ProbeReflections.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ProbeReflections.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/LightShading.h>
  8. #include <AnKi/Renderer/FinalComposite.h>
  9. #include <AnKi/Renderer/GBuffer.h>
  10. #include <AnKi/Renderer/Sky.h>
  11. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  12. #include <AnKi/Renderer/Utils/MipmapGenerator.h>
  13. #include <AnKi/Renderer/Utils/Drawer.h>
  14. #include <AnKi/Core/CVarSet.h>
  15. #include <AnKi/Util/Tracer.h>
  16. #include <AnKi/Core/StatsSet.h>
  17. #include <AnKi/Resource/MeshResource.h>
  18. #include <AnKi/Resource/AsyncLoader.h>
  19. #include <AnKi/Shaders/Include/TraditionalDeferredShadingTypes.h>
  20. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  21. #include <AnKi/Scene/Components/LightComponent.h>
  22. #include <AnKi/Scene/SceneGraph.h>
  23. namespace anki {
  24. static NumericCVar<U32> g_probeReflectionIrradianceResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionIrradianceResolution", 16, 4, 2048,
  25. "Reflection probe irradiance resolution");
  26. static NumericCVar<U32> g_probeReflectionShadowMapResolutionCVar(CVarSubsystem::kRenderer, "ProbeReflectionShadowMapResolution", 64, 4, 2048,
  27. "Reflection probe shadow resolution");
  28. static StatCounter g_probeReflectionCountStatVar(StatCategory::kRenderer, "Reflection probes rendered", StatFlag::kMainThreadUpdates);
  29. Error ProbeReflections::init()
  30. {
  31. const Error err = initInternal();
  32. if(err)
  33. {
  34. ANKI_R_LOGE("Failed to initialize image reflections");
  35. }
  36. return err;
  37. }
  38. Error ProbeReflections::initInternal()
  39. {
  40. // Init cache entries
  41. ANKI_CHECK(initGBuffer());
  42. ANKI_CHECK(initLightShading());
  43. ANKI_CHECK(initIrradiance());
  44. ANKI_CHECK(initIrradianceToRefl());
  45. ANKI_CHECK(initShadowMapping());
  46. // Load split sum integration LUT
  47. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/IblDfg.png", m_integrationLut));
  48. SamplerInitInfo sinit;
  49. sinit.m_minMagFilter = SamplingFilter::kLinear;
  50. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  51. sinit.m_minLod = 0.0;
  52. sinit.m_maxLod = 1.0;
  53. sinit.m_addressing = SamplingAddressing::kClamp;
  54. m_integrationLutSampler = GrManager::getSingleton().newSampler(sinit);
  55. return Error::kNone;
  56. }
  57. Error ProbeReflections::initGBuffer()
  58. {
  59. m_gbuffer.m_tileSize = g_reflectionProbeResolutionCVar.get();
  60. // Create RT descriptions
  61. {
  62. RenderTargetDesc texinit = getRenderer().create2DRenderTargetDescription(m_gbuffer.m_tileSize, m_gbuffer.m_tileSize,
  63. kGBufferColorRenderTargetFormats[0], "CubeRefl GBuffer");
  64. // Create color RT descriptions
  65. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  66. {
  67. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  68. texinit.m_type = TextureType::kCube;
  69. m_gbuffer.m_colorRtDescrs[i] = texinit;
  70. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("CubeRefl GBuff Col #%u", i));
  71. m_gbuffer.m_colorRtDescrs[i].bake();
  72. }
  73. // Create depth RT
  74. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  75. texinit.m_type = TextureType::k2D;
  76. texinit.setName("CubeRefl GBuff Depth");
  77. m_gbuffer.m_depthRtDescr = texinit;
  78. m_gbuffer.m_depthRtDescr.bake();
  79. }
  80. return Error::kNone;
  81. }
  82. Error ProbeReflections::initLightShading()
  83. {
  84. m_lightShading.m_tileSize = g_reflectionProbeResolutionCVar.get();
  85. m_lightShading.m_mipCount = U8(computeMaxMipmapCount2d(m_lightShading.m_tileSize, m_lightShading.m_tileSize, 8));
  86. // Init deferred
  87. ANKI_CHECK(m_lightShading.m_deferred.init());
  88. return Error::kNone;
  89. }
  90. Error ProbeReflections::initIrradiance()
  91. {
  92. m_irradiance.m_workgroupSize = g_probeReflectionIrradianceResolutionCVar.get();
  93. // Create prog
  94. {
  95. ANKI_CHECK(
  96. loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  97. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_irradiance.m_workgroupSize)}, {"STORE_LOCATION", 1}, {"SECOND_BOUNCE", 0}},
  98. m_irradiance.m_prog, m_irradiance.m_grProg));
  99. }
  100. // Create buff
  101. {
  102. BufferInitInfo init;
  103. init.m_usage = BufferUsageBit::kAllUav | BufferUsageBit::kAllSrv;
  104. init.m_size = 6 * sizeof(Vec4);
  105. m_irradiance.m_diceValuesBuff = GrManager::getSingleton().newBuffer(init);
  106. }
  107. return Error::kNone;
  108. }
  109. Error ProbeReflections::initIrradianceToRefl()
  110. {
  111. // Create program
  112. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ApplyIrradianceToReflection.ankiprogbin", m_irradianceToRefl.m_prog, m_irradianceToRefl.m_grProg));
  113. return Error::kNone;
  114. }
  115. Error ProbeReflections::initShadowMapping()
  116. {
  117. const U32 resolution = g_probeReflectionShadowMapResolutionCVar.get();
  118. ANKI_ASSERT(resolution > 8);
  119. // RT descr
  120. m_shadowMapping.m_rtDescr =
  121. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "CubeRefl SM");
  122. m_shadowMapping.m_rtDescr.bake();
  123. return Error::kNone;
  124. }
  125. void ProbeReflections::populateRenderGraph(RenderingContext& rctx)
  126. {
  127. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  128. // Iterate the visible probes to find a candidate for update
  129. WeakArray<ReflectionProbeComponent*> visibleProbes =
  130. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_reflectionProbes;
  131. ReflectionProbeComponent* probeToRefresh = nullptr;
  132. for(ReflectionProbeComponent* probe : visibleProbes)
  133. {
  134. if(probe->getEnvironmentTextureNeedsRefresh())
  135. {
  136. probeToRefresh = probe;
  137. break;
  138. }
  139. }
  140. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  141. {
  142. // Nothing to update or can't update right now, early exit
  143. m_runCtx = {};
  144. return;
  145. }
  146. g_probeReflectionCountStatVar.increment(1);
  147. probeToRefresh->setEnvironmentTextureAsRefreshed();
  148. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  149. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  150. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  151. // Create render targets now to save memory
  152. const RenderTargetHandle probeTexture = rgraph.importRenderTarget(&probeToRefresh->getReflectionTexture(), TextureUsageBit::kNone);
  153. m_runCtx.m_probeTex = probeTexture;
  154. const BufferHandle irradianceDiceValuesBuffHandle = rgraph.importBuffer(BufferView(m_irradiance.m_diceValuesBuff.get()), BufferUsageBit::kNone);
  155. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  156. const RenderTargetHandle shadowMapRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  157. Array<RenderTargetHandle, kGBufferColorRenderTargetCount> gbufferColorRts;
  158. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  159. {
  160. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  161. }
  162. for(U8 f = 0; f < 6; ++f)
  163. {
  164. // GBuffer visibility
  165. GpuVisibilityOutput visOut;
  166. Frustum frustum;
  167. {
  168. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  169. frustum.setWorldTransform(
  170. Transform(probeToRefresh->getWorldPosition().xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  171. frustum.update();
  172. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  173. FrustumGpuVisibilityInput visIn;
  174. visIn.m_passesName = generateTempPassName("Cube refl: GBuffer face:%u", f);
  175. visIn.m_technique = RenderingTechnique::kGBuffer;
  176. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  177. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  178. visIn.m_lodDistances = lodDistances;
  179. visIn.m_rgraph = &rgraph;
  180. visIn.m_viewportSize = UVec2(m_gbuffer.m_tileSize);
  181. visIn.m_limitMemory = true;
  182. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  183. }
  184. // GBuffer pass
  185. {
  186. // Create pass
  187. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: GBuffer face:%u", f));
  188. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  189. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  190. {
  191. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  192. colorRtis[j].m_subresource.m_face = f;
  193. colorRtis[j].m_handle = gbufferColorRts[j];
  194. }
  195. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  196. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  197. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  198. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  199. pass.setRenderpassInfo(colorRtis, &depthRti);
  200. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  201. {
  202. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  203. }
  204. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllRtvDsv, DepthStencilAspectBit::kDepth);
  205. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  206. pass.setWork(
  207. [this, visOut, viewProjMat = frustum.getViewProjectionMatrix(), viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  208. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  209. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  210. cmdb.setViewport(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  211. RenderableDrawerArguments args;
  212. args.m_viewMatrix = viewMat;
  213. args.m_cameraTransform = viewMat.getInverseTransformation();
  214. args.m_viewProjectionMatrix = viewProjMat;
  215. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care about prev mats
  216. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  217. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  218. args.m_viewport = UVec4(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  219. args.fill(visOut);
  220. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  221. });
  222. }
  223. // Shadow visibility. Optional
  224. GpuVisibilityOutput shadowVisOut;
  225. Mat4 cascadeViewProjMat;
  226. Mat3x4 cascadeViewMat;
  227. Mat4 cascadeProjMat;
  228. if(doShadows)
  229. {
  230. constexpr U32 kCascadeCount = 1;
  231. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  232. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  233. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  234. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  235. FrustumGpuVisibilityInput visIn;
  236. visIn.m_passesName = generateTempPassName("Cube refl: Shadows face:%u", f);
  237. visIn.m_technique = RenderingTechnique::kDepth;
  238. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  239. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  240. visIn.m_lodDistances = lodDistances;
  241. visIn.m_rgraph = &rgraph;
  242. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  243. visIn.m_limitMemory = true;
  244. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  245. }
  246. // Shadows. Optional
  247. if(doShadows)
  248. {
  249. // Pass
  250. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: Shadows face:%u", f));
  251. GraphicsRenderPassTargetDesc depthRti(shadowMapRt);
  252. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  253. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  254. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  255. pass.setRenderpassInfo({}, &depthRti);
  256. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kAllRtvDsv, DepthStencilAspectBit::kDepth);
  257. pass.newBufferDependency(shadowVisOut.m_dependency, BufferUsageBit::kIndirectDraw);
  258. pass.setWork([this, shadowVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  259. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  260. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  261. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  262. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  263. cmdb.setViewport(0, 0, rez, rez);
  264. RenderableDrawerArguments args;
  265. args.m_viewMatrix = cascadeViewMat;
  266. args.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  267. args.m_viewProjectionMatrix = cascadeViewProjMat;
  268. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  269. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  270. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  271. args.m_viewport = UVec4(0, 0, rez, rez);
  272. args.fill(shadowVisOut);
  273. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  274. });
  275. }
  276. // Light visibility
  277. GpuVisibilityNonRenderablesOutput lightVis;
  278. {
  279. GpuVisibilityNonRenderablesInput in;
  280. in.m_passesName = generateTempPassName("Cube refl: Light visibility face:%u", f);
  281. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  282. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  283. in.m_rgraph = &rgraph;
  284. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  285. }
  286. // Light shading pass
  287. {
  288. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: light shading face:%u", f));
  289. GraphicsRenderPassTargetDesc colorRti(probeTexture);
  290. colorRti.m_subresource.m_face = f;
  291. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  292. pass.setRenderpassInfo({colorRti});
  293. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kSrvPixel);
  294. pass.newTextureDependency(probeTexture, TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  295. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  296. {
  297. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvPixel, TextureSubresourceDesc::surface(0, f, 0));
  298. }
  299. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSrvPixel, DepthStencilAspectBit::kDepth);
  300. if(shadowMapRt.isValid())
  301. {
  302. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kSrvPixel);
  303. }
  304. if(getRenderer().getSky().isEnabled())
  305. {
  306. pass.newTextureDependency(getRenderer().getSky().getSkyLutRt(), TextureUsageBit::kSrvPixel);
  307. }
  308. pass.setWork([this, visResult = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(),
  309. cascadeViewProjMat = cascadeViewProjMat, probeToRefresh, gbufferColorRts, gbufferDepthRt, shadowMapRt, faceIdx = f,
  310. &rctx](RenderPassWorkContext& rgraphCtx) {
  311. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  312. TraditionalDeferredLightShadingDrawInfo dsInfo;
  313. dsInfo.m_viewProjectionMatrix = viewProjMat;
  314. dsInfo.m_invViewProjectionMatrix = viewProjMat.getInverse();
  315. dsInfo.m_cameraPosWSpace = probeToRefresh->getWorldPosition().xyz1();
  316. dsInfo.m_viewport = UVec4(0, 0, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  317. dsInfo.m_effectiveShadowDistance = probeToRefresh->getShadowsRenderRadius();
  318. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  319. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  320. dsInfo.m_visibleLightsBuffer = visResult;
  321. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  322. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  323. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  324. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  325. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  326. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  327. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  328. if(shadowMapRt.isValid())
  329. {
  330. dsInfo.m_directionalLightShadowmapRenderTarget = shadowMapRt;
  331. }
  332. dsInfo.m_skyLutRenderTarget = (getRenderer().getSky().isEnabled()) ? getRenderer().getSky().getSkyLutRt() : RenderTargetHandle();
  333. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingConstantsBuffer;
  334. dsInfo.m_renderpassContext = &rgraphCtx;
  335. m_lightShading.m_deferred.drawLights(dsInfo);
  336. });
  337. }
  338. } // For 6 faces
  339. // Compute Irradiance
  340. {
  341. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass("Cube refl: Irradiance");
  342. pass.newTextureDependency(probeTexture, TextureUsageBit::kSrvCompute);
  343. pass.newBufferDependency(irradianceDiceValuesBuffHandle, BufferUsageBit::kUavCompute);
  344. pass.setWork([this, probeTexture](RenderPassWorkContext& rgraphCtx) {
  345. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  346. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  347. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  348. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  349. rgraphCtx.bindSrv(0, 0, probeTexture);
  350. cmdb.bindUav(0, 0, BufferView(m_irradiance.m_diceValuesBuff.get()));
  351. cmdb.dispatchCompute(1, 1, 1);
  352. });
  353. }
  354. // Append irradiance back to refl cubemap
  355. {
  356. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass("Cube refl: Apply indirect");
  357. for(U i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  358. {
  359. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvCompute);
  360. }
  361. pass.newTextureDependency(probeTexture, TextureUsageBit::kUavCompute);
  362. pass.newBufferDependency(irradianceDiceValuesBuffHandle, BufferUsageBit::kSrvCompute);
  363. pass.setWork([this, gbufferColorRts, probeTexture](RenderPassWorkContext& rgraphCtx) {
  364. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  365. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  366. cmdb.bindShaderProgram(m_irradianceToRefl.m_grProg.get());
  367. // Bind resources
  368. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  369. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  370. {
  371. rgraphCtx.bindSrv(i, 0, gbufferColorRts[i]);
  372. }
  373. cmdb.bindSrv(3, 0, BufferView(m_irradiance.m_diceValuesBuff.get()));
  374. for(U8 f = 0; f < 6; ++f)
  375. {
  376. rgraphCtx.bindUav(f, 0, probeTexture, TextureSubresourceDesc::surface(0, f, 0));
  377. }
  378. dispatchPPCompute(cmdb, 8, 8, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  379. });
  380. }
  381. // Mipmapping "passes"
  382. {
  383. const MipmapGeneratorTargetArguments desc = {
  384. .m_handle = probeTexture,
  385. .m_targetSize = UVec2(probeToRefresh->getReflectionTexture().getWidth(), probeToRefresh->getReflectionTexture().getHeight()),
  386. .m_layerCount = 1,
  387. .m_mipmapCount = m_lightShading.m_mipCount,
  388. .m_isCubeTexture = true};
  389. getRenderer().getMipmapGenerator().populateRenderGraph(desc, rgraph, "Cube refl: Gen mips");
  390. }
  391. }
  392. } // end namespace anki