Renderer.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Util/Tracer.h>
  7. #include <AnKi/Util/ThreadHive.h>
  8. #include <AnKi/Core/CVarSet.h>
  9. #include <AnKi/Util/HighRezTimer.h>
  10. #include <AnKi/Collision/Aabb.h>
  11. #include <AnKi/Collision/Plane.h>
  12. #include <AnKi/Collision/Functions.h>
  13. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  14. #include <AnKi/Core/GpuMemory/GpuSceneBuffer.h>
  15. #include <AnKi/Scene/Components/CameraComponent.h>
  16. #include <AnKi/Scene/Components/LightComponent.h>
  17. #include <AnKi/Renderer/ProbeReflections.h>
  18. #include <AnKi/Renderer/GBuffer.h>
  19. #include <AnKi/Renderer/GBufferPost.h>
  20. #include <AnKi/Renderer/LightShading.h>
  21. #include <AnKi/Renderer/ShadowMapping.h>
  22. #include <AnKi/Renderer/FinalComposite.h>
  23. #include <AnKi/Renderer/Bloom.h>
  24. #include <AnKi/Renderer/Tonemapping.h>
  25. #include <AnKi/Renderer/ForwardShading.h>
  26. #include <AnKi/Renderer/LensFlare.h>
  27. #include <AnKi/Renderer/Dbg.h>
  28. #include <AnKi/Renderer/DownscaleBlur.h>
  29. #include <AnKi/Renderer/VolumetricFog.h>
  30. #include <AnKi/Renderer/DepthDownscale.h>
  31. #include <AnKi/Renderer/TemporalAA.h>
  32. #include <AnKi/Renderer/UiStage.h>
  33. #include <AnKi/Renderer/IndirectSpecular.h>
  34. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  35. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  36. #include <AnKi/Renderer/ShadowmapsResolve.h>
  37. #include <AnKi/Renderer/RtShadows.h>
  38. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  39. #include <AnKi/Renderer/MotionVectors.h>
  40. #include <AnKi/Renderer/Scale.h>
  41. #include <AnKi/Renderer/IndirectDiffuse.h>
  42. #include <AnKi/Renderer/VrsSriGeneration.h>
  43. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  44. #include <AnKi/Renderer/ClusterBinning2.h>
  45. namespace anki {
  46. static NumericCVar<F32> g_internalRenderScalingCVar(CVarSubsystem::kRenderer, "InternalRenderScaling", 1.0f, 0.5f, 1.0f,
  47. "A factor over the requested swapchain resolution. Applies to all passes up to TAA");
  48. NumericCVar<F32> g_renderScalingCVar(CVarSubsystem::kRenderer, "RenderScaling", 1.0f, 0.5f, 8.0f,
  49. "A factor over the requested swapchain resolution. Applies to post-processing and UI");
  50. static NumericCVar<U32> g_tileSizeCVar(CVarSubsystem::kRenderer, "TileSize", 64, 8, 256, "Tile lighting tile size");
  51. static NumericCVar<U32> g_zSplitCountCVar(CVarSubsystem::kRenderer, "ZSplitCount", 64, 8, kMaxZsplitCount, "Clusterer number of Z splits");
  52. static NumericCVar<U8> g_textureAnisotropyCVar(CVarSubsystem::kRenderer, "TextureAnisotropy", (ANKI_PLATFORM_MOBILE) ? 1 : 8, 1, 16,
  53. "Texture anisotropy for the main passes");
  54. BoolCVar g_preferComputeCVar(CVarSubsystem::kRenderer, "PreferCompute", !ANKI_PLATFORM_MOBILE, "Prefer compute shaders");
  55. static BoolCVar g_highQualityHdrCVar(CVarSubsystem::kRenderer, "HighQualityHdr", !ANKI_PLATFORM_MOBILE,
  56. "If true use R16G16B16 for HDR images. Alternatively use B10G11R11");
  57. BoolCVar g_vrsLimitTo2x2CVar(CVarSubsystem::kRenderer, "VrsLimitTo2x2", false, "If true the max rate will be 2x2");
  58. BoolCVar g_vrsCVar(CVarSubsystem::kRenderer, "Vrs", true, "Enable VRS in multiple passes");
  59. BoolCVar g_rayTracedShadowsCVar(CVarSubsystem::kRenderer, "RayTracedShadows", true,
  60. "Enable or not ray traced shadows. Ignored if RT is not supported");
  61. /// Generate a Halton jitter in [-0.5, 0.5]
  62. static Vec2 generateJitter(U32 frame)
  63. {
  64. // Halton jitter
  65. Vec2 result(0.0f);
  66. constexpr U32 baseX = 2;
  67. U32 index = frame + 1;
  68. F32 invBase = 1.0f / baseX;
  69. F32 fraction = invBase;
  70. while(index > 0)
  71. {
  72. result.x() += F32(index % baseX) * fraction;
  73. index /= baseX;
  74. fraction *= invBase;
  75. }
  76. constexpr U32 baseY = 3;
  77. index = frame + 1;
  78. invBase = 1.0f / baseY;
  79. fraction = invBase;
  80. while(index > 0)
  81. {
  82. result.y() += F32(index % baseY) * fraction;
  83. index /= baseY;
  84. fraction *= invBase;
  85. }
  86. result.x() -= 0.5f;
  87. result.y() -= 0.5f;
  88. return result;
  89. }
  90. Renderer::Renderer()
  91. {
  92. }
  93. Renderer::~Renderer()
  94. {
  95. }
  96. Error Renderer::init(UVec2 swapchainSize, StackMemoryPool* framePool)
  97. {
  98. ANKI_TRACE_SCOPED_EVENT(RInit);
  99. m_framePool = framePool;
  100. const Error err = initInternal(swapchainSize);
  101. if(err)
  102. {
  103. ANKI_R_LOGE("Failed to initialize the renderer");
  104. }
  105. return err;
  106. }
  107. Error Renderer::initInternal(UVec2 swapchainResolution)
  108. {
  109. m_frameCount = 0;
  110. // Set from the config
  111. m_postProcessResolution = UVec2(Vec2(swapchainResolution) * g_renderScalingCVar.get());
  112. alignRoundDown(2, m_postProcessResolution.x());
  113. alignRoundDown(2, m_postProcessResolution.y());
  114. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_internalRenderScalingCVar.get());
  115. alignRoundDown(2, m_internalResolution.x());
  116. alignRoundDown(2, m_internalResolution.y());
  117. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  118. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  119. m_tileSize = g_tileSizeCVar.get();
  120. m_tileCounts.x() = (m_internalResolution.x() + m_tileSize - 1) / m_tileSize;
  121. m_tileCounts.y() = (m_internalResolution.y() + m_tileSize - 1) / m_tileSize;
  122. m_zSplitCount = g_zSplitCountCVar.get();
  123. // A few sanity checks
  124. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  125. {
  126. ANKI_R_LOGE("Incorrect sizes");
  127. return Error::kUserData;
  128. }
  129. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  130. // Dummy resources
  131. {
  132. TextureInitInfo texinit("RendererDummy");
  133. texinit.m_width = texinit.m_height = 4;
  134. texinit.m_usage = TextureUsageBit::kAllSampled | TextureUsageBit::kImageComputeWrite;
  135. texinit.m_format = Format::kR8G8B8A8_Unorm;
  136. TexturePtr tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  137. TextureViewInitInfo viewinit(tex.get());
  138. m_dummyTexView2d = GrManager::getSingleton().newTextureView(viewinit);
  139. texinit.m_depth = 4;
  140. texinit.m_type = TextureType::k3D;
  141. tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  142. viewinit = TextureViewInitInfo(tex.get());
  143. m_dummyTexView3d = GrManager::getSingleton().newTextureView(viewinit);
  144. m_dummyBuff = GrManager::getSingleton().newBuffer(
  145. BufferInitInfo(1024, BufferUsageBit::kAllUniform | BufferUsageBit::kAllStorage, BufferMapAccessBit::kNone, "Dummy"));
  146. }
  147. // Init the stages. Careful with the order!!!!!!!!!!
  148. m_volumetricLightingAccumulation.reset(newInstance<VolumetricLightingAccumulation>(RendererMemoryPool::getSingleton()));
  149. ANKI_CHECK(m_volumetricLightingAccumulation->init());
  150. m_indirectDiffuseProbes.reset(newInstance<IndirectDiffuseProbes>(RendererMemoryPool::getSingleton()));
  151. ANKI_CHECK(m_indirectDiffuseProbes->init());
  152. m_probeReflections.reset(newInstance<ProbeReflections>(RendererMemoryPool::getSingleton()));
  153. ANKI_CHECK(m_probeReflections->init());
  154. m_vrsSriGeneration.reset(newInstance<VrsSriGeneration>(RendererMemoryPool::getSingleton()));
  155. ANKI_CHECK(m_vrsSriGeneration->init());
  156. m_scale.reset(newInstance<Scale>(RendererMemoryPool::getSingleton()));
  157. ANKI_CHECK(m_scale->init());
  158. m_gbuffer.reset(newInstance<GBuffer>(RendererMemoryPool::getSingleton()));
  159. ANKI_CHECK(m_gbuffer->init());
  160. m_gbufferPost.reset(newInstance<GBufferPost>(RendererMemoryPool::getSingleton()));
  161. ANKI_CHECK(m_gbufferPost->init());
  162. m_shadowMapping.reset(newInstance<ShadowMapping>(RendererMemoryPool::getSingleton()));
  163. ANKI_CHECK(m_shadowMapping->init());
  164. m_volumetricFog.reset(newInstance<VolumetricFog>(RendererMemoryPool::getSingleton()));
  165. ANKI_CHECK(m_volumetricFog->init());
  166. m_lightShading.reset(newInstance<LightShading>(RendererMemoryPool::getSingleton()));
  167. ANKI_CHECK(m_lightShading->init());
  168. m_depthDownscale.reset(newInstance<DepthDownscale>(RendererMemoryPool::getSingleton()));
  169. ANKI_CHECK(m_depthDownscale->init());
  170. m_forwardShading.reset(newInstance<ForwardShading>(RendererMemoryPool::getSingleton()));
  171. ANKI_CHECK(m_forwardShading->init());
  172. m_lensFlare.reset(newInstance<LensFlare>(RendererMemoryPool::getSingleton()));
  173. ANKI_CHECK(m_lensFlare->init());
  174. m_downscaleBlur.reset(newInstance<DownscaleBlur>(RendererMemoryPool::getSingleton()));
  175. ANKI_CHECK(m_downscaleBlur->init());
  176. m_indirectSpecular.reset(newInstance<IndirectSpecular>(RendererMemoryPool::getSingleton()));
  177. ANKI_CHECK(m_indirectSpecular->init());
  178. m_tonemapping.reset(newInstance<Tonemapping>(RendererMemoryPool::getSingleton()));
  179. ANKI_CHECK(m_tonemapping->init());
  180. m_temporalAA.reset(newInstance<TemporalAA>(RendererMemoryPool::getSingleton()));
  181. ANKI_CHECK(m_temporalAA->init());
  182. m_bloom.reset(newInstance<Bloom>(RendererMemoryPool::getSingleton()));
  183. ANKI_CHECK(m_bloom->init());
  184. m_finalComposite.reset(newInstance<FinalComposite>(RendererMemoryPool::getSingleton()));
  185. ANKI_CHECK(m_finalComposite->init());
  186. m_dbg.reset(newInstance<Dbg>(RendererMemoryPool::getSingleton()));
  187. ANKI_CHECK(m_dbg->init());
  188. m_uiStage.reset(newInstance<UiStage>(RendererMemoryPool::getSingleton()));
  189. ANKI_CHECK(m_uiStage->init());
  190. m_indirectDiffuse.reset(newInstance<IndirectDiffuse>(RendererMemoryPool::getSingleton()));
  191. ANKI_CHECK(m_indirectDiffuse->init());
  192. if(GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled && g_rayTracedShadowsCVar.get())
  193. {
  194. m_accelerationStructureBuilder.reset(newInstance<AccelerationStructureBuilder>(RendererMemoryPool::getSingleton()));
  195. ANKI_CHECK(m_accelerationStructureBuilder->init());
  196. m_rtShadows.reset(newInstance<RtShadows>(RendererMemoryPool::getSingleton()));
  197. ANKI_CHECK(m_rtShadows->init());
  198. }
  199. m_shadowmapsResolve.reset(newInstance<ShadowmapsResolve>(RendererMemoryPool::getSingleton()));
  200. ANKI_CHECK(m_shadowmapsResolve->init());
  201. m_motionVectors.reset(newInstance<MotionVectors>(RendererMemoryPool::getSingleton()));
  202. ANKI_CHECK(m_motionVectors->init());
  203. m_clusterBinning2.reset(newInstance<ClusterBinning2>(RendererMemoryPool::getSingleton()));
  204. ANKI_CHECK(m_clusterBinning2->init());
  205. m_primaryNonRenderableVisibility.reset(newInstance<PrimaryNonRenderableVisibility>(RendererMemoryPool::getSingleton()));
  206. ANKI_CHECK(m_primaryNonRenderableVisibility->init());
  207. // Init samplers
  208. {
  209. SamplerInitInfo sinit("NearestNearestClamp");
  210. sinit.m_addressing = SamplingAddressing::kClamp;
  211. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  212. sinit.m_minMagFilter = SamplingFilter::kNearest;
  213. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  214. sinit.setName("TrilinearClamp");
  215. sinit.m_minMagFilter = SamplingFilter::kLinear;
  216. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  217. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  218. sinit.setName("TrilinearRepeat");
  219. sinit.m_addressing = SamplingAddressing::kRepeat;
  220. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  221. sinit.setName("TrilinearRepeatAniso");
  222. sinit.m_anisotropyLevel = g_textureAnisotropyCVar.get();
  223. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  224. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  225. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  226. if(getScale().getUsingGrUpscaler())
  227. {
  228. // DLSS wants more bias
  229. scalingMipBias -= 1.0f;
  230. }
  231. sinit.m_lodBias = scalingMipBias;
  232. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  233. sinit = {};
  234. sinit.setName("TrilinearClampShadow");
  235. sinit.m_minMagFilter = SamplingFilter::kLinear;
  236. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  237. sinit.m_compareOperation = CompareOperation::kLessEqual;
  238. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  239. }
  240. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  241. {
  242. m_jitterOffsets[i] = generateJitter(i);
  243. }
  244. ANKI_CHECK(m_visibility.init());
  245. ANKI_CHECK(m_nonRenderablesVisibility.init());
  246. ANKI_CHECK(m_asVisibility.init());
  247. ANKI_CHECK(m_hzbGenerator.init());
  248. return Error::kNone;
  249. }
  250. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  251. {
  252. const CameraComponent& cam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  253. ctx.m_prevMatrices = m_prevMatrices;
  254. ctx.m_matrices.m_cameraTransform = Mat3x4(cam.getFrustum().getWorldTransform());
  255. ctx.m_matrices.m_view = cam.getFrustum().getViewMatrix();
  256. ctx.m_matrices.m_projection = cam.getFrustum().getProjectionMatrix();
  257. ctx.m_matrices.m_viewProjection = cam.getFrustum().getViewProjectionMatrix();
  258. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  259. const Vec2 ndcPixelSize = 2.0f / Vec2(m_internalResolution);
  260. jitter *= ndcPixelSize;
  261. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  262. ctx.m_matrices.m_jitter.setTranslationPart(Vec4(jitter, 0.0f, 1.0f));
  263. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  264. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  265. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.getInverse();
  266. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.getInverse();
  267. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.getInverse();
  268. ctx.m_matrices.m_reprojection = ctx.m_matrices.m_jitter * ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjectionJitter;
  269. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  270. ctx.m_cameraNear = cam.getNear();
  271. ctx.m_cameraFar = cam.getFar();
  272. // Import RTs first
  273. m_downscaleBlur->importRenderTargets(ctx);
  274. m_tonemapping->importRenderTargets(ctx);
  275. m_depthDownscale->importRenderTargets(ctx);
  276. m_vrsSriGeneration->importRenderTargets(ctx);
  277. m_gbuffer->importRenderTargets(ctx);
  278. // Populate render graph. WARNING Watch the order
  279. gpuSceneCopy(ctx);
  280. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  281. if(m_accelerationStructureBuilder)
  282. {
  283. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  284. }
  285. m_forwardShading->populateRenderGraph(ctx); // This may feel out of place but it's only visibility
  286. m_gbuffer->populateRenderGraph(ctx);
  287. m_shadowMapping->populateRenderGraph(ctx);
  288. m_clusterBinning2->populateRenderGraph(ctx);
  289. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  290. m_probeReflections->populateRenderGraph(ctx);
  291. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  292. m_motionVectors->populateRenderGraph(ctx);
  293. m_gbufferPost->populateRenderGraph(ctx);
  294. m_depthDownscale->populateRenderGraph(ctx);
  295. if(m_rtShadows)
  296. {
  297. m_rtShadows->populateRenderGraph(ctx);
  298. }
  299. m_shadowmapsResolve->populateRenderGraph(ctx);
  300. m_volumetricFog->populateRenderGraph(ctx);
  301. m_lensFlare->populateRenderGraph(ctx);
  302. m_indirectSpecular->populateRenderGraph(ctx);
  303. m_indirectDiffuse->populateRenderGraph(ctx);
  304. m_lightShading->populateRenderGraph(ctx);
  305. if(!getScale().getUsingGrUpscaler())
  306. {
  307. m_temporalAA->populateRenderGraph(ctx);
  308. }
  309. m_vrsSriGeneration->populateRenderGraph(ctx);
  310. m_scale->populateRenderGraph(ctx);
  311. m_downscaleBlur->populateRenderGraph(ctx);
  312. m_tonemapping->populateRenderGraph(ctx);
  313. m_bloom->populateRenderGraph(ctx);
  314. m_dbg->populateRenderGraph(ctx);
  315. m_finalComposite->populateRenderGraph(ctx);
  316. return Error::kNone;
  317. }
  318. void Renderer::finalize(const RenderingContext& ctx, Fence* fence)
  319. {
  320. ++m_frameCount;
  321. m_prevMatrices = ctx.m_matrices;
  322. m_readbaks.endFrame(fence);
  323. }
  324. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  325. {
  326. ANKI_ASSERT(!!(usage & TextureUsageBit::kFramebufferWrite) || !!(usage & TextureUsageBit::kImageComputeWrite));
  327. TextureInitInfo init(name);
  328. init.m_width = w;
  329. init.m_height = h;
  330. init.m_depth = 1;
  331. init.m_layerCount = 1;
  332. init.m_type = TextureType::k2D;
  333. init.m_format = format;
  334. init.m_mipmapCount = 1;
  335. init.m_samples = 1;
  336. init.m_usage = usage;
  337. return init;
  338. }
  339. RenderTargetDescription Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  340. {
  341. RenderTargetDescription init(name);
  342. init.m_width = w;
  343. init.m_height = h;
  344. init.m_depth = 1;
  345. init.m_layerCount = 1;
  346. init.m_type = TextureType::k2D;
  347. init.m_format = format;
  348. init.m_mipmapCount = 1;
  349. init.m_samples = 1;
  350. init.m_usage = TextureUsageBit::kNone;
  351. return init;
  352. }
  353. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  354. {
  355. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite) || !!(inf.m_usage & TextureUsageBit::kImageComputeWrite));
  356. const U faceCount = (inf.m_type == TextureType::kCube || inf.m_type == TextureType::kCubeArray) ? 6 : 1;
  357. Bool useCompute = false;
  358. if(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite))
  359. {
  360. useCompute = false;
  361. }
  362. else if(!!(inf.m_usage & TextureUsageBit::kImageComputeWrite))
  363. {
  364. useCompute = true;
  365. }
  366. else
  367. {
  368. ANKI_ASSERT(!"Can't handle that");
  369. }
  370. // Create tex
  371. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  372. // Clear all surfaces
  373. CommandBufferInitInfo cmdbinit;
  374. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  375. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  376. {
  377. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  378. }
  379. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  380. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  381. {
  382. for(U32 face = 0; face < faceCount; ++face)
  383. {
  384. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  385. {
  386. TextureSurfaceInfo surf(mip, 0, face, layer);
  387. if(!useCompute)
  388. {
  389. FramebufferInitInfo fbInit("RendererClearRT");
  390. Array<TextureUsageBit, kMaxColorRenderTargets> colUsage = {};
  391. TextureUsageBit dsUsage = TextureUsageBit::kNone;
  392. if(getFormatInfo(inf.m_format).isDepthStencil())
  393. {
  394. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  395. if(getFormatInfo(inf.m_format).isDepth())
  396. {
  397. aspect |= DepthStencilAspectBit::kDepth;
  398. }
  399. if(getFormatInfo(inf.m_format).isStencil())
  400. {
  401. aspect |= DepthStencilAspectBit::kStencil;
  402. }
  403. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf, aspect));
  404. fbInit.m_depthStencilAttachment.m_textureView = std::move(view);
  405. fbInit.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  406. fbInit.m_depthStencilAttachment.m_stencilLoadOperation = AttachmentLoadOperation::kClear;
  407. fbInit.m_depthStencilAttachment.m_clearValue = clearVal;
  408. dsUsage = TextureUsageBit::kFramebufferWrite;
  409. }
  410. else
  411. {
  412. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  413. fbInit.m_colorAttachmentCount = 1;
  414. fbInit.m_colorAttachments[0].m_textureView = view;
  415. fbInit.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  416. fbInit.m_colorAttachments[0].m_clearValue = clearVal;
  417. colUsage[0] = TextureUsageBit::kFramebufferWrite;
  418. }
  419. FramebufferPtr fb = GrManager::getSingleton().newFramebuffer(fbInit);
  420. TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, surf};
  421. barrier.m_subresource.m_depthStencilAspect = tex->getDepthStencilAspect();
  422. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  423. cmdb->beginRenderPass(fb.get(), colUsage, dsUsage);
  424. cmdb->endRenderPass();
  425. if(!!initialUsage)
  426. {
  427. barrier.m_previousUsage = TextureUsageBit::kFramebufferWrite;
  428. barrier.m_nextUsage = initialUsage;
  429. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  430. }
  431. }
  432. else
  433. {
  434. // Compute
  435. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  436. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  437. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  438. I32 componentType = 0;
  439. if(formatInfo.m_shaderType == 0)
  440. {
  441. componentType = 0;
  442. }
  443. else if(formatInfo.m_shaderType == 1)
  444. {
  445. componentType = 1;
  446. }
  447. else
  448. {
  449. ANKI_ASSERT(!"Not supported");
  450. }
  451. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  452. const ShaderProgramResourceVariant* variant;
  453. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  454. cmdb->bindShaderProgram(&variant->getProgram());
  455. cmdb->setPushConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  456. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  457. cmdb->bindImage(0, 0, view.get());
  458. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kImageComputeWrite, surf};
  459. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  460. UVec3 wgSize;
  461. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  462. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  463. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  464. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  465. if(!!initialUsage)
  466. {
  467. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kImageComputeWrite, initialUsage, surf};
  468. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  469. }
  470. }
  471. }
  472. }
  473. }
  474. cmdb->flush();
  475. return tex;
  476. }
  477. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  478. {
  479. #if ANKI_ASSERTIONS_ENABLED
  480. for(const DebugRtInfo& inf : m_debugRts)
  481. {
  482. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  483. }
  484. #endif
  485. ANKI_ASSERT(obj);
  486. DebugRtInfo inf;
  487. inf.m_obj = obj;
  488. inf.m_rtName = rtName;
  489. m_debugRts.emplaceBack(std::move(inf));
  490. }
  491. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  492. {
  493. if(m_currentDebugRtName.isEmpty()) [[likely]]
  494. {
  495. return false;
  496. }
  497. RendererObject* obj = nullptr;
  498. for(const DebugRtInfo& inf : m_debugRts)
  499. {
  500. if(inf.m_rtName == m_currentDebugRtName)
  501. {
  502. obj = inf.m_obj;
  503. }
  504. }
  505. ANKI_ASSERT(obj);
  506. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  507. return true;
  508. }
  509. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  510. {
  511. m_currentDebugRtName.destroy();
  512. if(!rtName.isEmpty() && rtName.getLength() > 0)
  513. {
  514. m_currentDebugRtName = rtName;
  515. }
  516. }
  517. Format Renderer::getHdrFormat() const
  518. {
  519. Format out;
  520. if(!g_highQualityHdrCVar.get())
  521. {
  522. out = Format::kB10G11R11_Ufloat_Pack32;
  523. }
  524. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  525. {
  526. out = Format::kR16G16B16_Sfloat;
  527. }
  528. else
  529. {
  530. out = Format::kR16G16B16A16_Sfloat;
  531. }
  532. return out;
  533. }
  534. Format Renderer::getDepthNoStencilFormat() const
  535. {
  536. if(ANKI_PLATFORM_MOBILE)
  537. {
  538. return Format::kX8D24_Unorm_Pack32;
  539. }
  540. else
  541. {
  542. return Format::kD32_Sfloat;
  543. }
  544. }
  545. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  546. {
  547. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  548. m_runCtx.m_gpuSceneHandle =
  549. rgraph.importBuffer(&GpuSceneBuffer::getSingleton().getBuffer(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  550. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  551. {
  552. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("GPU scene patching");
  553. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kStorageComputeWrite);
  554. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  555. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  556. });
  557. }
  558. }
  559. } // end namespace anki