IndirectDiffuseProbes.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  8. #include <AnKi/Renderer/Sky.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Scene/SceneGraph.h>
  11. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  12. #include <AnKi/Scene/Components/LightComponent.h>
  13. #include <AnKi/Core/CVarSet.h>
  14. #include <AnKi/Core/StatsSet.h>
  15. #include <AnKi/Util/Tracer.h>
  16. #include <AnKi/Collision/Aabb.h>
  17. #include <AnKi/Collision/Functions.h>
  18. #include <AnKi/Resource/AsyncLoader.h>
  19. namespace anki {
  20. static NumericCVar<U32> g_indirectDiffuseProbeTileResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeTileResolution",
  21. (ANKI_PLATFORM_MOBILE) ? 16 : 32, 8, 32, "GI tile resolution");
  22. static NumericCVar<U32> g_indirectDiffuseProbeShadowMapResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeShadowMapResolution", 128, 4,
  23. 2048, "GI shadowmap resolution");
  24. static StatCounter g_giProbeRenderCountStatVar(StatCategory::kRenderer, "GI probes rendered", StatFlag::kMainThreadUpdates);
  25. static StatCounter g_giProbeCellsRenderCountStatVar(StatCategory::kRenderer, "GI probes cells rendered", StatFlag::kMainThreadUpdates);
  26. static Vec3 computeCellCenter(U32 cellIdx, const GlobalIlluminationProbeComponent& probe)
  27. {
  28. const Vec3 halfAabbSize = probe.getBoxVolumeSize() / 2.0f;
  29. const Vec3 aabbMin = -halfAabbSize + probe.getWorldPosition();
  30. U32 x, y, z;
  31. unflatten3dArrayIndex(probe.getCellCountsPerDimension().x(), probe.getCellCountsPerDimension().y(), probe.getCellCountsPerDimension().z(),
  32. cellIdx, x, y, z);
  33. const Vec3 cellSize = probe.getBoxVolumeSize() / Vec3(probe.getCellCountsPerDimension());
  34. const Vec3 halfCellSize = cellSize / 2.0f;
  35. const Vec3 cellCenter = aabbMin + halfCellSize + cellSize * Vec3(UVec3(x, y, z));
  36. return cellCenter;
  37. }
  38. Error IndirectDiffuseProbes::init()
  39. {
  40. const Error err = initInternal();
  41. if(err)
  42. {
  43. ANKI_R_LOGE("Failed to initialize global illumination");
  44. }
  45. return err;
  46. }
  47. Error IndirectDiffuseProbes::initInternal()
  48. {
  49. m_tileSize = g_indirectDiffuseProbeTileResolutionCVar.get();
  50. ANKI_CHECK(initGBuffer());
  51. ANKI_CHECK(initLightShading());
  52. ANKI_CHECK(initShadowMapping());
  53. ANKI_CHECK(initIrradiance());
  54. return Error::kNone;
  55. }
  56. Error IndirectDiffuseProbes::initGBuffer()
  57. {
  58. // Create RT descriptions
  59. {
  60. RenderTargetDesc texinit =
  61. getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  62. texinit.m_type = TextureType::kCube;
  63. // Create color RT descriptions
  64. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  65. {
  66. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  67. m_gbuffer.m_colorRtDescrs[i] = texinit;
  68. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  69. m_gbuffer.m_colorRtDescrs[i].bake();
  70. }
  71. // Create depth RT
  72. texinit.m_type = TextureType::k2D;
  73. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  74. texinit.setName("GI GBuff Depth");
  75. m_gbuffer.m_depthRtDescr = texinit;
  76. m_gbuffer.m_depthRtDescr.bake();
  77. }
  78. return Error::kNone;
  79. }
  80. Error IndirectDiffuseProbes::initShadowMapping()
  81. {
  82. const U32 resolution = g_indirectDiffuseProbeShadowMapResolutionCVar.get();
  83. ANKI_ASSERT(resolution > 8);
  84. // RT descr
  85. m_shadowMapping.m_rtDescr =
  86. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  87. m_shadowMapping.m_rtDescr.bake();
  88. return Error::kNone;
  89. }
  90. Error IndirectDiffuseProbes::initLightShading()
  91. {
  92. // Init RT descr
  93. {
  94. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  95. m_lightShading.m_rtDescr.m_type = TextureType::kCube;
  96. m_lightShading.m_rtDescr.bake();
  97. }
  98. // Init deferred
  99. ANKI_CHECK(m_lightShading.m_deferred.init());
  100. return Error::kNone;
  101. }
  102. Error IndirectDiffuseProbes::initIrradiance()
  103. {
  104. ANKI_CHECK(loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  105. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_tileSize)}, {"STORE_LOCATION", 0}, {"SECOND_BOUNCE", 1}},
  106. m_irradiance.m_prog, m_irradiance.m_grProg));
  107. return Error::kNone;
  108. }
  109. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  110. {
  111. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuse);
  112. // Iterate the visible probes to find a candidate for update
  113. WeakArray<GlobalIlluminationProbeComponent*> visibleProbes =
  114. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_globalIlluminationProbes;
  115. GlobalIlluminationProbeComponent* bestCandidateProbe = nullptr;
  116. GlobalIlluminationProbeComponent* secondBestCandidateProbe = nullptr;
  117. for(GlobalIlluminationProbeComponent* probe : visibleProbes)
  118. {
  119. if(probe->getCellsNeedsRefresh())
  120. {
  121. if(probe->getNextCellForRefresh() != 0)
  122. {
  123. bestCandidateProbe = probe;
  124. break;
  125. }
  126. else
  127. {
  128. secondBestCandidateProbe = probe;
  129. }
  130. }
  131. }
  132. GlobalIlluminationProbeComponent* probeToRefresh = (bestCandidateProbe) ? bestCandidateProbe : secondBestCandidateProbe;
  133. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  134. {
  135. // Nothing to update or can't update right now, early exit
  136. m_runCtx = {};
  137. return;
  138. }
  139. const Bool probeTouchedFirstTime = probeToRefresh->getNextCellForRefresh() == 0;
  140. if(probeTouchedFirstTime)
  141. {
  142. g_giProbeRenderCountStatVar.increment(1);
  143. }
  144. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  145. // Create some common resources to save on memory
  146. Array<RenderTargetHandle, kMaxColorRenderTargets> gbufferColorRts;
  147. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  148. {
  149. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  150. }
  151. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  152. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  153. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  154. const RenderTargetHandle shadowsRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  155. const RenderTargetHandle lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  156. const RenderTargetHandle irradianceVolume = rgraph.importRenderTarget(&probeToRefresh->getVolumeTexture(), TextureUsageBit::kNone);
  157. m_runCtx.m_probeVolumeHandle = irradianceVolume;
  158. const U32 beginCellIdx = probeToRefresh->getNextCellForRefresh();
  159. for(U32 cellIdx = beginCellIdx; cellIdx < min(beginCellIdx + kProbeCellRefreshesPerFrame, probeToRefresh->getCellCount()); ++cellIdx)
  160. {
  161. const Vec3 cellCenter = computeCellCenter(cellIdx, *probeToRefresh);
  162. // For each face do everything up to light shading
  163. for(U8 f = 0; f < 6; ++f)
  164. {
  165. // GBuffer visibility
  166. GpuVisibilityOutput visOut;
  167. GpuMeshletVisibilityOutput meshletVisOut;
  168. Frustum frustum;
  169. {
  170. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  171. frustum.setWorldTransform(
  172. Transform(cellCenter.xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  173. frustum.update();
  174. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  175. FrustumGpuVisibilityInput visIn;
  176. visIn.m_passesName = generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f);
  177. visIn.m_technique = RenderingTechnique::kGBuffer;
  178. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  179. visIn.m_lodReferencePoint = cellCenter;
  180. visIn.m_lodDistances = lodDistances;
  181. visIn.m_rgraph = &rgraph;
  182. visIn.m_viewportSize = UVec2(m_tileSize);
  183. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  184. if(getRenderer().runSoftwareMeshletRendering())
  185. {
  186. GpuMeshletVisibilityInput meshIn;
  187. meshIn.m_passesName = visIn.m_passesName;
  188. meshIn.m_technique = RenderingTechnique::kGBuffer;
  189. meshIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  190. meshIn.m_cameraTransform = frustum.getViewMatrix().getInverseTransformation();
  191. meshIn.m_viewportSize = UVec2(m_tileSize);
  192. meshIn.m_rgraph = &rgraph;
  193. meshIn.fillBuffers(visOut);
  194. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, meshletVisOut);
  195. }
  196. }
  197. // GBuffer
  198. {
  199. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f));
  200. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  201. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  202. {
  203. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  204. colorRtis[j].m_subresource.m_face = f;
  205. colorRtis[j].m_handle = gbufferColorRts[j];
  206. }
  207. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  208. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  209. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  210. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  211. pass.setRenderpassInfo(colorRtis, &depthRti);
  212. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  213. {
  214. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kFramebufferWrite, TextureSubresourceDesc::surface(0, f, 0));
  215. }
  216. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllFramebuffer,
  217. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  218. pass.newBufferDependency((meshletVisOut.isFilled()) ? meshletVisOut.m_dependency : visOut.m_dependency,
  219. BufferUsageBit::kIndirectDraw);
  220. pass.setWork([this, visOut, meshletVisOut, viewProjMat = frustum.getViewProjectionMatrix(),
  221. viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  222. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  223. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  224. cmdb.setViewport(0, 0, m_tileSize, m_tileSize);
  225. RenderableDrawerArguments args;
  226. args.m_viewMatrix = viewMat;
  227. args.m_cameraTransform = args.m_viewMatrix.getInverseTransformation();
  228. args.m_viewProjectionMatrix = viewProjMat;
  229. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  230. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  231. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  232. args.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  233. args.fill(visOut);
  234. if(meshletVisOut.isFilled())
  235. {
  236. args.fill(meshletVisOut);
  237. }
  238. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  239. // It's secondary, no need to restore any state
  240. });
  241. }
  242. // Shadow visibility. Optional
  243. GpuVisibilityOutput shadowVisOut;
  244. GpuMeshletVisibilityOutput shadowMeshletVisOut;
  245. Mat4 cascadeProjMat;
  246. Mat3x4 cascadeViewMat;
  247. Mat4 cascadeViewProjMat;
  248. if(doShadows)
  249. {
  250. constexpr U32 kCascadeCount = 1;
  251. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  252. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  253. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  254. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  255. FrustumGpuVisibilityInput visIn;
  256. visIn.m_passesName = generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f);
  257. visIn.m_technique = RenderingTechnique::kDepth;
  258. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  259. visIn.m_lodReferencePoint = cellCenter;
  260. visIn.m_lodDistances = lodDistances;
  261. visIn.m_rgraph = &rgraph;
  262. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  263. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  264. if(getRenderer().runSoftwareMeshletRendering())
  265. {
  266. GpuMeshletVisibilityInput meshIn;
  267. meshIn.m_passesName = visIn.m_passesName;
  268. meshIn.m_technique = RenderingTechnique::kDepth;
  269. meshIn.m_viewProjectionMatrix = cascadeViewProjMat;
  270. meshIn.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  271. meshIn.m_viewportSize = visIn.m_viewportSize;
  272. meshIn.m_rgraph = &rgraph;
  273. meshIn.fillBuffers(shadowVisOut);
  274. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, shadowMeshletVisOut);
  275. }
  276. }
  277. // Shadow pass. Optional
  278. if(doShadows)
  279. {
  280. // Create the pass
  281. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f));
  282. GraphicsRenderPassTargetDesc depthRti(shadowsRt);
  283. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  284. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  285. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  286. pass.setRenderpassInfo({}, &depthRti);
  287. pass.newTextureDependency(shadowsRt, TextureUsageBit::kAllFramebuffer,
  288. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  289. pass.newBufferDependency((shadowMeshletVisOut.isFilled()) ? shadowMeshletVisOut.m_dependency : shadowVisOut.m_dependency,
  290. BufferUsageBit::kIndirectDraw);
  291. pass.setWork([this, shadowVisOut, shadowMeshletVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  292. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  293. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  294. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  295. const U32 rez = m_shadowMapping.m_rtDescr.m_width;
  296. cmdb.setViewport(0, 0, rez, rez);
  297. RenderableDrawerArguments args;
  298. args.m_viewMatrix = cascadeViewMat;
  299. args.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  300. args.m_viewProjectionMatrix = cascadeViewProjMat;
  301. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  302. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  303. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  304. args.m_viewport = UVec4(0, 0, rez, rez);
  305. args.fill(shadowVisOut);
  306. if(shadowMeshletVisOut.isFilled())
  307. {
  308. args.fill(shadowMeshletVisOut);
  309. }
  310. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  311. // It's secondary, no need to restore the state
  312. });
  313. }
  314. // Light visibility
  315. GpuVisibilityNonRenderablesOutput lightVis;
  316. {
  317. GpuVisibilityNonRenderablesInput in;
  318. in.m_passesName = generateTempPassName("GI: Light visibility cell:%u face:%u", cellIdx, f);
  319. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  320. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  321. in.m_rgraph = &rgraph;
  322. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  323. }
  324. // Light shading pass
  325. {
  326. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Light shading cell:%u face:%u", cellIdx, f));
  327. GraphicsRenderPassTargetDesc colorRti(lightShadingRt);
  328. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  329. colorRti.m_subresource.m_face = f;
  330. pass.setRenderpassInfo({colorRti});
  331. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kStorageFragmentRead);
  332. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kFramebufferWrite, TextureSubresourceDesc::surface(0, f, 0));
  333. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  334. {
  335. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledFragment, TextureSubresourceDesc::surface(0, f, 0));
  336. }
  337. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSampledFragment,
  338. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  339. if(shadowsRt.isValid())
  340. {
  341. pass.newTextureDependency(shadowsRt, TextureUsageBit::kSampledFragment);
  342. }
  343. if(getRenderer().getSky().isEnabled())
  344. {
  345. pass.newTextureDependency(getRenderer().getSky().getSkyLutRt(), TextureUsageBit::kSampledFragment);
  346. }
  347. pass.setWork([this, visibleLightsBuffer = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(), cellCenter,
  348. gbufferColorRts, gbufferDepthRt, probeToRefresh, cascadeViewProjMat, shadowsRt, faceIdx = f,
  349. &rctx](RenderPassWorkContext& rgraphCtx) {
  350. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  351. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  352. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  353. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  354. const U32 rez = m_tileSize;
  355. cmdb.setViewport(0, 0, rez, rez);
  356. // Draw light shading
  357. TraditionalDeferredLightShadingDrawInfo dsInfo;
  358. dsInfo.m_viewProjectionMatrix = viewProjMat;
  359. dsInfo.m_invViewProjectionMatrix = viewProjMat.getInverse();
  360. dsInfo.m_cameraPosWSpace = cellCenter.xyz1();
  361. dsInfo.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  362. dsInfo.m_effectiveShadowDistance = (doShadows) ? probeToRefresh->getShadowsRenderRadius() : -1.0f;
  363. if(doShadows)
  364. {
  365. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  366. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  367. }
  368. else
  369. {
  370. dsInfo.m_dirLightMatrix = Mat4::getIdentity();
  371. }
  372. dsInfo.m_visibleLightsBuffer = visibleLightsBuffer;
  373. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  374. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  375. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  376. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  377. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  378. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  379. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  380. dsInfo.m_directionalLightShadowmapRenderTarget = shadowsRt;
  381. dsInfo.m_skyLutRenderTarget = (getRenderer().getSky().isEnabled()) ? getRenderer().getSky().getSkyLutRt() : RenderTargetHandle();
  382. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingUniformsBuffer;
  383. dsInfo.m_renderpassContext = &rgraphCtx;
  384. m_lightShading.m_deferred.drawLights(dsInfo);
  385. });
  386. }
  387. } // For all faces
  388. // Irradiance pass. First & 2nd bounce
  389. {
  390. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass(generateTempPassName("GI: Irradiance cell:%u", cellIdx));
  391. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kSampledCompute);
  392. pass.newTextureDependency(irradianceVolume, TextureUsageBit::kStorageComputeWrite);
  393. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  394. {
  395. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  396. }
  397. pass.setWork([this, lightShadingRt, gbufferColorRts, irradianceVolume, cellIdx, probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  398. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  399. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  400. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  401. // Bind resources
  402. cmdb.bindSampler(ANKI_REG(s0), getRenderer().getSamplers().m_nearestNearestClamp.get());
  403. rgraphCtx.bindTexture(ANKI_REG(t0), lightShadingRt);
  404. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  405. {
  406. rgraphCtx.bindTexture(Register(HlslResourceType::kSrv, i + 1), gbufferColorRts[i]);
  407. }
  408. rgraphCtx.bindTexture(ANKI_REG(u0), irradianceVolume);
  409. class
  410. {
  411. public:
  412. IVec3 m_volumeTexel;
  413. I32 m_nextTexelOffsetInU;
  414. } unis;
  415. U32 x, y, z;
  416. unflatten3dArrayIndex(probeToRefresh->getCellCountsPerDimension().x(), probeToRefresh->getCellCountsPerDimension().y(),
  417. probeToRefresh->getCellCountsPerDimension().z(), cellIdx, x, y, z);
  418. unis.m_volumeTexel = IVec3(x, y, z);
  419. unis.m_nextTexelOffsetInU = probeToRefresh->getCellCountsPerDimension().x();
  420. cmdb.setPushConstants(&unis, sizeof(unis));
  421. // Dispatch
  422. cmdb.dispatchCompute(1, 1, 1);
  423. });
  424. }
  425. probeToRefresh->incrementRefreshedCells(1);
  426. g_giProbeCellsRenderCountStatVar.increment(1);
  427. }
  428. }
  429. } // end namespace anki