }
  689. ANKI_TEST(Gr, DrawWithVertex)
  690. {
  691. #if 0
  692. COMMON_BEGIN()
  693. // The buffers
  694. struct Vert
  695. {
  696. Vec3 m_pos;
  697. Array<U8, 4> m_color;
  698. };
  699. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  700. BufferPtr b = g_gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  701. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::kWrite));
  702. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  703. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  704. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  705. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  706. ptr[0].m_color = {{255, 0, 0}};
  707. ptr[1].m_color = {{0, 255, 0}};
  708. ptr[2].m_color = {{0, 0, 255}};
  709. b->unmap();
  710. BufferPtr c = g_gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  711. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::kWrite));
  712. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  713. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  714. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  715. c->unmap();
  716. // Prog
  717. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *g_gr);
  718. U iterations = 100;
  719. while(iterations--)
  720. {
  721. HighRezTimer timer;
  722. timer.start();
  723. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  724. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  725. CommandBufferInitInfo cinit;
  726. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  727. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  728. cmdb->bindVertexBuffer(0, b.get(), 0, sizeof(Vert));
  729. cmdb->bindVertexBuffer(1, c.get(), 0, sizeof(Vec3));
  730. cmdb->setVertexAttribute(VertexAttributeSemantic::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  731. cmdb->setVertexAttribute(VertexAttributeSemantic::kColor, 0, Format::kR8G8B8_Unorm, sizeof(Vec3));
  732. cmdb->setVertexAttribute(VertexAttributeSemantic::kMisc0, 1, Format::kR32G32B32_Sfloat, 0);
  733. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  734. cmdb->setPolygonOffset(0.0, 0.0);
  735. cmdb->bindShaderProgram(prog.get());
  736. presentBarrierA(cmdb, presentTex);
  737. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  738. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  739. cmdb->endRenderPass();
  740. presentBarrierB(cmdb, presentTex);
  741. cmdb->endRecording();
  742. GrManager::getSingleton().submit(cmdb.get());
  743. g_gr->swapBuffers();
  744. timer.stop();
  745. const F32 TICK = 1.0f / 30.0f;
  746. if(timer.getElapsedTime() < TICK)
  747. {
  748. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  749. }
  750. }
  751. COMMON_END()
  752. #endif
  753. }
  754. ANKI_TEST(Gr, Sampler)
  755. {
  756. #if 0
  757. COMMON_BEGIN()
  758. SamplerInitInfo init;
  759. SamplerPtr b = g_gr->newSampler(init);
  760. COMMON_END()
  761. #endif
  762. }
  763. ANKI_TEST(Gr, Texture)
  764. {
  765. #if 0
  766. COMMON_BEGIN()
  767. TextureInitInfo init;
  768. init.m_depth = 1;
  769. init.m_format = Format::kR8G8B8_Unorm;
  770. init.m_usage = TextureUsageBit::kSrvFragment;
  771. init.m_height = 4;
  772. init.m_width = 4;
  773. init.m_mipmapCount = 2;
  774. init.m_depth = 1;
  775. init.m_layerCount = 1;
  776. init.m_samples = 1;
  777. init.m_type = TextureType::k2D;
  778. TexturePtr b = g_gr->newTexture(init);
  779. COMMON_END()
  780. #endif
  781. }
  782. ANKI_TEST(Gr, DrawWithTexture)
  783. {
  784. #if 0
  785. COMMON_BEGIN()
  786. //
  787. // Create sampler
  788. //
  789. SamplerInitInfo samplerInit;
  790. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  791. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  792. samplerInit.m_addressing = SamplingAddressing::kClamp;
  793. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  794. //
  795. // Create texture A
  796. //
  797. TextureInitInfo init;
  798. init.m_depth = 1;
  799. init.m_format = Format::kR8G8B8_Unorm;
  800. init.m_usage = TextureUsageBit::kSrvFragment | TextureUsageBit::kCopyDestination;
  801. init.m_height = 2;
  802. init.m_width = 2;
  803. init.m_mipmapCount = 2;
  804. init.m_samples = 1;
  805. init.m_depth = 1;
  806. init.m_layerCount = 1;
  807. init.m_type = TextureType::k2D;
  808. TexturePtr a = g_gr->newTexture(init);
  809. TextureViewPtr aView = g_gr->newTextureView(TextureViewInitInfo(a.get()));
  810. //
  811. // Create texture B
  812. //
  813. init.m_width = 4;
  814. init.m_height = 4;
  815. init.m_mipmapCount = 3;
  816. init.m_usage = TextureUsageBit::kSrvFragment | TextureUsageBit::kCopyDestination | TextureUsageBit::kGenerateMipmaps;
  817. TexturePtr b = g_gr->newTexture(init);
  818. TextureViewPtr bView = g_gr->newTextureView(TextureViewInitInfo(b.get()));
  819. //
  820. // Upload all textures
  821. //
  822. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  823. Array<U8, 3> mip1 = {{128, 128, 128}};
  824. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0, 255, 255, 255, 255, 255, 128, 0, 0, 0,
  825. 128, 0, 0, 0, 128, 128, 128, 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  826. CommandBufferInitInfo cmdbinit;
  827. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  828. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  829. // Set barriers
  830. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSrvFragment, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  831. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSrvFragment, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(1, 0, 0, 0));
  832. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  833. TransferGpuAllocatorHandle handle0, handle1, handle2;
  834. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceDescriptor(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  835. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceDescriptor(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  836. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceDescriptor(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  837. // Gen mips
  838. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kCopyDestination, TextureUsageBit::kGenerateMipmaps, TextureSurfaceDescriptor(0, 0, 0, 0));
  839. cmdb->generateMipmaps2d(g_gr->newTextureView(TextureViewInitInfo(b.get())).get());
  840. // Set barriers
  841. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  842. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(1, 0, 0, 0));
  843. for(U32 i = 0; i < 3; ++i)
  844. {
  845. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kGenerateMipmaps, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(i, 0, 0, 0));
  846. }
  847. FencePtr fence;
  848. cmdb->endRecording();
  849. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  850. transfAlloc->release(handle0, fence);
  851. transfAlloc->release(handle1, fence);
  852. transfAlloc->release(handle2, fence);
  853. //
  854. // Create prog
  855. //
  856. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  857. layout(location = 0) in vec2 in_uv;
  858. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  859. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  860. layout(push_constant) uniform b_pc
  861. {
  862. Vec4 u_viewport;
  863. };
  864. void main()
  865. {
  866. if(gl_FragCoord.x < u_viewport.x / 2.0)
  867. {
  868. if(gl_FragCoord.y < u_viewport.y / 2.0)
  869. {
  870. vec2 uv = in_uv * 2.0;
  871. out_color = textureLod(u_tex0, uv, 0.0);
  872. }
  873. else
  874. {
  875. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  876. out_color = textureLod(u_tex0, uv, 1.0);
  877. }
  878. }
  879. else
  880. {
  881. if(gl_FragCoord.y < u_viewport.y / 2.0)
  882. {
  883. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  884. out_color = textureLod(u_tex1, uv, 0.0);
  885. }
  886. else
  887. {
  888. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  889. out_color = textureLod(u_tex1, uv, 1.0);
  890. }
  891. }
  892. })";
  893. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *g_gr);
  894. //
  895. // Draw
  896. //
  897. const U ITERATION_COUNT = 200;
  898. U iterations = ITERATION_COUNT;
  899. while(iterations--)
  900. {
  901. HighRezTimer timer;
  902. timer.start();
  903. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  904. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  905. CommandBufferInitInfo cinit;
  906. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  907. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  908. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  909. cmdb->bindShaderProgram(prog.get());
  910. presentBarrierA(cmdb, presentTex);
  911. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  912. Vec4 pc(F32(g_win->getWidth()), F32(g_win->getHeight()), 0.0f, 0.0f);
  913. cmdb->setPushConstants(&pc, sizeof(pc));
  914. // cmdb->bindTextureAndSampler(0, 0, aView.get(), sampler.get());
  915. // cmdb->bindTextureAndSampler(0, 1, bView.get(), sampler.get());
  916. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  917. cmdb->endRenderPass();
  918. presentBarrierB(cmdb, presentTex);
  919. cmdb->endRecording();
  920. GrManager::getSingleton().submit(cmdb.get());
  921. g_gr->swapBuffers();
  922. timer.stop();
  923. const F32 TICK = 1.0f / 30.0f;
  924. if(timer.getElapsedTime() < TICK)
  925. {
  926. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  927. }
  928. }
  929. COMMON_END()
  930. #endif
  931. }
  932. #if 0
  933. static void drawOffscreenDrawcalls([[maybe_unused]] GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  934. BufferPtr indexBuff, BufferPtr vertBuff)
  935. {
  936. static F32 ang = -2.5f;
  937. ang += toRad(2.5f);
  938. Mat4 viewMat(Vec3(0.0, 0.0, 5.0), Mat3::getIdentity(), Vec3(1.0f));
  939. viewMat.invert();
  940. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  941. Mat4 modelMat(Vec3(-0.5, -0.5, 0.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), Vec3(1.0f));
  942. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  943. *mvp = projMat * viewMat * modelMat;
  944. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  945. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  946. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  947. cmdb->bindVertexBuffer(0, BufferView(vertBuff.get()), sizeof(Vec3));
  948. cmdb->setVertexAttribute(VertexAttributeSemantic::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  949. cmdb->bindShaderProgram(prog.get());
  950. cmdb->bindIndexBuffer(BufferView(indexBuff.get()), IndexType::kU16);
  951. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  952. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  953. // 2nd draw
  954. modelMat = Mat4(Vec3(0.5, 0.5, 0.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), Vec3(1.0f));
  955. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  956. *mvp = projMat * viewMat * modelMat;
  957. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  958. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  959. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  960. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  961. }
  962. #endif
  963. static void drawOffscreen(GrManager& gr)
  964. {
  965. #if 0
  966. //
  967. // Create textures
  968. //
  969. SamplerInitInfo samplerInit;
  970. samplerInit.m_minMagFilter = SamplingFilter::kLinear;
  971. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  972. SamplerPtr sampler = gr.newSampler(samplerInit);
  973. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  974. const U TEX_SIZE = 256;
  975. TextureInitInfo init;
  976. init.m_format = COL_FORMAT;
  977. init.m_usage = TextureUsageBit::kSrvFragment | TextureUsageBit::kAllRtvDsv;
  978. init.m_height = TEX_SIZE;
  979. init.m_width = TEX_SIZE;
  980. init.m_type = TextureType::k2D;
  981. TexturePtr col0 = gr.newTexture(init);
  982. TexturePtr col1 = gr.newTexture(init);
  983. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0.get()));
  984. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1.get()));
  985. init.m_format = kDsFormat;
  986. TexturePtr dp = gr.newTexture(init);
  987. //
  988. // Create FB
  989. //
  990. FramebufferInitInfo fbinit;
  991. fbinit.m_colorAttachmentCount = 2;
  992. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0.get()));
  993. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  994. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1.get()));
  995. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  996. TextureViewInitInfo viewInit(dp.get());
  997. viewInit.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  998. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  999. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  1000. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  1001. //
  1002. // Create buffs
  1003. //
  1004. BufferPtr verts, indices;
  1005. createCube(gr, verts, indices);
  1006. //
  1007. // Create progs
  1008. //
  1009. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  1010. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  1011. //
  1012. // Draw
  1013. //
  1014. const U ITERATION_COUNT = 200;
  1015. U iterations = ITERATION_COUNT;
  1016. while(iterations--)
  1017. {
  1018. HighRezTimer timer;
  1019. timer.start();
  1020. CommandBufferInitInfo cinit;
  1021. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1022. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  1023. cmdb->setPolygonOffset(0.0, 0.0);
  1024. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  1025. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSurfaceDescriptor(0, 0, 0, 0));
  1026. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kNone, TextureUsageBit::kAllRtvDsv, TextureSurfaceDescriptor(0, 0, 0, 0));
  1027. cmdb->beginRenderPass(fb.get(), {{TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kRtvDsvWrite}}, TextureUsageBit::kAllRtvDsv);
  1028. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  1029. cmdb->endRenderPass();
  1030. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  1031. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  1032. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kAllRtvDsv, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  1033. // Draw quad
  1034. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  1035. FramebufferPtr dfb = createColorFb(gr, presentTex);
  1036. presentBarrierA(cmdb, presentTex);
  1037. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1038. cmdb->bindShaderProgram(resolveProg.get());
  1039. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1040. // cmdb->bindTextureAndSampler(0, 0, col0View.get(), sampler.get());
  1041. // cmdb->bindTextureAndSampler(0, 2, col1View.get(), sampler.get());
  1042. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1043. cmdb->endRenderPass();
  1044. presentBarrierB(cmdb, presentTex);
  1045. cmdb->endRecording();
  1046. GrManager::getSingleton().submit(cmdb.get());
  1047. // End
  1048. gr.swapBuffers();
  1049. timer.stop();
  1050. const F32 TICK = 1.0f / 30.0f;
  1051. if(timer.getElapsedTime() < TICK)
  1052. {
  1053. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1054. }
  1055. }
  1056. #endif
  1057. }
  1058. ANKI_TEST(Gr, DrawOffscreen)
  1059. {
  1060. #if 0
  1061. COMMON_BEGIN()
  1062. drawOffscreen(*g_gr);
  1063. COMMON_END();
  1064. #endif
  1065. }
  1066. ANKI_TEST(Gr, ImageLoadStore)
  1067. {
  1068. #if 0
  1069. COMMON_BEGIN()
  1070. SamplerInitInfo samplerInit;
  1071. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1072. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1073. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1074. TextureInitInfo init;
  1075. init.m_width = init.m_height = 4;
  1076. init.m_mipmapCount = 2;
  1077. init.m_usage = TextureUsageBit::kCopyDestination | TextureUsageBit::kAllSrv | TextureUsageBit::kUavCompute;
  1078. init.m_type = TextureType::k2D;
  1079. init.m_format = Format::kR8G8B8A8_Unorm;
  1080. TexturePtr tex = g_gr->newTexture(init);
  1081. TextureViewInitInfo viewInit(tex.get());
  1082. viewInit.m_firstMipmap = 1;
  1083. viewInit.m_mipmapCount = 1;
  1084. TextureViewPtr view = g_gr->newTextureView(viewInit);
  1085. // Prog
  1086. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *g_gr);
  1087. // Create shader & compute prog
  1088. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::kCompute, *g_gr);
  1089. ShaderProgramInitInfo sprogInit;
  1090. sprogInit.m_computeShader = shader.get();
  1091. ShaderProgramPtr compProg = g_gr->newShaderProgram(sprogInit);
  1092. // Write texture data
  1093. CommandBufferInitInfo cmdbinit;
  1094. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1095. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(0, 0, 0, 0));
  1096. ClearValue clear;
  1097. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1098. TextureViewInitInfo viewInit2(tex.get(), TextureSurfaceDescriptor(0, 0, 0, 0));
  1099. cmdb->clearTextureView(g_gr->newTextureView(viewInit2).get(), clear);
  1100. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(0, 0, 0, 0));
  1101. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureSurfaceDescriptor(1, 0, 0, 0));
  1102. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1103. TextureViewInitInfo viewInit3(tex.get(), TextureSurfaceDescriptor(1, 0, 0, 0));
  1104. cmdb->clearTextureView(g_gr->newTextureView(viewInit3).get(), clear);
  1105. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kUavCompute, TextureSurfaceDescriptor(1, 0, 0, 0));
  1106. cmdb->endRecording();
  1107. GrManager::getSingleton().submit(cmdb.get());
  1108. const U ITERATION_COUNT = 100;
  1109. U iterations = ITERATION_COUNT;
  1110. while(iterations--)
  1111. {
  1112. HighRezTimer timer;
  1113. timer.start();
  1114. CommandBufferInitInfo cinit;
  1115. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1116. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1117. // Write image
  1118. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1119. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1120. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kUavCompute, TextureSurfaceDescriptor(1, 0, 0, 0));
  1121. cmdb->bindShaderProgram(compProg.get());
  1122. cmdb->bindStorageTexture(0, 0, view.get());
  1123. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1124. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kUavCompute, TextureUsageBit::kSrvFragment, TextureSurfaceDescriptor(1, 0, 0, 0));
  1125. // Present image
  1126. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1127. cmdb->bindShaderProgram(prog.get());
  1128. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1129. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1130. presentBarrierA(cmdb, presentTex);
  1131. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1132. // cmdb->bindTextureAndSampler(0, 0, g_gr->newTextureView(TextureViewInitInfo(tex.get())).get(), sampler.get());
  1133. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1134. cmdb->endRenderPass();
  1135. presentBarrierB(cmdb, presentTex);
  1136. cmdb->endRecording();
  1137. GrManager::getSingleton().submit(cmdb.get());
  1138. // End
  1139. g_gr->swapBuffers();
  1140. timer.stop();
  1141. const F32 TICK = 1.0f / 30.0f;
  1142. if(timer.getElapsedTime() < TICK)
  1143. {
  1144. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1145. }
  1146. }
  1147. COMMON_END()
  1148. #endif
  1149. }
  1150. ANKI_TEST(Gr, 3DTextures)
  1151. {
  1152. #if 0
  1153. COMMON_BEGIN()
  1154. SamplerInitInfo samplerInit;
  1155. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1156. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1157. samplerInit.m_addressing = SamplingAddressing::kClamp;
  1158. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1159. //
  1160. // Create texture A
  1161. //
  1162. TextureInitInfo init;
  1163. init.m_depth = 1;
  1164. init.m_format = Format::kR8G8B8A8_Unorm;
  1165. init.m_usage = TextureUsageBit::kSrvFragment | TextureUsageBit::kCopyDestination;
  1166. init.m_height = 2;
  1167. init.m_width = 2;
  1168. init.m_mipmapCount = 2;
  1169. init.m_samples = 1;
  1170. init.m_depth = 2;
  1171. init.m_layerCount = 1;
  1172. init.m_type = TextureType::k3D;
  1173. TexturePtr a = g_gr->newTexture(init);
  1174. //
  1175. // Upload all textures
  1176. //
  1177. Array<U8, 2 * 2 * 2 * 4> mip0 = {
  1178. {255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0, 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1179. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1180. CommandBufferInitInfo cmdbinit;
  1181. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1182. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1183. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureVolumeDescriptor(0));
  1184. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, TextureVolumeDescriptor(1));
  1185. TransferGpuAllocatorHandle handle0, handle1;
  1186. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeDescriptor(0), &mip0[0], sizeof(mip0), handle0);
  1187. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeDescriptor(1), &mip1[0], sizeof(mip1), handle1);
  1188. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment, TextureVolumeDescriptor(0));
  1189. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvFragment, TextureVolumeDescriptor(1));
  1190. FencePtr fence;
  1191. cmdb->endRecording();
  1192. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  1193. transfAlloc->release(handle0, fence);
  1194. transfAlloc->release(handle1, fence);
  1195. //
  1196. // Rest
  1197. //
  1198. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *g_gr);
  1199. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0), Vec4(0, 0, 1, 0),
  1200. Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0), Vec4(0, 0, 0, 1)}};
  1201. const U ITERATION_COUNT = 100;
  1202. U iterations = ITERATION_COUNT;
  1203. while(iterations--)
  1204. {
  1205. HighRezTimer timer;
  1206. timer.start();
  1207. CommandBufferInitInfo cinit;
  1208. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1209. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1210. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1211. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1212. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1213. presentBarrierA(cmdb, presentTex);
  1214. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1215. cmdb->bindShaderProgram(prog.get());
  1216. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1217. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1218. *uv = TEX_COORDS_LOD[idx];
  1219. // cmdb->bindTextureAndSampler(0, 1, g_gr->newTextureView(TextureViewInitInfo(a.get())).get(), sampler.get());
  1220. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1221. cmdb->endRenderPass();
  1222. presentBarrierB(cmdb, presentTex);
  1223. cmdb->endRecording();
  1224. GrManager::getSingleton().submit(cmdb.get());
  1225. // End
  1226. g_gr->swapBuffers();
  1227. timer.stop();
  1228. const F32 TICK = 1.0f / 15.0f;
  1229. if(timer.getElapsedTime() < TICK)
  1230. {
  1231. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1232. }
  1233. }
  1234. COMMON_END()
  1235. #endif
  1236. }
  1237. static RenderTargetDesc newRTDescr(CString name)
  1238. {
  1239. RenderTargetDesc texInf(name);
  1240. texInf.m_width = texInf.m_height = 16;
  1241. texInf.m_usage = TextureUsageBit::kRtvDsvWrite | TextureUsageBit::kSrvFragment;
  1242. texInf.m_format = Format::kR8G8B8A8_Unorm;
  1243. texInf.bake();
  1244. return texInf;
  1245. }
  1246. ANKI_TEST(Gr, RenderGraph)
  1247. {
  1248. #if 0
  1249. COMMON_BEGIN()
  1250. StackMemoryPool pool(allocAligned, nullptr, 2_MB);
  1251. RenderGraphBuilder descr(&pool);
  1252. RenderGraphPtr rgraph = g_gr->newRenderGraph();
  1253. const U GI_MIP_COUNT = 4;
  1254. TextureInitInfo texI("dummy");
  1255. texI.m_width = texI.m_height = 16;
  1256. texI.m_usage = TextureUsageBit::kRtvDsvWrite | TextureUsageBit::kSrvFragment;
  1257. texI.m_format = Format::kR8G8B8A8_Unorm;
  1258. TexturePtr dummyTex = g_gr->newTexture(texI);
  1259. // SM
  1260. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1261. {
  1262. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("SM");
  1263. pass.newTextureDependency(smScratchRt, TextureUsageBit::kAllRtvDsv);
  1264. }
  1265. // SM to exponential SM
  1266. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvFragment);
  1267. {
  1268. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("ESM");
  1269. pass.newTextureDependency(smScratchRt, TextureUsageBit::kSrvFragment);
  1270. pass.newTextureDependency(smExpRt, TextureUsageBit::kRtvDsvWrite);
  1271. }
  1272. // GI gbuff
  1273. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1274. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1275. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1276. {
  1277. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("GI gbuff");
  1278. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kRtvDsvWrite);
  1279. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kRtvDsvWrite);
  1280. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kRtvDsvWrite);
  1281. }
  1282. // GI light
  1283. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvFragment);
  1284. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1285. {
  1286. TextureSubresourceInfo subresource(TextureSurfaceDescriptor(0, faceIdx, 0));
  1287. GraphicsRenderPass& pass = descr.newGraphicsRenderPass(String().sprintf("GI lp%u", faceIdx).toCString());
  1288. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kRtvDsvWrite, subresource);
  1289. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kSrvFragment);
  1290. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kSrvFragment);
  1291. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kSrvFragment);
  1292. }
  1293. // GI light mips
  1294. {
  1295. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1296. {
  1297. GraphicsRenderPass& pass = descr.newGraphicsRenderPass(String().sprintf("GI mip%u", faceIdx).toCString());
  1298. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1299. {
  1300. TextureSurfaceDescriptor surf(mip, faceIdx, 0);
  1301. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kGenerateMipmaps, surf);
  1302. }
  1303. }
  1304. }
  1305. // Gbuffer
  1306. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1307. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1308. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1309. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1310. {
  1311. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("G-Buffer");
  1312. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kRtvDsvWrite);
  1313. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kRtvDsvWrite);
  1314. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kRtvDsvWrite);
  1315. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kRtvDsvWrite);
  1316. }
  1317. // Half depth
  1318. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1319. {
  1320. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("HalfDepth");
  1321. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSrvFragment);
  1322. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kRtvDsvWrite);
  1323. }
  1324. // Quarter depth
  1325. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1326. {
  1327. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1328. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kRtvDsvWrite);
  1329. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSrvFragment);
  1330. }
  1331. // SSAO
  1332. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1333. {
  1334. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("SSAO main");
  1335. pass.newTextureDependency(ssaoRt, TextureUsageBit::kRtvDsvWrite);
  1336. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSrvFragment);
  1337. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSrvFragment);
  1338. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1339. GraphicsRenderPass& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1340. pass2.newTextureDependency(ssaoRt, TextureUsageBit::kSrvFragment);
  1341. pass2.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kRtvDsvWrite);
  1342. GraphicsRenderPass& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1343. pass3.newTextureDependency(ssaoRt, TextureUsageBit::kRtvDsvWrite);
  1344. pass3.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kSrvFragment);
  1345. }
  1346. // Volumetric
  1347. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1348. {
  1349. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Vol main");
  1350. pass.newTextureDependency(volRt, TextureUsageBit::kRtvDsvWrite);
  1351. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSrvFragment);
  1352. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1353. GraphicsRenderPass& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1354. pass2.newTextureDependency(volRt, TextureUsageBit::kSrvFragment);
  1355. pass2.newTextureDependency(volVBlurRt, TextureUsageBit::kRtvDsvWrite);
  1356. GraphicsRenderPass& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1357. pass3.newTextureDependency(volRt, TextureUsageBit::kRtvDsvWrite);
  1358. pass3.newTextureDependency(volVBlurRt, TextureUsageBit::kSrvFragment);
  1359. }
  1360. // Forward shading
  1361. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1362. {
  1363. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Forward shading");
  1364. pass.newTextureDependency(fsRt, TextureUsageBit::kRtvDsvWrite);
  1365. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSrvFragment | TextureUsageBit::kRtvDsvRead);
  1366. pass.newTextureDependency(volRt, TextureUsageBit::kSrvFragment);
  1367. }
  1368. // Light shading
  1369. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1370. {
  1371. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Light shading");
  1372. pass.newTextureDependency(lightRt, TextureUsageBit::kRtvDsvWrite);
  1373. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kSrvFragment);
  1374. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kSrvFragment);
  1375. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSrvFragment);
  1376. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSrvFragment);
  1377. pass.newTextureDependency(smExpRt, TextureUsageBit::kSrvFragment);
  1378. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kSrvFragment);
  1379. pass.newTextureDependency(ssaoRt, TextureUsageBit::kSrvFragment);
  1380. pass.newTextureDependency(fsRt, TextureUsageBit::kSrvFragment);
  1381. }
  1382. // TAA
  1383. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSrvFragment);
  1384. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1385. {
  1386. GraphicsRenderPass& pass = descr.newGraphicsRenderPass("Temporal AA");
  1387. pass.newTextureDependency(lightRt, TextureUsageBit::kSrvFragment);
  1388. pass.newTextureDependency(taaRt, TextureUsageBit::kRtvDsvWrite);
  1389. pass.newTextureDependency(taaHistoryRt, TextureUsageBit::kSrvFragment);
  1390. }
  1391. rgraph->compileNewGraph(descr, pool);
  1392. COMMON_END()
  1393. #endif
  1394. }
  1395. /// Test workarounds for some unsupported formats
  1396. ANKI_TEST(Gr, VkWorkarounds)
  1397. {
  1398. #if 0
  1399. COMMON_BEGIN()
  1400. // Create program
  1401. static const char* COMP_SRC = R"(
  1402. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1403. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1404. layout(set = 0, binding = 1) buffer s_
  1405. {
  1406. uvec4 u_result;
  1407. };
  1408. shared uint g_wrong;
  1409. void main()
  1410. {
  1411. g_wrong = 0;
  1412. memoryBarrierShared();
  1413. barrier();
  1414. int lod = -1;
  1415. uint idx;
  1416. if(gl_LocalInvocationID.z == 0)
  1417. {
  1418. // First mip
  1419. lod = 0;
  1420. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1421. }
  1422. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1423. {
  1424. lod = 1;
  1425. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1426. }
  1427. if(lod != -1)
  1428. {
  1429. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1430. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1431. {
  1432. atomicAdd(g_wrong, 1);
  1433. }
  1434. }
  1435. memoryBarrierShared();
  1436. barrier();
  1437. if(g_wrong != 0)
  1438. {
  1439. u_result = uvec4(1);
  1440. }
  1441. else
  1442. {
  1443. u_result = uvec4(2);
  1444. }
  1445. })";
  1446. ShaderPtr comp = createShader(COMP_SRC, ShaderType::kCompute, *g_gr);
  1447. ShaderProgramInitInfo sinf;
  1448. sinf.m_computeShader = comp.get();
  1449. ShaderProgramPtr prog = g_gr->newShaderProgram(sinf);
  1450. // Create the texture
  1451. TextureInitInfo texInit;
  1452. texInit.m_width = texInit.m_height = 8;
  1453. texInit.m_format = Format::kR8G8B8_Uint;
  1454. texInit.m_type = TextureType::k2D;
  1455. texInit.m_usage = TextureUsageBit::kCopyDestination | TextureUsageBit::kAllSrv;
  1456. texInit.m_mipmapCount = 2;
  1457. TexturePtr tex = g_gr->newTexture(texInit);
  1458. TextureViewPtr texView = g_gr->newTextureView(TextureViewInitInfo(tex.get()));
  1459. SamplerInitInfo samplerInit;
  1460. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1461. // Create the buffer to copy to the texture
  1462. BufferPtr uploadBuff =
  1463. g_gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3, BufferUsageBit::kAllCopy, BufferMapAccessBit::kWrite));
  1464. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::kWrite));
  1465. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1466. {
  1467. data[0] = U8(i);
  1468. data[1] = U8(i + 1);
  1469. data[2] = U8(i + 2);
  1470. data += 3;
  1471. }
  1472. uploadBuff->unmap();
  1473. BufferPtr uploadBuff2 = g_gr->newBuffer(
  1474. BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3, BufferUsageBit::kAllCopy, BufferMapAccessBit::kWrite));
  1475. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::kWrite));
  1476. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1477. {
  1478. data[0] = U8(i);
  1479. data[1] = U8(i + 1);
  1480. data[2] = U8(i + 2);
  1481. data += 3;
  1482. }
  1483. uploadBuff2->unmap();
  1484. // Create the result buffer
  1485. BufferPtr resultBuff = g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kUavCompute, BufferMapAccessBit::kRead));
  1486. // Upload data and test them
  1487. CommandBufferInitInfo cmdbInit;
  1488. cmdbInit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1489. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbInit);
  1490. TextureSubresourceInfo subresource;
  1491. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1492. setTextureBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination, subresource);
  1493. cmdb->copyBufferToTexture(BufferView(uploadBuff.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceDescriptor(0, 0, 0))).get());
  1494. cmdb->copyBufferToTexture(BufferView(uploadBuff2.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceDescriptor(1, 0, 0))).get());
  1495. setTextureBarrier(cmdb, tex, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute, subresource);
  1496. cmdb->bindShaderProgram(prog.get());
  1497. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  1498. cmdb->bindStorageBuffer(0, 1, BufferView(resultBuff.get()));
  1499. cmdb->dispatchCompute(1, 1, 1);
  1500. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kUavCompute, BufferUsageBit::kUavCompute, 0, resultBuff->getSize());
  1501. cmdb->endRecording();
  1502. GrManager::getSingleton().submit(cmdb.get());
  1503. g_gr->finish();
  1504. // Get the result
  1505. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1506. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1507. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1508. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1509. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1510. resultBuff->unmap();
  1511. COMMON_END()
  1512. #endif
  1513. }
  1514. ANKI_TEST(Gr, PushConsts)
  1515. {
  1516. #if 0
  1517. COMMON_BEGIN()
  1518. static const char* VERT_SRC = R"(
  1519. struct PC
  1520. {
  1521. vec4 color;
  1522. ivec4 icolor;
  1523. vec4 arr[2];
  1524. mat4 mat;
  1525. };
  1526. layout(push_constant, std140) uniform pc_
  1527. {
  1528. PC regs;
  1529. };
  1530. out gl_PerVertex
  1531. {
  1532. vec4 gl_Position;
  1533. };
  1534. layout(location = 0) out vec4 out_color;
  1535. void main()
  1536. {
  1537. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1538. vec2 pos = uv * 2.0 - 1.0;
  1539. gl_Position = vec4(pos, 0.0, 1.0);
  1540. out_color = regs.color;
  1541. }
  1542. )";
  1543. static const char* FRAG_SRC = R"(
  1544. struct PC
  1545. {
  1546. vec4 color;
  1547. ivec4 icolor;
  1548. vec4 arr[2];
  1549. mat4 mat;
  1550. };
  1551. layout(push_constant, std140) uniform pc_
  1552. {
  1553. PC regs;
  1554. };
  1555. layout(location = 0) in vec4 in_color;
  1556. layout(location = 0) out vec4 out_color;
  1557. layout(set = 0, binding = 0) buffer s_
  1558. {
  1559. uvec4 u_result;
  1560. };
  1561. void main()
  1562. {
  1563. out_color = vec4(1.0);
  1564. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1565. {
  1566. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1567. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1568. || regs.mat[1][0] != 0.5)
  1569. {
  1570. u_result = uvec4(1u);
  1571. }
  1572. else
  1573. {
  1574. u_result = uvec4(2u);
  1575. }
  1576. }
  1577. }
  1578. )";
  1579. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *g_gr);
  1580. // Create the result buffer
  1581. BufferPtr resultBuff =
  1582. g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllStorage | BufferUsageBit::kCopyDestination, BufferMapAccessBit::kRead));
  1583. // Draw
  1584. CommandBufferInitInfo cinit;
  1585. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1586. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1587. cmdb->fillBuffer(resultBuff.get(), 0, resultBuff->getSize(), 0);
  1588. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kCopyDestination, BufferUsageBit::kStorageFragmentWrite, 0, resultBuff->getSize());
  1589. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1590. cmdb->bindShaderProgram(prog.get());
  1591. struct PushConstants
  1592. {
  1593. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1594. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1595. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1596. Mat4 m_mat = Mat4(0.0f);
  1597. } pc;
  1598. pc.m_mat(0, 1) = 0.5f;
  1599. cmdb->setPushConstants(&pc, sizeof(pc));
  1600. cmdb->bindStorageBuffer(0, 0, resultBuff.get(), 0, resultBuff->getSize());
  1601. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1602. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1603. presentBarrierA(cmdb, presentTex);
  1604. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1605. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  1606. cmdb->endRenderPass();
  1607. presentBarrierB(cmdb, presentTex);
  1608. cmdb->endRecording();
  1609. GrManager::getSingleton().submit(cmdb.get());
  1610. g_gr->swapBuffers();
  1611. g_gr->finish();
  1612. // Get the result
  1613. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1614. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1615. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1616. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1617. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1618. resultBuff->unmap();
  1619. COMMON_END()
  1620. #endif
  1621. }
  1622. ANKI_TEST(Gr, BindingWithArray)
  1623. {
  1624. #if 0
  1625. COMMON_BEGIN()
  1626. // Create result buffer
  1627. BufferPtr resBuff = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1628. Array<BufferPtr, 4> uniformBuffers;
  1629. F32 count = 1.0f;
  1630. for(BufferPtr& ptr : uniformBuffers)
  1631. {
  1632. ptr = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kWrite));
  1633. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::kWrite));
  1634. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1635. count += 4.0f;
  1636. ptr->unmap();
  1637. }
  1638. // Create program
  1639. static const char* PROG_SRC = R"(
  1640. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1641. layout(set = 0, binding = 0) uniform u_
  1642. {
  1643. vec4 m_vec;
  1644. } u_ubos[4];
  1645. layout(set = 0, binding = 1) writeonly buffer ss_
  1646. {
  1647. vec4 u_result;
  1648. };
  1649. void main()
  1650. {
  1651. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1652. })";
  1653. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  1654. ShaderProgramInitInfo sprogInit;
  1655. sprogInit.m_computeShader = shader.get();
  1656. ShaderProgramPtr prog = g_gr->newShaderProgram(sprogInit);
  1657. // Run
  1658. CommandBufferInitInfo cinit;
  1659. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1660. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1661. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1662. {
  1663. cmdb->bindUniformBuffer(0, 0, BufferView(uniformBuffers[i].get()), i);
  1664. }
  1665. cmdb->bindStorageBuffer(0, 1, BufferView(resBuff.get()));
  1666. cmdb->bindShaderProgram(prog.get());
  1667. cmdb->dispatchCompute(1, 1, 1);
  1668. cmdb->endRecording();
  1669. GrManager::getSingleton().submit(cmdb.get());
  1670. g_gr->finish();
  1671. // Check result
  1672. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::kRead));
  1673. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1674. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1675. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1676. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1677. resBuff->unmap();
  1678. COMMON_END();
  1679. #endif
  1680. }
  1681. ANKI_TEST(Gr, Bindless)
  1682. {
  1683. #if 0
  1684. COMMON_BEGIN()
  1685. // Create texture A
  1686. TextureInitInfo texInit;
  1687. texInit.m_width = 1;
  1688. texInit.m_height = 1;
  1689. texInit.m_format = Format::R32G32B32A32_UINT;
  1690. texInit.m_usage = TextureUsageBit::kAllUav | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::kAllSrv;
  1691. texInit.m_mipmapCount = 1;
  1692. TexturePtr texA = gr->newTexture(texInit);
  1693. // Create texture B
  1694. TexturePtr texB = gr->newTexture(texInit);
  1695. // Create texture C
  1696. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1697. TexturePtr texC = gr->newTexture(texInit);
  1698. // Create sampler
  1699. SamplerInitInfo samplerInit;
  1700. SamplerPtr sampler = gr->newSampler(samplerInit);
  1701. // Create views
  1702. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceDescriptor()));
  1703. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceDescriptor()));
  1704. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceDescriptor()));
  1705. // Create result buffer
  1706. BufferPtr resBuff =
  1707. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1708. // Create program A
  1709. static const char* PROG_SRC = R"(
  1710. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1711. ANKI_BINDLESS_SET(0u);
  1712. layout(set = 1, binding = 0) writeonly buffer ss_
  1713. {
  1714. uvec4 u_result;
  1715. };
  1716. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1717. layout(push_constant) uniform pc_
  1718. {
  1719. uvec4 u_texIndices;
  1720. };
  1721. void main()
  1722. {
  1723. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1724. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1725. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1726. u_result = val0 + val1 + uvec4(val2);
  1727. })";
  1728. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *gr);
  1729. ShaderProgramInitInfo sprogInit;
  1730. sprogInit.m_computeShader = shader;
  1731. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1732. // Run
  1733. CommandBufferInitInfo cinit;
  1734. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1735. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1736. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1737. TextureSurfaceDescriptor());
  1738. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1739. TextureSurfaceDescriptor());
  1740. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kNone, TextureUsageBit::kCopyDestination,
  1741. TextureSurfaceDescriptor());
  1742. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1743. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1744. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceDescriptor(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1745. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1746. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceDescriptor(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1747. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1748. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceDescriptor(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1749. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kCopyDestination, TextureUsageBit::kUavComputeRead,
  1750. TextureSurfaceDescriptor());
  1751. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute,
  1752. TextureSurfaceDescriptor());
  1753. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kCopyDestination, TextureUsageBit::kSrvCompute,
  1754. TextureSurfaceDescriptor());
  1755. cmdb->bindStorageBuffer(1, 0, resBuff, 0, kMaxPtrSize);
  1756. cmdb->bindSampler(1, 1, sampler);
  1757. cmdb->bindShaderProgram(prog);
  1758. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1759. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1760. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1761. UVec4 pc(idx0, idx1, idx2, 0);
  1762. cmdb->setPushConstants(&pc, sizeof(pc));
  1763. cmdb->bindAllBindless(0);
  1764. cmdb->dispatchCompute(1, 1, 1);
  1765. // Read result
  1766. FencePtr fence;
  1767. cmdb->flush({}, &fence);
  1768. transfAlloc->release(handle0, fence);
  1769. transfAlloc->release(handle1, fence);
  1770. transfAlloc->release(handle2, fence);
  1771. gr->finish();
  1772. // Check result
  1773. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::kRead));
  1774. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1775. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1776. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1777. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1778. resBuff->unmap();
  1779. COMMON_END()
  1780. #endif
  1781. }
  1782. ANKI_TEST(Gr, RayQuery)
  1783. {
  1784. #if 0
  1785. COMMON_BEGIN();
  1786. const Bool useRayTracing = g_gr->getDeviceCapabilities().m_rayTracingEnabled;
  1787. if(!useRayTracing)
  1788. {
  1789. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1790. }
  1791. // Index buffer
  1792. BufferPtr idxBuffer;
  1793. if(useRayTracing)
  1794. {
  1795. Array<U16, 3> indices = {0, 1, 2};
  1796. BufferInitInfo init;
  1797. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1798. init.m_usage = BufferUsageBit::kIndex;
  1799. init.m_size = sizeof(indices);
  1800. idxBuffer = g_gr->newBuffer(init);
  1801. void* addr = idxBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1802. memcpy(addr, &indices[0], sizeof(indices));
  1803. idxBuffer->unmap();
  1804. }
  1805. // Position buffer (add some padding to complicate things a bit)
  1806. BufferPtr vertBuffer;
  1807. if(useRayTracing)
  1808. {
  1809. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1810. BufferInitInfo init;
  1811. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1812. init.m_usage = BufferUsageBit::kVertex;
  1813. init.m_size = sizeof(verts);
  1814. vertBuffer = g_gr->newBuffer(init);
  1815. void* addr = vertBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1816. memcpy(addr, &verts[0], sizeof(verts));
  1817. vertBuffer->unmap();
  1818. }
  1819. // BLAS
  1820. AccelerationStructurePtr blas;
  1821. if(useRayTracing)
  1822. {
  1823. AccelerationStructureInitInfo init;
  1824. init.m_type = AccelerationStructureType::kBottomLevel;
  1825. init.m_bottomLevel.m_indexBuffer = idxBuffer.get();
  1826. init.m_bottomLevel.m_indexCount = 3;
  1827. init.m_bottomLevel.m_indexType = IndexType::kU16;
  1828. init.m_bottomLevel.m_positionBuffer = vertBuffer.get();
  1829. init.m_bottomLevel.m_positionCount = 3;
  1830. init.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  1831. init.m_bottomLevel.m_positionStride = 4 * 4;
  1832. blas = g_gr->newAccelerationStructure(init);
  1833. }
  1834. // TLAS
  1835. AccelerationStructurePtr tlas;
  1836. if(useRayTracing)
  1837. {
  1838. AccelerationStructureInitInfo init;
  1839. init.m_type = AccelerationStructureType::kTopLevel;
  1840. Array<AccelerationStructureInstanceInfo, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1841. init.m_topLevel.m_directArgs.m_instances = instances;
  1842. tlas = g_gr->newAccelerationStructure(init);
  1843. }
  1844. // Program
  1845. ShaderProgramPtr prog;
  1846. {
  1847. CString src = R"(
  1848. #if USE_RAY_TRACING
  1849. #extension GL_EXT_ray_query : enable
  1850. #endif
  1851. layout(push_constant, std140, row_major) uniform b_pc
  1852. {
  1853. Mat4 u_vp;
  1854. Vec3 u_cameraPos;
  1855. F32 u_padding0;
  1856. };
  1857. #if USE_RAY_TRACING
  1858. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1859. #endif
  1860. layout(location = 0) in Vec2 in_uv;
  1861. layout(location = 0) out Vec3 out_color;
  1862. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1863. {
  1864. const Vec3 v0v1 = v1 - v0;
  1865. const Vec3 v0v2 = v2 - v0;
  1866. const Vec3 pvec = cross(dir, v0v2);
  1867. const F32 det = dot(v0v1, pvec);
  1868. if(det < 0.00001)
  1869. {
  1870. return false;
  1871. }
  1872. const F32 invDet = 1.0 / det;
  1873. const Vec3 tvec = orig - v0;
  1874. u = dot(tvec, pvec) * invDet;
  1875. if(u < 0.0 || u > 1.0)
  1876. {
  1877. return false;
  1878. }
  1879. const Vec3 qvec = cross(tvec, v0v1);
  1880. v = dot(dir, qvec) * invDet;
  1881. if(v < 0.0 || u + v > 1.0)
  1882. {
  1883. return false;
  1884. }
  1885. t = dot(v0v2, qvec) * invDet;
  1886. return true;
  1887. }
  1888. void main()
  1889. {
  1890. // Unproject
  1891. const Vec2 ndc = in_uv * 2.0 - 1.0;
  1892. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  1893. const Vec3 p3 = p4.xyz / p4.w;
  1894. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  1895. const Vec3 rayOrigin = u_cameraPos;
  1896. #if USE_RAY_TRACING
  1897. Bool hit = false;
  1898. F32 u = 0.0;
  1899. F32 v = 0.0;
  1900. rayQueryEXT rayQuery;
  1901. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  1902. 0.01, rayDir, 1000.0);
  1903. rayQueryProceedEXT(rayQuery);
  1904. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  1905. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  1906. {
  1907. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  1908. u = bary.x;
  1909. v = bary.y;
  1910. hit = true;
  1911. }
  1912. #else
  1913. // Manual trace
  1914. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  1915. F32 t;
  1916. F32 u;
  1917. F32 v;
  1918. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  1919. #endif
  1920. if(hit)
  1921. {
  1922. out_color = Vec3(u, v, 1.0 - (u + v));
  1923. }
  1924. else
  1925. {
  1926. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  1927. }
  1928. }
  1929. )";
  1930. String fragSrc;
  1931. if(useRayTracing)
  1932. {
  1933. fragSrc += "#define USE_RAY_TRACING 1\n";
  1934. }
  1935. else
  1936. {
  1937. fragSrc += "#define USE_RAY_TRACING 0\n";
  1938. }
  1939. fragSrc += src;
  1940. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *g_gr);
  1941. }
  1942. // Build AS
  1943. if(useRayTracing)
  1944. {
  1945. CommandBufferInitInfo cinit;
  1946. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1947. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1948. setAccelerationStructureBarrier(cmdb, blas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  1949. BufferInitInfo scratchInit;
  1950. scratchInit.m_size = blas->getBuildScratchBufferSize();
  1951. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  1952. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  1953. cmdb->buildAccelerationStructure(blas.get(), scratchBuff.get(), 0);
  1954. setAccelerationStructureBarrier(cmdb, blas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kAttach);
  1955. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  1956. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  1957. scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  1958. cmdb->buildAccelerationStructure(tlas.get(), scratchBuff.get(), 0);
  1959. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kFragmentRead);
  1960. cmdb->endRecording();
  1961. GrManager::getSingleton().submit(cmdb.get());
  1962. }
  1963. // Draw
  1964. constexpr U32 ITERATIONS = 200;
  1965. for(U i = 0; i < ITERATIONS; ++i)
  1966. {
  1967. HighRezTimer timer;
  1968. timer.start();
  1969. const Vec4 cameraPos(0.0f, 0.0f, 3.0f, 0.0f);
  1970. const Mat4 viewMat = Mat4(cameraPos.xyz(), Mat3::getIdentity(), Vec3(1.0f)).getInverse();
  1971. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  1972. CommandBufferInitInfo cinit;
  1973. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1974. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1975. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1976. cmdb->bindShaderProgram(prog.get());
  1977. struct PC
  1978. {
  1979. Mat4 m_vp;
  1980. Vec4 m_cameraPos;
  1981. } pc;
  1982. pc.m_vp = projMat * viewMat;
  1983. pc.m_cameraPos = cameraPos;
  1984. cmdb->setPushConstants(&pc, sizeof(pc));
  1985. if(useRayTracing)
  1986. {
  1987. cmdb->bindAccelerationStructure(0, 0, tlas.get());
  1988. }
  1989. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1990. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  1991. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite, TextureSubresourceInfo{});
  1992. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kRtvDsvWrite}, {});
  1993. cmdb->draw(PrimitiveTopology::kTriangleStrip, 4);
  1994. cmdb->endRenderPass();
  1995. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kRtvDsvWrite, TextureUsageBit::kPresent, TextureSubresourceInfo{});
  1996. cmdb->endRecording();
  1997. GrManager::getSingleton().submit(cmdb.get());
  1998. g_gr->swapBuffers();
  1999. timer.stop();
  2000. const F32 TICK = 1.0f / 30.0f;
  2001. if(timer.getElapsedTime() < TICK)
  2002. {
  2003. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2004. }
  2005. }
  2006. COMMON_END();
  2007. #endif
  2008. }
  2009. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer, Bool turnInsideOut = false)
  2010. {
  2011. BufferInitInfo inf;
  2012. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2013. inf.m_usage = BufferUsageBit::kIndex | BufferUsageBit::kVertex | BufferUsageBit::kSrvTraceRays;
  2014. inf.m_size = sizeof(Vec3) * 8;
  2015. vertBuffer = gr.newBuffer(inf);
  2016. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::kWrite);
  2017. // 7------6
  2018. // /| /|
  2019. // 3------2 |
  2020. // | | | |
  2021. // | 4 ---|-5
  2022. // |/ |/
  2023. // 0------1
  2024. positions[0] = Vec3(min.x(), min.y(), max.z());
  2025. positions[1] = Vec3(max.x(), min.y(), max.z());
  2026. positions[2] = Vec3(max.x(), max.y(), max.z());
  2027. positions[3] = Vec3(min.x(), max.y(), max.z());
  2028. positions[4] = Vec3(min.x(), min.y(), min.z());
  2029. positions[5] = Vec3(max.x(), min.y(), min.z());
  2030. positions[6] = Vec3(max.x(), max.y(), min.z());
  2031. positions[7] = Vec3(min.x(), max.y(), min.z());
  2032. vertBuffer->unmap();
  2033. inf.m_size = sizeof(U16) * 36;
  2034. indexBuffer = gr.newBuffer(inf);
  2035. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::kWrite);
  2036. U32 t = 0;
  2037. // Top
  2038. indices[t++] = 3;
  2039. indices[t++] = 2;
  2040. indices[t++] = 7;
  2041. indices[t++] = 2;
  2042. indices[t++] = 6;
  2043. indices[t++] = 7;
  2044. // Bottom
  2045. indices[t++] = 1;
  2046. indices[t++] = 0;
  2047. indices[t++] = 4;
  2048. indices[t++] = 1;
  2049. indices[t++] = 4;
  2050. indices[t++] = 5;
  2051. // Left
  2052. indices[t++] = 0;
  2053. indices[t++] = 3;
  2054. indices[t++] = 4;
  2055. indices[t++] = 3;
  2056. indices[t++] = 7;
  2057. indices[t++] = 4;
  2058. // Right
  2059. indices[t++] = 1;
  2060. indices[t++] = 5;
  2061. indices[t++] = 2;
  2062. indices[t++] = 2;
  2063. indices[t++] = 5;
  2064. indices[t++] = 6;
  2065. // Front
  2066. indices[t++] = 0;
  2067. indices[t++] = 1;
  2068. indices[t++] = 3;
  2069. indices[t++] = 3;
  2070. indices[t++] = 1;
  2071. indices[t++] = 2;
  2072. // Back
  2073. indices[t++] = 4;
  2074. indices[t++] = 7;
  2075. indices[t++] = 6;
  2076. indices[t++] = 5;
  2077. indices[t++] = 4;
  2078. indices[t++] = 6;
  2079. ANKI_ASSERT(t == indices.getSize());
  2080. if(turnInsideOut)
  2081. {
  2082. for(U32 i = 0; i < t; i += 3)
  2083. {
  2084. std::swap(indices[i + 1], indices[i + 2]);
  2085. }
  2086. }
  2087. indexBuffer->unmap();
  2088. }
  2089. enum class GeomWhat
  2090. {
  2091. SMALL_BOX,
  2092. BIG_BOX,
  2093. ROOM,
  2094. LIGHT,
  2095. kCount,
  2096. kFirst = 0
  2097. };
  2098. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2099. ANKI_TEST(Gr, RayGen)
  2100. {
  2101. #if 0
  2102. COMMON_BEGIN();
  2103. const Bool useRayTracing = g_gr->getDeviceCapabilities().m_rayTracingEnabled;
  2104. if(!useRayTracing)
  2105. {
  2106. ANKI_TEST_LOGW("Ray tracing not supported");
  2107. break;
  2108. }
  2109. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2110. # define MAGIC_MACRO(x) x
  2111. # include <Tests/Gr/RtTypes.h>
  2112. # undef MAGIC_MACRO
  2113. HeapMemoryPool pool(allocAligned, nullptr);
  2114. // Create the offscreen RTs
  2115. Array<TexturePtr, 2> offscreenRts;
  2116. {
  2117. TextureInitInfo inf("T_offscreen#1");
  2118. inf.m_width = WIDTH;
  2119. inf.m_height = HEIGHT;
  2120. inf.m_format = Format::kR8G8B8A8_Unorm;
  2121. inf.m_usage = TextureUsageBit::kUavTraceRaysRead | TextureUsageBit::kUavTraceRaysWrite | TextureUsageBit::kUavComputeRead;
  2122. offscreenRts[0] = g_gr->newTexture(inf);
  2123. inf.setName("T_offscreen#2");
  2124. offscreenRts[1] = g_gr->newTexture(inf);
  2125. }
  2126. // Copy to present program
  2127. ShaderProgramPtr copyToPresentProg;
  2128. {
  2129. const CString src = R"(
  2130. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2131. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2132. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2133. void main()
  2134. {
  2135. const UVec2 size = UVec2(imageSize(u_inImg));
  2136. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2137. {
  2138. return;
  2139. }
  2140. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2141. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2142. })";
  2143. ShaderPtr shader = createShader(src, ShaderType::kCompute, *g_gr);
  2144. ShaderProgramInitInfo sprogInit;
  2145. sprogInit.m_computeShader = shader.get();
  2146. copyToPresentProg = g_gr->newShaderProgram(sprogInit);
  2147. }
  2148. // Create the gometries
  2149. struct Geom
  2150. {
  2151. BufferPtr m_vertexBuffer;
  2152. BufferPtr m_indexBuffer;
  2153. Aabb m_aabb;
  2154. Mat3x4 m_worldTransform;
  2155. Mat3 m_worldRotation;
  2156. Bool m_insideOut = false;
  2157. U8 m_asMask = 0b10;
  2158. AccelerationStructurePtr m_blas;
  2159. U32 m_indexCount = 36;
  2160. Vec3 m_diffuseColor = Vec3(0.0f);
  2161. Vec3 m_emissiveColor = Vec3(0.0f);
  2162. };
  2163. Array<Geom, U(GeomWhat::kCount)> geometries;
  2164. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2165. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2166. geometries[GeomWhat::SMALL_BOX].m_worldTransform =
  2167. Mat3x4(Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz() / 2.0f),
  2168. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2169. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2170. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2171. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2172. geometries[GeomWhat::BIG_BOX].m_worldTransform =
  2173. Mat3x4(Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz() / 2.0f),
  2174. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2175. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2176. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2177. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2178. geometries[GeomWhat::ROOM].m_worldTransform =
  2179. Mat3x4(Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2180. geometries[GeomWhat::ROOM].m_worldRotation);
  2181. geometries[GeomWhat::ROOM].m_insideOut = true;
  2182. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2183. geometries[GeomWhat::LIGHT].m_aabb = Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2184. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2185. geometries[GeomWhat::LIGHT].m_worldTransform =
  2186. Mat3x4(Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2187. geometries[GeomWhat::LIGHT].m_worldRotation);
  2188. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2189. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2190. // Create Buffers
  2191. for(Geom& g : geometries)
  2192. {
  2193. createCubeBuffers(*g_gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2194. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer, g.m_insideOut);
  2195. }
  2196. // Create AS
  2197. AccelerationStructurePtr tlas;
  2198. {
  2199. for(Geom& g : geometries)
  2200. {
  2201. AccelerationStructureInitInfo inf;
  2202. inf.m_type = AccelerationStructureType::kBottomLevel;
  2203. inf.m_bottomLevel.m_indexBuffer = BufferView(g.m_indexBuffer.get());
  2204. inf.m_bottomLevel.m_indexType = IndexType::kU16;
  2205. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2206. inf.m_bottomLevel.m_positionBuffer = BufferView(g.m_vertexBuffer.get());
  2207. inf.m_bottomLevel.m_positionCount = 8;
  2208. inf.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  2209. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2210. g.m_blas = g_gr->newAccelerationStructure(inf);
  2211. }
  2212. // TLAS
  2213. Array<AccelerationStructureInstanceInfo, U32(GeomWhat::kCount)> instances;
  2214. U32 count = 0;
  2215. for(Geom& g : geometries)
  2216. {
  2217. instances[count].m_bottomLevel = g.m_blas;
  2218. instances[count].m_transform = g.m_worldTransform;
  2219. instances[count].m_hitgroupSbtRecordIndex = count;
  2220. instances[count].m_mask = g.m_asMask;
  2221. ++count;
  2222. }
  2223. AccelerationStructureInitInfo inf;
  2224. inf.m_type = AccelerationStructureType::kTopLevel;
  2225. inf.m_topLevel.m_directArgs.m_instances = instances;
  2226. tlas = g_gr->newAccelerationStructure(inf);
  2227. }
  2228. // Create model info
  2229. BufferPtr modelBuffer;
  2230. {
  2231. BufferInitInfo inf;
  2232. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2233. inf.m_usage = BufferUsageBit::kAllStorage;
  2234. inf.m_size = sizeof(Model) * U32(GeomWhat::kCount);
  2235. modelBuffer = g_gr->newBuffer(inf);
  2236. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::kCount), BufferMapAccessBit::kWrite);
  2237. memset(&models[0], 0, inf.m_size);
  2238. for(GeomWhat i : EnumIterable<GeomWhat>())
  2239. {
  2240. const Geom& g = geometries[i];
  2241. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2242. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2243. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2244. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2245. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2246. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2247. }
  2248. modelBuffer->unmap();
  2249. }
  2250. // Create the ppline
  2251. ShaderProgramPtr rtProg;
  2252. constexpr U32 rayGenGroupIdx = 1;
  2253. constexpr U32 missGroupIdx = 2;
  2254. constexpr U32 shadowMissGroupIdx = 3;
  2255. constexpr U32 lambertianChitGroupIdx = 4;
  2256. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2257. constexpr U32 emissiveChitGroupIdx = 6;
  2258. constexpr U32 shadowAhitGroupIdx = 7;
  2259. constexpr U32 hitgroupCount = 7;
  2260. {
  2261. const CString commonSrcPart = R"(
  2262. #define Mat3x4Scalar Mat3x4
  2263. %s
  2264. const F32 PI = 3.14159265358979323846;
  2265. struct PayLoad
  2266. {
  2267. Vec3 m_total;
  2268. Vec3 m_weight;
  2269. Vec3 m_scatteredDir;
  2270. F32 m_hitT;
  2271. };
  2272. struct ShadowPayLoad
  2273. {
  2274. F32 m_shadow;
  2275. };
  2276. layout(set = 0, binding = 0, scalar) buffer b_00
  2277. {
  2278. Model u_models[];
  2279. };
  2280. layout(set = 0, binding = 1, scalar) buffer b_01
  2281. {
  2282. Light u_lights[];
  2283. };
  2284. layout(push_constant, scalar) uniform b_pc
  2285. {
  2286. PushConstants u_regs;
  2287. };
  2288. #define PAYLOAD_LOCATION 0
  2289. #define SHADOW_PAYLOAD_LOCATION 1
  2290. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2291. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2292. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2293. {
  2294. const Mesh mesh = model.m_mesh;
  2295. const U32 offset = primitiveId * 6;
  2296. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2297. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2298. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2299. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2300. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2301. return model.m_worldRotation * normal;
  2302. }
  2303. UVec3 rand3DPCG16(UVec3 v)
  2304. {
  2305. v = v * 1664525u + 1013904223u;
  2306. v.x += v.y * v.z;
  2307. v.y += v.z * v.x;
  2308. v.z += v.x * v.y;
  2309. v.x += v.y * v.z;
  2310. v.y += v.z * v.x;
  2311. v.z += v.x * v.y;
  2312. return v >> 16u;
  2313. }
  2314. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2315. {
  2316. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2317. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2318. return Vec2(e1, e2);
  2319. }
  2320. Vec3 hemisphereSampleUniform(Vec2 uv)
  2321. {
  2322. const F32 phi = uv.y * 2.0 * PI;
  2323. const F32 cosTheta = 1.0 - uv.x;
  2324. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2325. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2326. }
  2327. Mat3 rotationFromDirection(Vec3 zAxis)
  2328. {
  2329. Vec3 z = zAxis;
  2330. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2331. F32 a = -1.0 / (sign + z.z);
  2332. F32 b = z.x * z.y * a;
  2333. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2334. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2335. return Mat3(x, y, z);
  2336. }
  2337. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2338. {
  2339. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2340. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2341. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2342. }
  2343. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2344. {
  2345. scatterDir = randomDirectionInHemisphere(normal);
  2346. pdf = dot(normal, scatterDir) / PI;
  2347. }
  2348. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2349. {
  2350. F32 cosine = dot(normal, scatteredDir);
  2351. return max(cosine / PI, 0.0);
  2352. })";
  2353. # define MAGIC_MACRO ANKI_STRINGIZE
  2354. const CString rtTypesStr =
  2355. # include <Tests/Gr/RtTypes.h>
  2356. ;
  2357. # undef MAGIC_MACRO
  2358. String commonSrc;
  2359. commonSrc.sprintf(commonSrcPart.cstr(), rtTypesStr.cstr());
  2360. const CString lambertianSrc = R"(
  2361. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2362. hitAttributeEXT vec2 g_attribs;
  2363. void main()
  2364. {
  2365. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2366. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2367. Vec3 scatteredDir;
  2368. F32 pdf;
  2369. scatterLambertian(normal, scatteredDir, pdf);
  2370. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2371. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2372. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2373. s_payLoad.m_scatteredDir = scatteredDir;
  2374. s_payLoad.m_hitT = gl_HitTEXT;
  2375. })";
  2376. const CString lambertianRoomSrc = R"(
  2377. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2378. void main()
  2379. {
  2380. Vec3 col;
  2381. U32 quad = gl_PrimitiveID / 2;
  2382. if(quad == 2)
  2383. {
  2384. col = Vec3(0.65, 0.05, 0.05);
  2385. }
  2386. else if(quad == 3)
  2387. {
  2388. col = Vec3(0.12, 0.45, 0.15);
  2389. }
  2390. else
  2391. {
  2392. col = Vec3(0.73f);
  2393. }
  2394. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2395. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2396. Vec3 scatteredDir;
  2397. F32 pdf;
  2398. scatterLambertian(normal, scatteredDir, pdf);
  2399. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2400. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2401. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2402. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2403. s_payLoad.m_scatteredDir = scatteredDir;
  2404. s_payLoad.m_hitT = gl_HitTEXT;
  2405. })";
  2406. const CString emissiveSrc = R"(
  2407. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2408. void main()
  2409. {
  2410. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2411. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2412. s_payLoad.m_weight = Vec3(0.0);
  2413. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2414. s_payLoad.m_hitT = -1.0;
  2415. })";
  2416. const CString missSrc = R"(
  2417. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2418. void main()
  2419. {
  2420. //s_payLoad.m_color =
  2421. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2422. //Vec3(0.0);
  2423. s_payLoad.m_weight = Vec3(0.0);
  2424. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2425. s_payLoad.m_hitT = -1.0;
  2426. })";
  2427. const CString shadowAhitSrc = R"(
  2428. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2429. void main()
  2430. {
  2431. s_payLoad.m_shadow += 0.25;
  2432. //terminateRayEXT();
  2433. })";
  2434. const CString shadowChitSrc = R"(
  2435. void main()
  2436. {
  2437. })";
  2438. const CString shadowMissSrc = R"(
  2439. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2440. void main()
  2441. {
  2442. s_payLoad.m_shadow = 1.0;
  2443. })";
  2444. const CString rayGenSrc = R"(
  2445. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2446. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2447. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2448. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2449. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2450. void main()
  2451. {
  2452. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2453. uv.y = 1.0 - uv.y;
  2454. const Vec2 ndc = uv * 2.0 - 1.0;
  2455. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2456. const Vec3 p3 = p4.xyz / p4.w;
  2457. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2458. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2459. Vec3 outColor = Vec3(0.0);
  2460. const U32 sampleCount = 8;
  2461. const U32 maxRecursionDepth = 2;
  2462. for(U32 s = 0; s < sampleCount; ++s)
  2463. {
  2464. Vec3 rayOrigin = u_regs.m_cameraPos;
  2465. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2466. s_payLoad.m_total = Vec3(0.0);
  2467. s_payLoad.m_weight = Vec3(1.0);
  2468. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2469. {
  2470. const U32 cullMask = 0xFF;
  2471. const U32 sbtRecordOffset = 0;
  2472. const U32 sbtRecordStride = 0;
  2473. const U32 missIndex = 0;
  2474. const F32 tMin = 0.1;
  2475. const F32 tMax = 10000.0;
  2476. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2477. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2478. if(s_payLoad.m_hitT > 0.0)
  2479. {
  2480. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2481. rayDir = s_payLoad.m_scatteredDir;
  2482. }
  2483. else
  2484. {
  2485. break;
  2486. }
  2487. }
  2488. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2489. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2490. }
  2491. outColor /= F32(sampleCount);
  2492. #if 0
  2493. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2494. const Vec3 normal = s_payLoad.m_normal;
  2495. if(s_payLoad.m_hitT > 0.0)
  2496. {
  2497. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2498. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2499. {
  2500. s_shadowPayLoad.m_shadow = 0.0;
  2501. const Light light = u_lights[i];
  2502. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2503. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2504. const U32 cullMask = 0x2;
  2505. const U32 sbtRecordOffset = 1;
  2506. const U32 sbtRecordStride = 0;
  2507. const U32 missIndex = 1;
  2508. const F32 tMin = 0.1;
  2509. const F32 tMax = length(randomPointInLight - rayOrigin);
  2510. const U32 flags = gl_RayFlagsOpaqueEXT;
  2511. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2512. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2513. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2514. outColor += normal * light.m_intensity * shadow;
  2515. }
  2516. }
  2517. else
  2518. {
  2519. outColor = diffuseColor;
  2520. }
  2521. #endif
  2522. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2523. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2524. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2525. })";
  2526. ShaderPtr lambertianShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2527. ShaderPtr lambertianRoomShader =
  2528. createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2529. ShaderPtr emissiveShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2530. ShaderPtr shadowAhitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::kAnyHit, *g_gr);
  2531. ShaderPtr shadowChitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2532. ShaderPtr missShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::kMiss, *g_gr);
  2533. ShaderPtr shadowMissShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::kMiss, *g_gr);
  2534. ShaderPtr rayGenShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()), ShaderType::kRayGen, *g_gr);
  2535. Array<RayTracingHitGroup, 4> hitGroups;
  2536. hitGroups[0].m_closestHitShader = lambertianShader.get();
  2537. hitGroups[1].m_closestHitShader = lambertianRoomShader.get();
  2538. hitGroups[2].m_closestHitShader = emissiveShader.get();
  2539. hitGroups[3].m_closestHitShader = shadowChitShader.get();
  2540. hitGroups[3].m_anyHitShader = shadowAhitShader.get();
  2541. Array<Shader*, 2> missShaders = {missShader.get(), shadowMissShader.get()};
  2542. // Add the same 2 times to test multiple ray gen shaders
  2543. Array<Shader*, 2> rayGenShaders = {rayGenShader.get(), rayGenShader.get()};
  2544. ShaderProgramInitInfo inf;
  2545. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2546. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2547. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2548. rtProg = g_gr->newShaderProgram(inf);
  2549. }
  2550. // Create the SBT
  2551. BufferPtr sbt;
  2552. {
  2553. const U32 recordCount = 1 + 2 + U32(GeomWhat::kCount) * 2;
  2554. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2555. BufferInitInfo inf;
  2556. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2557. inf.m_usage = BufferUsageBit::kShaderBindingTable;
  2558. inf.m_size = sbtRecordSize * recordCount;
  2559. sbt = g_gr->newBuffer(inf);
  2560. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::kWrite);
  2561. memset(&mapped[0], 0, inf.m_size);
  2562. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2563. ANKI_TEST_EXPECT_EQ(handles.getSize(), g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2564. // Ray gen
  2565. U32 record = 0;
  2566. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2567. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2568. // 2xMiss
  2569. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2570. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2571. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2572. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2573. // Small box
  2574. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2575. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2576. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2577. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2578. // Big box
  2579. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2580. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2581. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2582. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2583. // Room
  2584. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2585. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2586. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2587. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2588. // Light
  2589. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2590. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2591. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2592. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2593. sbt->unmap();
  2594. }
  2595. // Create lights
  2596. BufferPtr lightBuffer;
  2597. constexpr U32 lightCount = 1;
  2598. {
  2599. BufferInitInfo inf;
  2600. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2601. inf.m_usage = BufferUsageBit::kAllStorage;
  2602. inf.m_size = sizeof(Light) * lightCount;
  2603. lightBuffer = g_gr->newBuffer(inf);
  2604. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::kWrite);
  2605. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2606. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2607. lights[0].m_intensity = Vec3(1.0f);
  2608. lightBuffer->unmap();
  2609. }
  2610. // Draw
  2611. constexpr U32 ITERATIONS = 100 * 8;
  2612. for(U32 i = 0; i < ITERATIONS; ++i)
  2613. {
  2614. HighRezTimer timer;
  2615. timer.start();
  2616. const Mat4 viewMat = Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f)).getInverse();
  2617. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2618. CommandBufferInitInfo cinit;
  2619. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2620. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  2621. if(i == 0)
  2622. {
  2623. for(const Geom& g : geometries)
  2624. {
  2625. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2626. }
  2627. for(const Geom& g : geometries)
  2628. {
  2629. BufferInitInfo scratchInit;
  2630. scratchInit.m_size = g.m_blas->getBuildScratchBufferSize();
  2631. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2632. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2633. cmdb->buildAccelerationStructure(g.m_blas.get(), BufferView(scratchBuff.get()));
  2634. }
  2635. for(const Geom& g : geometries)
  2636. {
  2637. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kAttach);
  2638. }
  2639. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2640. BufferInitInfo scratchInit;
  2641. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  2642. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2643. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2644. cmdb->buildAccelerationStructure(tlas.get(), BufferView(scratchBuff.get()));
  2645. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kTraceRaysRead);
  2646. }
  2647. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  2648. TextureViewPtr presentView;
  2649. {
  2650. TextureViewInitInfo inf;
  2651. inf.m_texture = presentTex.get();
  2652. presentView = g_gr->newTextureView(inf);
  2653. }
  2654. TextureViewPtr offscreenView, offscreenHistoryView;
  2655. {
  2656. TextureViewInitInfo inf;
  2657. inf.m_texture = offscreenRts[i & 1].get();
  2658. offscreenView = g_gr->newTextureView(inf);
  2659. inf.m_texture = offscreenRts[(i + 1) & 1].get();
  2660. offscreenHistoryView = g_gr->newTextureView(inf);
  2661. }
  2662. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kNone, TextureUsageBit::kUavTraceRaysWrite, TextureSubresourceInfo());
  2663. setTextureBarrier(cmdb, offscreenRts[(i + 1) & 1], TextureUsageBit::kUavComputeRead, TextureUsageBit::kUavTraceRaysRead,
  2664. TextureSubresourceInfo());
  2665. cmdb->bindStorageBuffer(0, 0, BufferView(modelBuffer.get()));
  2666. cmdb->bindStorageBuffer(0, 1, BufferView(lightBuffer.get()));
  2667. cmdb->bindAccelerationStructure(1, 0, tlas.get());
  2668. cmdb->bindStorageTexture(1, 1, offscreenHistoryView.get());
  2669. cmdb->bindStorageTexture(1, 2, offscreenView.get());
  2670. cmdb->bindShaderProgram(rtProg.get());
  2671. PushConstants pc;
  2672. pc.m_vp = projMat * viewMat;
  2673. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2674. pc.m_lightCount = lightCount;
  2675. pc.m_frame = i;
  2676. cmdb->setPushConstants(&pc, sizeof(pc));
  2677. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2678. cmdb->traceRays(BufferView(sbt.get()), sbtRecordSize, U32(GeomWhat::kCount) * 2, 2, WIDTH, HEIGHT, 1);
  2679. // Copy to present
  2680. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kUavTraceRaysWrite, TextureUsageBit::kUavComputeRead,
  2681. TextureSubresourceInfo());
  2682. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kNone, TextureUsageBit::kUavCompute, TextureSubresourceInfo());
  2683. cmdb->bindStorageTexture(0, 0, offscreenView.get());
  2684. cmdb->bindStorageTexture(0, 1, presentView.get());
  2685. cmdb->bindShaderProgram(copyToPresentProg.get());
  2686. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2687. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2688. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2689. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kUavCompute, TextureUsageBit::kPresent, TextureSubresourceInfo());
  2690. cmdb->endRecording();
  2691. GrManager::getSingleton().submit(cmdb.get());
  2692. g_gr->swapBuffers();
  2693. timer.stop();
  2694. const F32 TICK = 1.0f / 60.0f;
  2695. if(timer.getElapsedTime() < TICK)
  2696. {
  2697. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2698. }
  2699. }
  2700. COMMON_END();
  2701. #endif
  2702. }
  2703. ANKI_TEST(Gr, AsyncCompute)
  2704. {
  2705. #if 0
  2706. COMMON_BEGIN()
  2707. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2708. // Create the counting program
  2709. static const char* PROG_SRC = R"(
  2710. layout(local_size_x = 8) in;
  2711. layout(binding = 0, std430) buffer b_buff
  2712. {
  2713. U32 u_counters[];
  2714. };
  2715. void main()
  2716. {
  2717. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2718. {
  2719. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2720. }
  2721. })";
  2722. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  2723. ShaderProgramInitInfo sprogInit;
  2724. sprogInit.m_computeShader = shader.get();
  2725. ShaderProgramPtr incrementProg = g_gr->newShaderProgram(sprogInit);
  2726. // Create the check program
  2727. static const char* CHECK_SRC = R"(
  2728. layout(local_size_x = 8) in;
  2729. layout(binding = 0, std430) buffer b_buff
  2730. {
  2731. U32 u_counters[];
  2732. };
  2733. void main()
  2734. {
  2735. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2736. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2737. U32 expectedVal = 0u;
  2738. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2739. {
  2740. expectedVal += i + 1u;
  2741. }
  2742. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2743. })";
  2744. shader = createShader(CHECK_SRC, ShaderType::kCompute, *g_gr);
  2745. sprogInit.m_computeShader = shader.get();
  2746. ShaderProgramPtr checkProg = g_gr->newShaderProgram(sprogInit);
  2747. // Create buffers
  2748. BufferInitInfo info;
  2749. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2750. info.m_usage = BufferUsageBit::kAllCompute;
  2751. info.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  2752. BufferPtr atomicsBuffer = g_gr->newBuffer(info);
  2753. U32* values = static_cast<U32*>(atomicsBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kRead | BufferMapAccessBit::kWrite));
  2754. memset(values, 0, info.m_size);
  2755. // Pre-create some CPU result buffers
  2756. DynamicArray<U32> atomicsBufferCpu;
  2757. atomicsBufferCpu.resize(ARRAY_SIZE);
  2758. DynamicArray<U32> expectedResultsBufferCpu;
  2759. expectedResultsBufferCpu.resize(ARRAY_SIZE);
  2760. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2761. {
  2762. const U32 localInvocation = i % 8;
  2763. U32 expectedVal = 4;
  2764. for(U32 j = 0; j < localInvocation * 20; ++j)
  2765. {
  2766. expectedVal += j + 1;
  2767. }
  2768. expectedResultsBufferCpu[i] = expectedVal;
  2769. }
  2770. // Create the 1st command buffer
  2771. CommandBufferInitInfo cinit;
  2772. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2773. CommandBufferPtr incrementCmdb = g_gr->newCommandBuffer(cinit);
  2774. incrementCmdb->bindShaderProgram(incrementProg.get());
  2775. incrementCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2776. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2777. // Create the 2nd command buffer
  2778. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2779. CommandBufferPtr checkCmdb = g_gr->newCommandBuffer(cinit);
  2780. checkCmdb->bindShaderProgram(checkProg.get());
  2781. checkCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2782. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2783. // Create the 3rd command buffer
  2784. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2785. CommandBufferPtr incrementCmdb2 = g_gr->newCommandBuffer(cinit);
  2786. incrementCmdb2->bindShaderProgram(incrementProg.get());
  2787. incrementCmdb2->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2788. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2789. // Submit
  2790. # if 1
  2791. FencePtr fence;
  2792. incrementCmdb->endRecording();
  2793. GrManager::getSingleton().submit(incrementCmdb.get(), {}, &fence);
  2794. checkCmdb->endRecording();
  2795. Fence* pFence = fence.get();
  2796. GrManager::getSingleton().submit(checkCmdb.get(), {&pFence, 1}, &fence);
  2797. incrementCmdb2->endRecording();
  2798. pFence = fence.get();
  2799. GrManager::getSingleton().submit(incrementCmdb2.get(), {&pFence, 1}, &fence);
  2800. fence->clientWait(kMaxSecond);
  2801. # else
  2802. incrementCmdb->flush();
  2803. gr->finish();
  2804. checkCmdb->flush();
  2805. gr->finish();
  2806. incrementCmdb2->flush();
  2807. gr->finish();
  2808. # endif
  2809. // Verify
  2810. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2811. Bool correct = true;
  2812. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2813. {
  2814. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2815. if(!correct)
  2816. {
  2817. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2818. break;
  2819. }
  2820. }
  2821. atomicsBuffer->unmap();
  2822. ANKI_TEST_EXPECT_EQ(correct, true);
  2823. COMMON_END()
  2824. #endif
  2825. }