Gr.cpp 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670
  1. // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <AnKi/Gr.h>
  7. #include <AnKi/Core/NativeWindow.h>
  8. #include <AnKi/Input/Input.h>
  9. #include <AnKi/Core/ConfigSet.h>
  10. #include <AnKi/Util/HighRezTimer.h>
  11. #include <AnKi/Core/StagingGpuMemoryManager.h>
  12. #include <AnKi/Resource/TransferGpuAllocator.h>
  13. #include <AnKi/ShaderCompiler/Glslang.h>
  14. #include <AnKi/ShaderCompiler/ShaderProgramParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <ctime>
  17. namespace anki
  18. {
  19. const U WIDTH = 1024;
  20. const U HEIGHT = 768;
  21. static const char* VERT_SRC = R"(
  22. out gl_PerVertex
  23. {
  24. vec4 gl_Position;
  25. };
  26. void main()
  27. {
  28. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  29. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  30. })";
  31. static const char* VERT_QUAD_STRIP_SRC = R"(
  32. out gl_PerVertex
  33. {
  34. vec4 gl_Position;
  35. };
  36. layout(location = 0) out Vec2 out_uv;
  37. void main()
  38. {
  39. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  40. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  41. out_uv = gl_Position.xy / 2.0 + 0.5;
  42. })";
  43. static const char* VERT_UBO_SRC = R"(
  44. out gl_PerVertex
  45. {
  46. vec4 gl_Position;
  47. };
  48. layout(set = 0, binding = 0) uniform u0_
  49. {
  50. vec4 u_color[3];
  51. };
  52. layout(set = 0, binding = 1) uniform u1_
  53. {
  54. vec4 u_rotation2d;
  55. };
  56. layout(location = 0) out vec3 out_color;
  57. void main()
  58. {
  59. out_color = u_color[gl_VertexID].rgb;
  60. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  61. mat2 rot = mat2(
  62. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  63. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  64. gl_Position = vec4(pos, 0.0, 1.0);
  65. })";
  66. static const char* VERT_INP_SRC = R"(
  67. layout(location = 0) in vec3 in_position;
  68. layout(location = 1) in vec3 in_color0;
  69. layout(location = 2) in vec3 in_color1;
  70. out gl_PerVertex
  71. {
  72. vec4 gl_Position;
  73. };
  74. layout(location = 0) out vec3 out_color0;
  75. layout(location = 1) out vec3 out_color1;
  76. void main()
  77. {
  78. gl_Position = vec4(in_position, 1.0);
  79. out_color0 = in_color0;
  80. out_color1 = in_color1;
  81. })";
  82. static const char* VERT_QUAD_SRC = R"(
  83. out gl_PerVertex
  84. {
  85. vec4 gl_Position;
  86. };
  87. layout(location = 0) out vec2 out_uv;
  88. void main()
  89. {
  90. const vec2 POSITIONS[6] =
  91. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  92. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  93. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  94. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  95. })";
  96. static const char* VERT_MRT_SRC = R"(
  97. out gl_PerVertex
  98. {
  99. vec4 gl_Position;
  100. };
  101. layout(location = 0) in vec3 in_pos;
  102. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  103. {
  104. mat4 u_mvp;
  105. };
  106. void main()
  107. {
  108. gl_Position = u_mvp * vec4(in_pos, 1.0);
  109. })";
  110. static const char* FRAG_SRC = R"(layout (location = 0) out vec4 out_color;
  111. void main()
  112. {
  113. out_color = vec4(0.5);
  114. })";
  115. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  116. layout(location = 0) in vec3 in_color;
  117. void main()
  118. {
  119. out_color = vec4(in_color, 1.0);
  120. })";
  121. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  122. layout(location = 0) in vec3 in_color0;
  123. layout(location = 1) in vec3 in_color1;
  124. void main()
  125. {
  126. out_color = vec4(in_color0 + in_color1, 1.0);
  127. })";
  128. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  129. layout(location = 0) in vec2 in_uv;
  130. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  131. void main()
  132. {
  133. out_color = texture(u_tex0, in_uv);
  134. })";
  135. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  136. layout(set = 0, binding = 0) uniform u0_
  137. {
  138. vec4 u_uv;
  139. };
  140. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  141. void main()
  142. {
  143. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  144. })";
  145. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  146. layout (location = 1) out vec4 out_color1;
  147. layout(set = 0, binding = 1, std140) uniform u1_
  148. {
  149. vec4 u_color0;
  150. vec4 u_color1;
  151. };
  152. void main()
  153. {
  154. out_color0 = u_color0;
  155. out_color1 = u_color1;
  156. })";
  157. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  158. layout(location = 0) in vec2 in_uv;
  159. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  160. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  161. void main()
  162. {
  163. vec2 uv = in_uv;
  164. #ifdef ANKI_VK
  165. uv.y = 1.0 - uv.y;
  166. #endif
  167. float factor = uv.x;
  168. vec3 col0 = texture(u_tex0, uv).rgb;
  169. vec3 col1 = texture(u_tex1, uv).rgb;
  170. out_color = vec4(col1 + col0, 1.0);
  171. })";
  172. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  173. layout (location = 0) out vec4 out_color;
  174. layout(location = 0) in vec2 in_uv;
  175. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  176. void main()
  177. {
  178. out_color = textureLod(u_tex0, in_uv, 1.0);
  179. })";
  180. static const char* COMP_WRITE_IMAGE_SRC = R"(
  181. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  182. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  183. layout(set = 1, binding = 0) buffer ss1_
  184. {
  185. vec4 u_color;
  186. };
  187. void main()
  188. {
  189. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  190. })";
  191. static NativeWindow* win = nullptr;
  192. static GrManager* gr = nullptr;
  193. static StagingGpuMemoryManager* stagingMem = nullptr;
  194. static Input* input = nullptr;
  195. #define COMMON_BEGIN() \
  196. stagingMem = new StagingGpuMemoryManager(); \
  197. ConfigSet cfg = DefaultConfigSet::get(); \
  198. cfg.set("width", WIDTH); \
  199. cfg.set("height", HEIGHT); \
  200. cfg.set("gr_validation", true); \
  201. cfg.set("gr_vsync", false); \
  202. cfg.set("gr_rayTracing", true); \
  203. cfg.set("gr_debugMarkers", true); \
  204. win = createWindow(cfg); \
  205. ANKI_TEST_EXPECT_NO_ERR(Input::newInstance(allocAligned, nullptr, win, input)); \
  206. gr = createGrManager(cfg, win); \
  207. ANKI_TEST_EXPECT_NO_ERR(stagingMem->init(gr, cfg)); \
  208. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  209. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB, gr, gr->getAllocator())); \
  210. while(true) \
  211. {
  212. #define COMMON_END() \
  213. break; \
  214. } \
  215. gr->finish(); \
  216. delete transfAlloc; \
  217. delete stagingMem; \
  218. GrManager::deleteInstance(gr); \
  219. Input::deleteInstance(input); \
  220. NativeWindow::deleteInstance(win); \
  221. win = nullptr; \
  222. gr = nullptr; \
  223. stagingMem = nullptr;
  224. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  225. {
  226. StagingGpuMemoryToken token;
  227. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::UNIFORM, token);
  228. cmdb->bindUniformBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  229. return ptr;
  230. }
  231. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  232. {
  233. StagingGpuMemoryToken token;
  234. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::STORAGE, token);
  235. cmdb->bindStorageBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  236. return ptr;
  237. }
  238. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  239. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  240. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  241. do \
  242. { \
  243. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  244. void* f = handle_.getMappedMemory(); \
  245. memcpy(f, ptr_, size_); \
  246. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, surf_)); \
  247. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  248. } while(0)
  249. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  250. do \
  251. { \
  252. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  253. void* f = handle_.getMappedMemory(); \
  254. memcpy(f, ptr_, size_); \
  255. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, vol_)); \
  256. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  257. } while(0)
  258. const Format DS_FORMAT = Format::D24_UNORM_S8_UINT;
  259. static ShaderPtr createShader(CString src, ShaderType type, GrManager& gr,
  260. ConstWeakArray<ShaderSpecializationConstValue> specVals = {})
  261. {
  262. HeapAllocator<U8> alloc(allocAligned, nullptr);
  263. StringAuto header(alloc);
  264. ShaderCompilerOptions compilerOptions;
  265. compilerOptions.m_bindlessLimits = gr.getBindlessLimits();
  266. ShaderProgramParser::generateAnkiShaderHeader(type, compilerOptions, header);
  267. header.append(src);
  268. DynamicArrayAuto<U8> spirv(alloc);
  269. ANKI_TEST_EXPECT_NO_ERR(compilerGlslToSpirv(header, type, alloc, spirv));
  270. ShaderInitInfo initInf(type, spirv);
  271. initInf.m_constValues = specVals;
  272. return gr.newShader(initInf);
  273. }
  274. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  275. {
  276. ShaderPtr vert = createShader(vertSrc, ShaderType::VERTEX, gr);
  277. ShaderPtr frag = createShader(fragSrc, ShaderType::FRAGMENT, gr);
  278. ShaderProgramInitInfo inf;
  279. inf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  280. inf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  281. return gr.newShaderProgram(inf);
  282. }
  283. static FramebufferPtr createColorFb(GrManager& gr, TexturePtr tex)
  284. {
  285. TextureViewInitInfo init;
  286. init.m_texture = tex;
  287. TextureViewPtr view = gr.newTextureView(init);
  288. FramebufferInitInfo fbinit;
  289. fbinit.m_colorAttachmentCount = 1;
  290. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{1.0, 0.0, 1.0, 1.0}};
  291. fbinit.m_colorAttachments[0].m_textureView = view;
  292. return gr.newFramebuffer(fbinit);
  293. }
  294. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  295. {
  296. static const Array<F32, 8 * 3> pos = {
  297. {1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  298. static const Array<U16, 6 * 2 * 3> idx = {
  299. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  300. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  301. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::WRITE);
  302. memcpy(mapped, &pos[0], sizeof(pos));
  303. verts->unmap();
  304. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::INDEX, BufferMapAccessBit::WRITE));
  305. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::WRITE);
  306. memcpy(mapped, &idx[0], sizeof(idx));
  307. indices->unmap();
  308. }
  309. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  310. {
  311. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  312. TextureSubresourceInfo());
  313. }
  314. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  315. {
  316. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  317. TextureSubresourceInfo());
  318. }
  319. ANKI_TEST(Gr, GrManager){COMMON_BEGIN() COMMON_END()}
  320. ANKI_TEST(Gr, Shader)
  321. {
  322. COMMON_BEGIN()
  323. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::FRAGMENT, *gr);
  324. COMMON_END()
  325. }
  326. ANKI_TEST(Gr, ShaderProgram)
  327. {
  328. COMMON_BEGIN()
  329. ShaderProgramPtr ppline = createProgram(VERT_SRC, FRAG_SRC, *gr);
  330. COMMON_END()
  331. }
  332. ANKI_TEST(Gr, ClearScreen)
  333. {
  334. COMMON_BEGIN()
  335. ANKI_TEST_LOGI("Expect to see a magenta background");
  336. U iterations = 100;
  337. while(iterations--)
  338. {
  339. HighRezTimer timer;
  340. timer.start();
  341. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  342. FramebufferPtr fb = createColorFb(*gr, presentTex);
  343. CommandBufferInitInfo cinit;
  344. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  345. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  346. presentBarrierA(cmdb, presentTex);
  347. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  348. cmdb->endRenderPass();
  349. presentBarrierB(cmdb, presentTex);
  350. cmdb->flush();
  351. gr->swapBuffers();
  352. timer.stop();
  353. const F32 TICK = 1.0f / 30.0f;
  354. if(timer.getElapsedTime() < TICK)
  355. {
  356. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  357. }
  358. }
  359. COMMON_END()
  360. }
  361. ANKI_TEST(Gr, SimpleDrawcall)
  362. {
  363. COMMON_BEGIN()
  364. ANKI_TEST_LOGI("Expect to see a grey triangle");
  365. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  366. const U ITERATIONS = 200;
  367. for(U i = 0; i < ITERATIONS; ++i)
  368. {
  369. HighRezTimer timer;
  370. timer.start();
  371. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  372. FramebufferPtr fb = createColorFb(*gr, presentTex);
  373. CommandBufferInitInfo cinit;
  374. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  375. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  376. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  377. cmdb->bindShaderProgram(prog);
  378. presentBarrierA(cmdb, presentTex);
  379. cmdb->beginRenderPass(fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  380. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  381. cmdb->endRenderPass();
  382. presentBarrierB(cmdb, presentTex);
  383. cmdb->flush();
  384. gr->swapBuffers();
  385. timer.stop();
  386. const F32 TICK = 1.0f / 30.0f;
  387. if(timer.getElapsedTime() < TICK)
  388. {
  389. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  390. }
  391. }
  392. COMMON_END()
  393. }
  394. ANKI_TEST(Gr, ViewportAndScissor)
  395. {
  396. #if 0
  397. COMMON_BEGIN()
  398. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  399. "the area around the quad");
  400. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  401. srand(time(nullptr));
  402. Array<FramebufferPtr, 4> fb;
  403. for(FramebufferPtr& f : fb)
  404. {
  405. FramebufferInitInfo fbinit;
  406. fbinit.m_colorAttachmentCount = 1;
  407. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  408. f = gr->newFramebuffer(fbinit);
  409. }
  410. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  411. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  412. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  413. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  414. const U ITERATIONS = 400;
  415. const U SCISSOR_MARGIN = 20;
  416. const U RENDER_AREA_MARGIN = 10;
  417. for(U i = 0; i < ITERATIONS; ++i)
  418. {
  419. HighRezTimer timer;
  420. timer.start();
  421. gr->beginFrame();
  422. CommandBufferInitInfo cinit;
  423. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  424. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  425. U idx = (i / 30) % 4;
  426. auto vp = VIEWPORTS[idx];
  427. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  428. cmdb->setScissor(
  429. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  430. cmdb->bindShaderProgram(prog);
  431. cmdb->beginRenderPass(fb[i % 4],
  432. {},
  433. {},
  434. vp[0] + RENDER_AREA_MARGIN,
  435. vp[1] + RENDER_AREA_MARGIN,
  436. vp[2] - RENDER_AREA_MARGIN * 2,
  437. vp[3] - RENDER_AREA_MARGIN * 2);
  438. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  439. cmdb->endRenderPass();
  440. cmdb->flush();
  441. gr->swapBuffers();
  442. timer.stop();
  443. const F32 TICK = 1.0f / 30.0f;
  444. if(timer.getElapsedTime() < TICK)
  445. {
  446. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  447. }
  448. }
  449. COMMON_END()
  450. #endif
  451. }
  452. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  453. {
  454. srand(U32(time(nullptr)));
  455. COMMON_BEGIN()
  456. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  457. "Around that quad is a border that changes color. "
  458. "The quads appear counter-clockwise");
  459. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  460. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *gr);
  461. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  462. const U RT_WIDTH = 32;
  463. const U RT_HEIGHT = 16;
  464. TextureInitInfo init;
  465. init.m_depth = 1;
  466. init.m_format = COL_FORMAT;
  467. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  468. init.m_height = RT_HEIGHT;
  469. init.m_width = RT_WIDTH;
  470. init.m_mipmapCount = 1;
  471. init.m_depth = 1;
  472. init.m_layerCount = 1;
  473. init.m_samples = 1;
  474. init.m_type = TextureType::_2D;
  475. TexturePtr rt = gr->newTexture(init);
  476. TextureViewInitInfo viewInit(rt);
  477. TextureViewPtr texView = gr->newTextureView(viewInit);
  478. Array<FramebufferPtr, 4> fb;
  479. for(FramebufferPtr& f : fb)
  480. {
  481. TextureViewInitInfo viewInf(rt);
  482. TextureViewPtr view = gr->newTextureView(viewInf);
  483. FramebufferInitInfo fbinit;
  484. fbinit.m_colorAttachmentCount = 1;
  485. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  486. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  487. fbinit.m_colorAttachments[0].m_textureView = view;
  488. f = gr->newFramebuffer(fbinit);
  489. }
  490. SamplerInitInfo samplerInit;
  491. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  492. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  493. SamplerPtr sampler = gr->newSampler(samplerInit);
  494. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  495. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  496. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  497. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  498. const U32 ITERATIONS = 400;
  499. const U32 SCISSOR_MARGIN = 2;
  500. const U32 RENDER_AREA_MARGIN = 1;
  501. for(U32 i = 0; i < ITERATIONS; ++i)
  502. {
  503. HighRezTimer timer;
  504. timer.start();
  505. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  506. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  507. if(i == 0)
  508. {
  509. CommandBufferInitInfo cinit;
  510. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  511. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  512. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  513. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  514. TextureSurfaceInfo(0, 0, 0, 0));
  515. cmdb->beginRenderPass(fb[0], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  516. cmdb->endRenderPass();
  517. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  518. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  519. cmdb->flush();
  520. }
  521. CommandBufferInitInfo cinit;
  522. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  523. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  524. // Draw offscreen
  525. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::SAMPLED_FRAGMENT,
  526. TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureSurfaceInfo(0, 0, 0, 0));
  527. auto vp = VIEWPORTS[(i / 30) % 4];
  528. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  529. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2,
  530. vp[3] - SCISSOR_MARGIN * 2);
  531. cmdb->bindShaderProgram(prog);
  532. cmdb->beginRenderPass(fb[i % 4], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {},
  533. vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN, vp[2] - RENDER_AREA_MARGIN * 2,
  534. vp[3] - RENDER_AREA_MARGIN * 2);
  535. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  536. cmdb->endRenderPass();
  537. // Draw onscreen
  538. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  539. cmdb->setScissor(0, 0, win->getWidth(), win->getHeight());
  540. cmdb->bindShaderProgram(blitProg);
  541. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  542. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  543. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  544. presentBarrierA(cmdb, presentTex);
  545. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  546. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  547. cmdb->endRenderPass();
  548. presentBarrierB(cmdb, presentTex);
  549. cmdb->flush();
  550. gr->swapBuffers();
  551. timer.stop();
  552. const F32 TICK = 1.0f / 30.0f;
  553. if(timer.getElapsedTime() < TICK)
  554. {
  555. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  556. }
  557. }
  558. COMMON_END()
  559. }
  560. ANKI_TEST(Gr, Buffer)
  561. {
  562. COMMON_BEGIN()
  563. BufferInitInfo buffInit("a");
  564. buffInit.m_size = 512;
  565. buffInit.m_usage = BufferUsageBit::ALL_UNIFORM;
  566. buffInit.m_mapAccess = BufferMapAccessBit::NONE;
  567. BufferPtr a = gr->newBuffer(buffInit);
  568. buffInit.setName("b");
  569. buffInit.m_size = 64;
  570. buffInit.m_usage = BufferUsageBit::ALL_STORAGE;
  571. buffInit.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  572. BufferPtr b = gr->newBuffer(buffInit);
  573. void* ptr = b->map(0, 64, BufferMapAccessBit::WRITE);
  574. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  575. U8 ptr2[64];
  576. memset(ptr, 0xCC, 64);
  577. memset(ptr2, 0xCC, 64);
  578. b->unmap();
  579. ptr = b->map(0, 64, BufferMapAccessBit::READ);
  580. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  581. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  582. b->unmap();
  583. COMMON_END()
  584. }
  585. ANKI_TEST(Gr, DrawWithUniforms)
  586. {
  587. COMMON_BEGIN()
  588. // A non-uploaded buffer
  589. BufferPtr b =
  590. gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::WRITE));
  591. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::WRITE));
  592. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  593. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  594. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  595. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  596. b->unmap();
  597. // Progm
  598. ShaderProgramPtr prog = createProgram(VERT_UBO_SRC, FRAG_UBO_SRC, *gr);
  599. const U ITERATION_COUNT = 100;
  600. U iterations = ITERATION_COUNT;
  601. while(iterations--)
  602. {
  603. HighRezTimer timer;
  604. timer.start();
  605. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  606. FramebufferPtr fb = createColorFb(*gr, presentTex);
  607. CommandBufferInitInfo cinit;
  608. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  609. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  610. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  611. cmdb->bindShaderProgram(prog);
  612. presentBarrierA(cmdb, presentTex);
  613. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  614. cmdb->bindUniformBuffer(0, 0, b, 0, MAX_PTR_SIZE);
  615. // Uploaded buffer
  616. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  617. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  618. (*rotMat)[0] = cos(angle);
  619. (*rotMat)[1] = -sin(angle);
  620. (*rotMat)[2] = sin(angle);
  621. (*rotMat)[3] = cos(angle);
  622. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  623. cmdb->endRenderPass();
  624. presentBarrierB(cmdb, presentTex);
  625. cmdb->flush();
  626. gr->swapBuffers();
  627. timer.stop();
  628. const F32 TICK = 1.0f / 30.0f;
  629. if(timer.getElapsedTime() < TICK)
  630. {
  631. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  632. }
  633. }
  634. COMMON_END()
  635. }
  636. ANKI_TEST(Gr, DrawWithVertex)
  637. {
  638. COMMON_BEGIN()
  639. // The buffers
  640. struct Vert
  641. {
  642. Vec3 m_pos;
  643. Array<U8, 4> m_color;
  644. };
  645. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  646. BufferPtr b = gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  647. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::WRITE));
  648. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  649. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  650. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  651. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  652. ptr[0].m_color = {{255, 0, 0}};
  653. ptr[1].m_color = {{0, 255, 0}};
  654. ptr[2].m_color = {{0, 0, 255}};
  655. b->unmap();
  656. BufferPtr c = gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  657. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::WRITE));
  658. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  659. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  660. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  661. c->unmap();
  662. // Prog
  663. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *gr);
  664. U iterations = 100;
  665. while(iterations--)
  666. {
  667. HighRezTimer timer;
  668. timer.start();
  669. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  670. FramebufferPtr fb = createColorFb(*gr, presentTex);
  671. CommandBufferInitInfo cinit;
  672. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  673. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  674. cmdb->bindVertexBuffer(0, b, 0, sizeof(Vert));
  675. cmdb->bindVertexBuffer(1, c, 0, sizeof(Vec3));
  676. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  677. cmdb->setVertexAttribute(1, 0, Format::R8G8B8_UNORM, sizeof(Vec3));
  678. cmdb->setVertexAttribute(2, 1, Format::R32G32B32_SFLOAT, 0);
  679. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  680. cmdb->setPolygonOffset(0.0, 0.0);
  681. cmdb->bindShaderProgram(prog);
  682. presentBarrierA(cmdb, presentTex);
  683. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  684. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  685. cmdb->endRenderPass();
  686. presentBarrierB(cmdb, presentTex);
  687. cmdb->flush();
  688. gr->swapBuffers();
  689. timer.stop();
  690. const F32 TICK = 1.0f / 30.0f;
  691. if(timer.getElapsedTime() < TICK)
  692. {
  693. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  694. }
  695. }
  696. COMMON_END()
  697. }
  698. ANKI_TEST(Gr, Sampler)
  699. {
  700. COMMON_BEGIN()
  701. SamplerInitInfo init;
  702. SamplerPtr b = gr->newSampler(init);
  703. COMMON_END()
  704. }
  705. ANKI_TEST(Gr, Texture)
  706. {
  707. COMMON_BEGIN()
  708. TextureInitInfo init;
  709. init.m_depth = 1;
  710. init.m_format = Format::R8G8B8_UNORM;
  711. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT;
  712. init.m_height = 4;
  713. init.m_width = 4;
  714. init.m_mipmapCount = 2;
  715. init.m_depth = 1;
  716. init.m_layerCount = 1;
  717. init.m_samples = 1;
  718. init.m_type = TextureType::_2D;
  719. TexturePtr b = gr->newTexture(init);
  720. TextureViewInitInfo view(b);
  721. TextureViewPtr v = gr->newTextureView(view);
  722. COMMON_END()
  723. }
  724. ANKI_TEST(Gr, DrawWithTexture)
  725. {
  726. COMMON_BEGIN()
  727. //
  728. // Create sampler
  729. //
  730. SamplerInitInfo samplerInit;
  731. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  732. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  733. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  734. SamplerPtr sampler = gr->newSampler(samplerInit);
  735. //
  736. // Create texture A
  737. //
  738. TextureInitInfo init;
  739. init.m_depth = 1;
  740. init.m_format = Format::R8G8B8_UNORM;
  741. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  742. init.m_initialUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  743. init.m_height = 2;
  744. init.m_width = 2;
  745. init.m_mipmapCount = 2;
  746. init.m_samples = 1;
  747. init.m_depth = 1;
  748. init.m_layerCount = 1;
  749. init.m_type = TextureType::_2D;
  750. TexturePtr a = gr->newTexture(init);
  751. TextureViewPtr aView = gr->newTextureView(TextureViewInitInfo(a));
  752. //
  753. // Create texture B
  754. //
  755. init.m_width = 4;
  756. init.m_height = 4;
  757. init.m_mipmapCount = 3;
  758. init.m_usage =
  759. TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::GENERATE_MIPMAPS;
  760. init.m_initialUsage = TextureUsageBit::NONE;
  761. TexturePtr b = gr->newTexture(init);
  762. TextureViewPtr bView = gr->newTextureView(TextureViewInitInfo(b));
  763. //
  764. // Upload all textures
  765. //
  766. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  767. Array<U8, 3> mip1 = {{128, 128, 128}};
  768. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0,
  769. 255, 255, 255, 255, 255, 128, 0, 0, 0, 128, 0, 0, 0, 128, 128, 128,
  770. 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  771. CommandBufferInitInfo cmdbinit;
  772. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  773. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  774. // Set barriers
  775. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  776. TextureSurfaceInfo(0, 0, 0, 0));
  777. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  778. TextureSurfaceInfo(1, 0, 0, 0));
  779. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  780. TextureSurfaceInfo(0, 0, 0, 0));
  781. TransferGpuAllocatorHandle handle0, handle1, handle2;
  782. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  783. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  784. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  785. // Gen mips
  786. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::GENERATE_MIPMAPS,
  787. TextureSurfaceInfo(0, 0, 0, 0));
  788. cmdb->generateMipmaps2d(gr->newTextureView(TextureViewInitInfo(b)));
  789. // Set barriers
  790. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  791. TextureSurfaceInfo(0, 0, 0, 0));
  792. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  793. TextureSurfaceInfo(1, 0, 0, 0));
  794. for(U32 i = 0; i < 3; ++i)
  795. {
  796. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::GENERATE_MIPMAPS, TextureUsageBit::SAMPLED_FRAGMENT,
  797. TextureSurfaceInfo(i, 0, 0, 0));
  798. }
  799. FencePtr fence;
  800. cmdb->flush({}, &fence);
  801. transfAlloc->release(handle0, fence);
  802. transfAlloc->release(handle1, fence);
  803. transfAlloc->release(handle2, fence);
  804. //
  805. // Create prog
  806. //
  807. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  808. layout(location = 0) in vec2 in_uv;
  809. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  810. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  811. layout(push_constant) uniform b_pc
  812. {
  813. Vec4 u_viewport;
  814. };
  815. void main()
  816. {
  817. if(gl_FragCoord.x < u_viewport.x / 2.0)
  818. {
  819. if(gl_FragCoord.y < u_viewport.y / 2.0)
  820. {
  821. vec2 uv = in_uv * 2.0;
  822. out_color = textureLod(u_tex0, uv, 0.0);
  823. }
  824. else
  825. {
  826. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  827. out_color = textureLod(u_tex0, uv, 1.0);
  828. }
  829. }
  830. else
  831. {
  832. if(gl_FragCoord.y < u_viewport.y / 2.0)
  833. {
  834. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  835. out_color = textureLod(u_tex1, uv, 0.0);
  836. }
  837. else
  838. {
  839. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  840. out_color = textureLod(u_tex1, uv, 1.0);
  841. }
  842. }
  843. })";
  844. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *gr);
  845. //
  846. // Draw
  847. //
  848. const U ITERATION_COUNT = 200;
  849. U iterations = ITERATION_COUNT;
  850. while(iterations--)
  851. {
  852. HighRezTimer timer;
  853. timer.start();
  854. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  855. FramebufferPtr fb = createColorFb(*gr, presentTex);
  856. CommandBufferInitInfo cinit;
  857. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  858. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  859. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  860. cmdb->bindShaderProgram(prog);
  861. presentBarrierA(cmdb, presentTex);
  862. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  863. Vec4 pc(F32(win->getWidth()), F32(win->getHeight()), 0.0f, 0.0f);
  864. cmdb->setPushConstants(&pc, sizeof(pc));
  865. cmdb->bindTextureAndSampler(0, 0, aView, sampler);
  866. cmdb->bindTextureAndSampler(0, 1, bView, sampler);
  867. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  868. cmdb->endRenderPass();
  869. presentBarrierB(cmdb, presentTex);
  870. cmdb->flush();
  871. gr->swapBuffers();
  872. timer.stop();
  873. const F32 TICK = 1.0f / 30.0f;
  874. if(timer.getElapsedTime() < TICK)
  875. {
  876. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  877. }
  878. }
  879. COMMON_END()
  880. }
  881. static void drawOffscreenDrawcalls(GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  882. BufferPtr indexBuff, BufferPtr vertBuff)
  883. {
  884. static F32 ang = -2.5f;
  885. ang += toRad(2.5f);
  886. Mat4 viewMat(Vec4(0.0, 0.0, 5.0, 1.0), Mat3::getIdentity(), 1.0f);
  887. viewMat.invert();
  888. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  889. Mat4 modelMat(Vec4(-0.5, -0.5, 0.0, 1.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), 1.0f);
  890. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  891. *mvp = projMat * viewMat * modelMat;
  892. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  893. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  894. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  895. cmdb->bindVertexBuffer(0, vertBuff, 0, sizeof(Vec3));
  896. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  897. cmdb->bindShaderProgram(prog);
  898. cmdb->bindIndexBuffer(indexBuff, 0, IndexType::U16);
  899. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  900. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  901. // 2nd draw
  902. modelMat = Mat4(Vec4(0.5, 0.5, 0.0, 1.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), 1.0f);
  903. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  904. *mvp = projMat * viewMat * modelMat;
  905. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  906. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  907. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  908. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  909. }
  910. static void drawOffscreen(GrManager& gr, Bool useSecondLevel)
  911. {
  912. //
  913. // Create textures
  914. //
  915. SamplerInitInfo samplerInit;
  916. samplerInit.m_minMagFilter = SamplingFilter::LINEAR;
  917. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  918. SamplerPtr sampler = gr.newSampler(samplerInit);
  919. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  920. const U TEX_SIZE = 256;
  921. TextureInitInfo init;
  922. init.m_format = COL_FORMAT;
  923. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  924. init.m_height = TEX_SIZE;
  925. init.m_width = TEX_SIZE;
  926. init.m_type = TextureType::_2D;
  927. TexturePtr col0 = gr.newTexture(init);
  928. TexturePtr col1 = gr.newTexture(init);
  929. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0));
  930. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1));
  931. init.m_format = DS_FORMAT;
  932. TexturePtr dp = gr.newTexture(init);
  933. //
  934. // Create FB
  935. //
  936. FramebufferInitInfo fbinit;
  937. fbinit.m_colorAttachmentCount = 2;
  938. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0));
  939. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  940. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1));
  941. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  942. TextureViewInitInfo viewInit(dp);
  943. viewInit.m_depthStencilAspect = DepthStencilAspectBit::DEPTH;
  944. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  945. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  946. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  947. //
  948. // Create buffs
  949. //
  950. BufferPtr verts, indices;
  951. createCube(gr, verts, indices);
  952. //
  953. // Create progs
  954. //
  955. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  956. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  957. //
  958. // Draw
  959. //
  960. const U ITERATION_COUNT = 200;
  961. U iterations = ITERATION_COUNT;
  962. while(iterations--)
  963. {
  964. HighRezTimer timer;
  965. timer.start();
  966. CommandBufferInitInfo cinit;
  967. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  968. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  969. cmdb->setPolygonOffset(0.0, 0.0);
  970. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  971. TextureSurfaceInfo(0, 0, 0, 0));
  972. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  973. TextureSurfaceInfo(0, 0, 0, 0));
  974. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::NONE, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  975. TextureSurfaceInfo(0, 0, 0, 0));
  976. cmdb->beginRenderPass(
  977. fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}},
  978. TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT);
  979. if(!useSecondLevel)
  980. {
  981. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  982. }
  983. else
  984. {
  985. CommandBufferInitInfo cinit;
  986. cinit.m_flags = CommandBufferFlag::SECOND_LEVEL | CommandBufferFlag::GENERAL_WORK;
  987. cinit.m_framebuffer = fb;
  988. CommandBufferPtr cmdb2 = gr.newCommandBuffer(cinit);
  989. drawOffscreenDrawcalls(gr, prog, cmdb2, TEX_SIZE, indices, verts);
  990. cmdb2->flush();
  991. cmdb->pushSecondLevelCommandBuffer(cmdb2);
  992. }
  993. cmdb->endRenderPass();
  994. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  995. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  996. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  997. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  998. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  999. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  1000. // Draw quad
  1001. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  1002. FramebufferPtr dfb = createColorFb(gr, presentTex);
  1003. presentBarrierA(cmdb, presentTex);
  1004. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1005. cmdb->bindShaderProgram(resolveProg);
  1006. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1007. cmdb->bindTextureAndSampler(0, 0, col0View, sampler);
  1008. cmdb->bindTextureAndSampler(0, 2, col1View, sampler);
  1009. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1010. cmdb->endRenderPass();
  1011. presentBarrierB(cmdb, presentTex);
  1012. cmdb->flush();
  1013. // End
  1014. gr.swapBuffers();
  1015. timer.stop();
  1016. const F32 TICK = 1.0f / 30.0f;
  1017. if(timer.getElapsedTime() < TICK)
  1018. {
  1019. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1020. }
  1021. }
  1022. }
  1023. ANKI_TEST(Gr, DrawOffscreen)
  1024. {
  1025. COMMON_BEGIN()
  1026. drawOffscreen(*gr, false);
  1027. COMMON_END()
  1028. }
  1029. ANKI_TEST(Gr, DrawWithSecondLevel)
  1030. {
  1031. COMMON_BEGIN()
  1032. drawOffscreen(*gr, true);
  1033. COMMON_END()
  1034. }
  1035. ANKI_TEST(Gr, ImageLoadStore)
  1036. {
  1037. COMMON_BEGIN()
  1038. SamplerInitInfo samplerInit;
  1039. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1040. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1041. SamplerPtr sampler = gr->newSampler(samplerInit);
  1042. TextureInitInfo init;
  1043. init.m_width = init.m_height = 4;
  1044. init.m_mipmapCount = 2;
  1045. init.m_usage =
  1046. TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED | TextureUsageBit::IMAGE_COMPUTE_WRITE;
  1047. init.m_type = TextureType::_2D;
  1048. init.m_format = Format::R8G8B8A8_UNORM;
  1049. TexturePtr tex = gr->newTexture(init);
  1050. TextureViewInitInfo viewInit(tex);
  1051. viewInit.m_firstMipmap = 1;
  1052. viewInit.m_mipmapCount = 1;
  1053. TextureViewPtr view = gr->newTextureView(viewInit);
  1054. // Prog
  1055. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *gr);
  1056. // Create shader & compute prog
  1057. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::COMPUTE, *gr);
  1058. ShaderProgramInitInfo sprogInit;
  1059. sprogInit.m_computeShader = shader;
  1060. ShaderProgramPtr compProg = gr->newShaderProgram(sprogInit);
  1061. // Write texture data
  1062. CommandBufferInitInfo cmdbinit;
  1063. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1064. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1065. TextureSurfaceInfo(0, 0, 0, 0));
  1066. ClearValue clear;
  1067. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1068. TextureViewInitInfo viewInit2(tex, TextureSurfaceInfo(0, 0, 0, 0));
  1069. cmdb->clearTextureView(gr->newTextureView(viewInit2), clear);
  1070. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1071. TextureSurfaceInfo(0, 0, 0, 0));
  1072. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1073. TextureSurfaceInfo(1, 0, 0, 0));
  1074. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1075. TextureViewInitInfo viewInit3(tex, TextureSurfaceInfo(1, 0, 0, 0));
  1076. cmdb->clearTextureView(gr->newTextureView(viewInit3), clear);
  1077. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1078. TextureSurfaceInfo(1, 0, 0, 0));
  1079. cmdb->flush();
  1080. const U ITERATION_COUNT = 100;
  1081. U iterations = ITERATION_COUNT;
  1082. while(iterations--)
  1083. {
  1084. HighRezTimer timer;
  1085. timer.start();
  1086. CommandBufferInitInfo cinit;
  1087. cinit.m_flags =
  1088. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1089. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1090. // Write image
  1091. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1092. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1093. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1094. TextureSurfaceInfo(1, 0, 0, 0));
  1095. cmdb->bindShaderProgram(compProg);
  1096. cmdb->bindImage(0, 0, view);
  1097. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1098. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::SAMPLED_FRAGMENT,
  1099. TextureSurfaceInfo(1, 0, 0, 0));
  1100. // Present image
  1101. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1102. cmdb->bindShaderProgram(prog);
  1103. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1104. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1105. presentBarrierA(cmdb, presentTex);
  1106. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1107. cmdb->bindTextureAndSampler(0, 0, gr->newTextureView(TextureViewInitInfo(tex)), sampler);
  1108. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1109. cmdb->endRenderPass();
  1110. presentBarrierB(cmdb, presentTex);
  1111. cmdb->flush();
  1112. // End
  1113. gr->swapBuffers();
  1114. timer.stop();
  1115. const F32 TICK = 1.0f / 30.0f;
  1116. if(timer.getElapsedTime() < TICK)
  1117. {
  1118. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1119. }
  1120. }
  1121. COMMON_END()
  1122. }
  1123. ANKI_TEST(Gr, 3DTextures)
  1124. {
  1125. COMMON_BEGIN()
  1126. SamplerInitInfo samplerInit;
  1127. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1128. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1129. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  1130. SamplerPtr sampler = gr->newSampler(samplerInit);
  1131. //
  1132. // Create texture A
  1133. //
  1134. TextureInitInfo init;
  1135. init.m_depth = 1;
  1136. init.m_format = Format::R8G8B8A8_UNORM;
  1137. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  1138. init.m_initialUsage = TextureUsageBit::TRANSFER_DESTINATION;
  1139. init.m_height = 2;
  1140. init.m_width = 2;
  1141. init.m_mipmapCount = 2;
  1142. init.m_samples = 1;
  1143. init.m_depth = 2;
  1144. init.m_layerCount = 1;
  1145. init.m_type = TextureType::_3D;
  1146. TexturePtr a = gr->newTexture(init);
  1147. //
  1148. // Upload all textures
  1149. //
  1150. Array<U8, 2 * 2 * 2 * 4> mip0 = {{255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0,
  1151. 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1152. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1153. CommandBufferInitInfo cmdbinit;
  1154. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1155. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1156. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1157. TextureVolumeInfo(0));
  1158. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1159. TextureVolumeInfo(1));
  1160. TransferGpuAllocatorHandle handle0, handle1;
  1161. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1162. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1163. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1164. TextureVolumeInfo(0));
  1165. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1166. TextureVolumeInfo(1));
  1167. FencePtr fence;
  1168. cmdb->flush({}, &fence);
  1169. transfAlloc->release(handle0, fence);
  1170. transfAlloc->release(handle1, fence);
  1171. //
  1172. // Rest
  1173. //
  1174. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *gr);
  1175. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0),
  1176. Vec4(0, 0, 1, 0), Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0),
  1177. Vec4(0, 0, 0, 1)}};
  1178. const U ITERATION_COUNT = 100;
  1179. U iterations = ITERATION_COUNT;
  1180. while(iterations--)
  1181. {
  1182. HighRezTimer timer;
  1183. timer.start();
  1184. CommandBufferInitInfo cinit;
  1185. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1186. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1187. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1188. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1189. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1190. presentBarrierA(cmdb, presentTex);
  1191. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1192. cmdb->bindShaderProgram(prog);
  1193. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1194. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1195. *uv = TEX_COORDS_LOD[idx];
  1196. cmdb->bindTextureAndSampler(0, 1, gr->newTextureView(TextureViewInitInfo(a)), sampler);
  1197. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1198. cmdb->endRenderPass();
  1199. presentBarrierB(cmdb, presentTex);
  1200. cmdb->flush();
  1201. // End
  1202. gr->swapBuffers();
  1203. timer.stop();
  1204. const F32 TICK = 1.0f / 15.0f;
  1205. if(timer.getElapsedTime() < TICK)
  1206. {
  1207. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1208. }
  1209. }
  1210. COMMON_END()
  1211. }
  1212. static RenderTargetDescription newRTDescr(CString name)
  1213. {
  1214. RenderTargetDescription texInf(name);
  1215. texInf.m_width = texInf.m_height = 16;
  1216. texInf.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1217. texInf.m_format = Format::R8G8B8A8_UNORM;
  1218. texInf.bake();
  1219. return texInf;
  1220. }
  1221. ANKI_TEST(Gr, RenderGraph)
  1222. {
  1223. COMMON_BEGIN()
  1224. StackAllocator<U8> alloc(allocAligned, nullptr, 2_MB);
  1225. RenderGraphDescription descr(alloc);
  1226. RenderGraphPtr rgraph = gr->newRenderGraph();
  1227. const U GI_MIP_COUNT = 4;
  1228. TextureInitInfo texI("dummy");
  1229. texI.m_width = texI.m_height = 16;
  1230. texI.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1231. texI.m_format = Format::R8G8B8A8_UNORM;
  1232. TexturePtr dummyTex = gr->newTexture(texI);
  1233. // SM
  1234. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1235. {
  1236. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1237. pass.newDependency({smScratchRt, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT});
  1238. }
  1239. // SM to exponential SM
  1240. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1241. {
  1242. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1243. pass.newDependency({smScratchRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1244. pass.newDependency({smExpRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1245. }
  1246. // GI gbuff
  1247. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1248. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1249. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1250. {
  1251. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1252. pass.newDependency({giGbuffNormRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1253. pass.newDependency({giGbuffDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1254. pass.newDependency({giGbuffDiffRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1255. }
  1256. // GI light
  1257. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1258. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1259. {
  1260. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  1261. GraphicsRenderPassDescription& pass =
  1262. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI lp%u", faceIdx).toCString());
  1263. pass.newDependency({giGiLightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, subresource});
  1264. pass.newDependency({giGbuffNormRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1265. pass.newDependency({giGbuffDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1266. pass.newDependency({giGbuffDiffRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1267. }
  1268. // GI light mips
  1269. {
  1270. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1271. {
  1272. GraphicsRenderPassDescription& pass =
  1273. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI mip%u", faceIdx).toCString());
  1274. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1275. {
  1276. TextureSurfaceInfo surf(mip, 0, faceIdx, 0);
  1277. pass.newDependency({giGiLightRt, TextureUsageBit::GENERATE_MIPMAPS, surf});
  1278. }
  1279. }
  1280. }
  1281. // Gbuffer
  1282. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1283. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1284. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1285. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1286. {
  1287. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1288. pass.newDependency({gbuffRt0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1289. pass.newDependency({gbuffRt1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1290. pass.newDependency({gbuffRt2, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1291. pass.newDependency({gbuffDepth, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1292. }
  1293. // Half depth
  1294. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1295. {
  1296. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1297. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1298. pass.newDependency({halfDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1299. }
  1300. // Quarter depth
  1301. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1302. {
  1303. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1304. pass.newDependency({quarterDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1305. pass.newDependency({halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1306. }
  1307. // SSAO
  1308. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1309. {
  1310. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1311. pass.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1312. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1313. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1314. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1315. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1316. pass2.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1317. pass2.newDependency({ssaoVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1318. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1319. pass3.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1320. pass3.newDependency({ssaoVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1321. }
  1322. // Volumetric
  1323. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1324. {
  1325. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1326. pass.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1327. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1328. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1329. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1330. pass2.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1331. pass2.newDependency({volVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1332. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1333. pass3.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1334. pass3.newDependency({volVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1335. }
  1336. // Forward shading
  1337. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1338. {
  1339. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1340. pass.newDependency({fsRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1341. pass.newDependency(
  1342. {halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::FRAMEBUFFER_ATTACHMENT_READ});
  1343. pass.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1344. }
  1345. // Light shading
  1346. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1347. {
  1348. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1349. pass.newDependency({lightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1350. pass.newDependency({gbuffRt0, TextureUsageBit::SAMPLED_FRAGMENT});
  1351. pass.newDependency({gbuffRt1, TextureUsageBit::SAMPLED_FRAGMENT});
  1352. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1353. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1354. pass.newDependency({smExpRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1355. pass.newDependency({giGiLightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1356. pass.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1357. pass.newDependency({fsRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1358. }
  1359. // TAA
  1360. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1361. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1362. {
  1363. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1364. pass.newDependency({lightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1365. pass.newDependency({taaRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1366. pass.newDependency({taaHistoryRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1367. }
  1368. rgraph->compileNewGraph(descr, alloc);
  1369. COMMON_END()
  1370. }
  1371. /// Test workarounds for some unsupported formats
  1372. ANKI_TEST(Gr, VkWorkarounds)
  1373. {
  1374. COMMON_BEGIN()
  1375. // Create program
  1376. static const char* COMP_SRC = R"(
  1377. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1378. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1379. layout(set = 0, binding = 1) buffer s_
  1380. {
  1381. uvec4 u_result;
  1382. };
  1383. shared uint g_wrong;
  1384. void main()
  1385. {
  1386. g_wrong = 0;
  1387. memoryBarrierShared();
  1388. barrier();
  1389. int lod = -1;
  1390. uint idx;
  1391. if(gl_LocalInvocationID.z == 0)
  1392. {
  1393. // First mip
  1394. lod = 0;
  1395. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1396. }
  1397. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1398. {
  1399. lod = 1;
  1400. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1401. }
  1402. if(lod != -1)
  1403. {
  1404. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1405. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1406. {
  1407. atomicAdd(g_wrong, 1);
  1408. }
  1409. }
  1410. memoryBarrierShared();
  1411. barrier();
  1412. if(g_wrong != 0)
  1413. {
  1414. u_result = uvec4(1);
  1415. }
  1416. else
  1417. {
  1418. u_result = uvec4(2);
  1419. }
  1420. })";
  1421. ShaderPtr comp = createShader(COMP_SRC, ShaderType::COMPUTE, *gr);
  1422. ShaderProgramInitInfo sinf;
  1423. sinf.m_computeShader = comp;
  1424. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1425. // Create the texture
  1426. TextureInitInfo texInit;
  1427. texInit.m_width = texInit.m_height = 8;
  1428. texInit.m_format = Format::R8G8B8_UINT;
  1429. texInit.m_type = TextureType::_2D;
  1430. texInit.m_usage = TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED;
  1431. texInit.m_mipmapCount = 2;
  1432. TexturePtr tex = gr->newTexture(texInit);
  1433. TextureViewPtr texView = gr->newTextureView(TextureViewInitInfo(tex));
  1434. SamplerInitInfo samplerInit;
  1435. SamplerPtr sampler = gr->newSampler(samplerInit);
  1436. // Create the buffer to copy to the texture
  1437. BufferPtr uploadBuff = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3,
  1438. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1439. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::WRITE));
  1440. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1441. {
  1442. data[0] = U8(i);
  1443. data[1] = U8(i + 1);
  1444. data[2] = U8(i + 2);
  1445. data += 3;
  1446. }
  1447. uploadBuff->unmap();
  1448. BufferPtr uploadBuff2 = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3,
  1449. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1450. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::WRITE));
  1451. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1452. {
  1453. data[0] = U8(i);
  1454. data[1] = U8(i + 1);
  1455. data[2] = U8(i + 2);
  1456. data += 3;
  1457. }
  1458. uploadBuff2->unmap();
  1459. // Create the result buffer
  1460. BufferPtr resultBuff =
  1461. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1462. // Upload data and test them
  1463. CommandBufferInitInfo cmdbInit;
  1464. cmdbInit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1465. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbInit);
  1466. TextureSubresourceInfo subresource;
  1467. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1468. cmdb->setTextureBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION, subresource);
  1469. cmdb->copyBufferToTextureView(uploadBuff, 0, uploadBuff->getSize(),
  1470. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(0, 0, 0, 0))));
  1471. cmdb->copyBufferToTextureView(uploadBuff2, 0, uploadBuff2->getSize(),
  1472. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(1, 0, 0, 0))));
  1473. cmdb->setTextureBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE, subresource);
  1474. cmdb->bindShaderProgram(prog);
  1475. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  1476. cmdb->bindStorageBuffer(0, 1, resultBuff, 0, resultBuff->getSize());
  1477. cmdb->dispatchCompute(1, 1, 1);
  1478. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferUsageBit::STORAGE_COMPUTE_WRITE, 0,
  1479. resultBuff->getSize());
  1480. cmdb->flush();
  1481. gr->finish();
  1482. // Get the result
  1483. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1484. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1485. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1486. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1487. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1488. resultBuff->unmap();
  1489. COMMON_END()
  1490. }
  1491. ANKI_TEST(Gr, SpecConsts)
  1492. {
  1493. COMMON_BEGIN()
  1494. static const char* VERT_SRC = R"(
  1495. layout(constant_id = 0) const int const0 = 0;
  1496. layout(constant_id = 2) const float const1 = 0.0;
  1497. out gl_PerVertex
  1498. {
  1499. vec4 gl_Position;
  1500. };
  1501. layout(location = 0) flat out int out_const0;
  1502. layout(location = 1) flat out float out_const1;
  1503. void main()
  1504. {
  1505. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1506. vec2 pos = uv * 2.0 - 1.0;
  1507. gl_Position = vec4(pos, 0.0, 1.0);
  1508. out_const0 = const0;
  1509. out_const1 = const1;
  1510. }
  1511. )";
  1512. static const char* FRAG_SRC = R"(
  1513. layout(constant_id = 0) const int const0 = 0;
  1514. layout(constant_id = 1) const float const1 = 0.0;
  1515. layout(location = 0) flat in int in_const0;
  1516. layout(location = 1) flat in float in_const1;
  1517. layout(location = 0) out vec4 out_color;
  1518. layout(set = 0, binding = 0) buffer s_
  1519. {
  1520. uvec4 u_result;
  1521. };
  1522. void main()
  1523. {
  1524. out_color = vec4(1.0);
  1525. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1526. {
  1527. if(in_const0 != 2147483647 || in_const1 != 1234.5678 || const0 != -2147483647 || const1 != -1.0)
  1528. {
  1529. u_result = uvec4(1u);
  1530. }
  1531. else
  1532. {
  1533. u_result = uvec4(2u);
  1534. }
  1535. }
  1536. }
  1537. )";
  1538. ShaderPtr vert =
  1539. createShader(VERT_SRC, ShaderType::VERTEX, *gr,
  1540. Array<ShaderSpecializationConstValue, 3>{{ShaderSpecializationConstValue(2147483647),
  1541. ShaderSpecializationConstValue(-1.0f),
  1542. ShaderSpecializationConstValue(1234.5678f)}});
  1543. ShaderPtr frag = createShader(FRAG_SRC, ShaderType::FRAGMENT, *gr,
  1544. Array<ShaderSpecializationConstValue, 2>{{ShaderSpecializationConstValue(-2147483647),
  1545. ShaderSpecializationConstValue(-1.0f)}});
  1546. ShaderProgramInitInfo sinf;
  1547. sinf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  1548. sinf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  1549. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1550. // Create the result buffer
  1551. BufferPtr resultBuff =
  1552. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1553. // Draw
  1554. CommandBufferInitInfo cinit;
  1555. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1556. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1557. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1558. cmdb->bindShaderProgram(prog);
  1559. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1560. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1561. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1562. presentBarrierA(cmdb, presentTex);
  1563. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1564. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1565. cmdb->endRenderPass();
  1566. presentBarrierB(cmdb, presentTex);
  1567. cmdb->flush();
  1568. gr->swapBuffers();
  1569. gr->finish();
  1570. // Get the result
  1571. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1572. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1573. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1574. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1575. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1576. resultBuff->unmap();
  1577. COMMON_END()
  1578. }
  1579. ANKI_TEST(Gr, PushConsts)
  1580. {
  1581. COMMON_BEGIN()
  1582. static const char* VERT_SRC = R"(
  1583. struct PC
  1584. {
  1585. vec4 color;
  1586. ivec4 icolor;
  1587. vec4 arr[2];
  1588. mat4 mat;
  1589. };
  1590. layout(push_constant, std140) uniform pc_
  1591. {
  1592. PC regs;
  1593. };
  1594. out gl_PerVertex
  1595. {
  1596. vec4 gl_Position;
  1597. };
  1598. layout(location = 0) out vec4 out_color;
  1599. void main()
  1600. {
  1601. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1602. vec2 pos = uv * 2.0 - 1.0;
  1603. gl_Position = vec4(pos, 0.0, 1.0);
  1604. out_color = regs.color;
  1605. }
  1606. )";
  1607. static const char* FRAG_SRC = R"(
  1608. struct PC
  1609. {
  1610. vec4 color;
  1611. ivec4 icolor;
  1612. vec4 arr[2];
  1613. mat4 mat;
  1614. };
  1615. layout(push_constant, std140) uniform pc_
  1616. {
  1617. PC regs;
  1618. };
  1619. layout(location = 0) in vec4 in_color;
  1620. layout(location = 0) out vec4 out_color;
  1621. layout(set = 0, binding = 0) buffer s_
  1622. {
  1623. uvec4 u_result;
  1624. };
  1625. void main()
  1626. {
  1627. out_color = vec4(1.0);
  1628. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1629. {
  1630. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1631. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1632. || regs.mat[1][0] != 0.5)
  1633. {
  1634. u_result = uvec4(1u);
  1635. }
  1636. else
  1637. {
  1638. u_result = uvec4(2u);
  1639. }
  1640. }
  1641. }
  1642. )";
  1643. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  1644. // Create the result buffer
  1645. BufferPtr resultBuff = gr->newBuffer(BufferInitInfo(
  1646. sizeof(UVec4), BufferUsageBit::ALL_STORAGE | BufferUsageBit::TRANSFER_DESTINATION, BufferMapAccessBit::READ));
  1647. // Draw
  1648. CommandBufferInitInfo cinit;
  1649. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1650. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1651. cmdb->fillBuffer(resultBuff, 0, resultBuff->getSize(), 0);
  1652. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::STORAGE_FRAGMENT_WRITE, 0,
  1653. resultBuff->getSize());
  1654. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1655. cmdb->bindShaderProgram(prog);
  1656. struct PushConstants
  1657. {
  1658. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1659. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1660. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1661. Mat4 m_mat = Mat4(0.0f);
  1662. } pc;
  1663. pc.m_mat(0, 1) = 0.5f;
  1664. cmdb->setPushConstants(&pc, sizeof(pc));
  1665. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1666. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1667. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1668. presentBarrierA(cmdb, presentTex);
  1669. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1670. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1671. cmdb->endRenderPass();
  1672. presentBarrierB(cmdb, presentTex);
  1673. cmdb->flush();
  1674. gr->swapBuffers();
  1675. gr->finish();
  1676. // Get the result
  1677. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1678. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1679. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1680. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1681. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1682. resultBuff->unmap();
  1683. COMMON_END()
  1684. }
  1685. ANKI_TEST(Gr, BindingWithArray)
  1686. {
  1687. COMMON_BEGIN()
  1688. // Create result buffer
  1689. BufferPtr resBuff =
  1690. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1691. Array<BufferPtr, 4> uniformBuffers;
  1692. F32 count = 1.0f;
  1693. for(BufferPtr& ptr : uniformBuffers)
  1694. {
  1695. ptr = gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::WRITE));
  1696. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::WRITE));
  1697. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1698. count += 4.0f;
  1699. ptr->unmap();
  1700. }
  1701. // Create program
  1702. static const char* PROG_SRC = R"(
  1703. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1704. layout(set = 0, binding = 0) uniform u_
  1705. {
  1706. vec4 m_vec;
  1707. } u_ubos[4];
  1708. layout(set = 0, binding = 1) writeonly buffer ss_
  1709. {
  1710. vec4 u_result;
  1711. };
  1712. void main()
  1713. {
  1714. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1715. })";
  1716. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1717. ShaderProgramInitInfo sprogInit;
  1718. sprogInit.m_computeShader = shader;
  1719. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1720. // Run
  1721. CommandBufferInitInfo cinit;
  1722. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1723. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1724. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1725. {
  1726. cmdb->bindUniformBuffer(0, 0, uniformBuffers[i], 0, MAX_PTR_SIZE, i);
  1727. }
  1728. cmdb->bindStorageBuffer(0, 1, resBuff, 0, MAX_PTR_SIZE);
  1729. cmdb->bindShaderProgram(prog);
  1730. cmdb->dispatchCompute(1, 1, 1);
  1731. cmdb->flush();
  1732. gr->finish();
  1733. // Check result
  1734. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::READ));
  1735. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1736. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1737. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1738. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1739. resBuff->unmap();
  1740. COMMON_END();
  1741. }
  1742. ANKI_TEST(Gr, Bindless)
  1743. {
  1744. COMMON_BEGIN()
  1745. // Create texture A
  1746. TextureInitInfo texInit;
  1747. texInit.m_width = 1;
  1748. texInit.m_height = 1;
  1749. texInit.m_format = Format::R32G32B32A32_UINT;
  1750. texInit.m_usage = TextureUsageBit::ALL_IMAGE | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::ALL_SAMPLED;
  1751. texInit.m_mipmapCount = 1;
  1752. TexturePtr texA = gr->newTexture(texInit);
  1753. // Create texture B
  1754. TexturePtr texB = gr->newTexture(texInit);
  1755. // Create texture C
  1756. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1757. TexturePtr texC = gr->newTexture(texInit);
  1758. // Create sampler
  1759. SamplerInitInfo samplerInit;
  1760. SamplerPtr sampler = gr->newSampler(samplerInit);
  1761. // Create views
  1762. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1763. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1764. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1765. // Create result buffer
  1766. BufferPtr resBuff =
  1767. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1768. // Create program A
  1769. static const char* PROG_SRC = R"(
  1770. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1771. ANKI_BINDLESS_SET(0u);
  1772. layout(set = 1, binding = 0) writeonly buffer ss_
  1773. {
  1774. uvec4 u_result;
  1775. };
  1776. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1777. layout(push_constant) uniform pc_
  1778. {
  1779. uvec4 u_texIndices;
  1780. };
  1781. void main()
  1782. {
  1783. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1784. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1785. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1786. u_result = val0 + val1 + uvec4(val2);
  1787. })";
  1788. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1789. ShaderProgramInitInfo sprogInit;
  1790. sprogInit.m_computeShader = shader;
  1791. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1792. // Run
  1793. CommandBufferInitInfo cinit;
  1794. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1795. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1796. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1797. TextureSurfaceInfo());
  1798. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1799. TextureSurfaceInfo());
  1800. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1801. TextureSurfaceInfo());
  1802. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1803. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1804. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1805. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1806. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1807. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1808. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1809. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_READ,
  1810. TextureSurfaceInfo());
  1811. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1812. TextureSurfaceInfo());
  1813. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1814. TextureSurfaceInfo());
  1815. cmdb->bindStorageBuffer(1, 0, resBuff, 0, MAX_PTR_SIZE);
  1816. cmdb->bindSampler(1, 1, sampler);
  1817. cmdb->bindShaderProgram(prog);
  1818. cmdb->addReference(viewA);
  1819. cmdb->addReference(viewB);
  1820. cmdb->addReference(viewC);
  1821. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1822. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1823. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1824. UVec4 pc(idx0, idx1, idx2, 0);
  1825. cmdb->setPushConstants(&pc, sizeof(pc));
  1826. cmdb->bindAllBindless(0);
  1827. cmdb->dispatchCompute(1, 1, 1);
  1828. // Read result
  1829. FencePtr fence;
  1830. cmdb->flush({}, &fence);
  1831. transfAlloc->release(handle0, fence);
  1832. transfAlloc->release(handle1, fence);
  1833. transfAlloc->release(handle2, fence);
  1834. gr->finish();
  1835. // Check result
  1836. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::READ));
  1837. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1838. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1839. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1840. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1841. resBuff->unmap();
  1842. COMMON_END()
  1843. }
  1844. ANKI_TEST(Gr, BufferAddress)
  1845. {
  1846. COMMON_BEGIN()
  1847. // Create program
  1848. static const char* PROG_SRC = R"(
  1849. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1850. ANKI_DEFINE_LOAD_STORE(Vec4, 4)
  1851. layout(push_constant) uniform u_
  1852. {
  1853. U64 u_bufferAddressRead;
  1854. U64 u_bufferAddressWrite;
  1855. };
  1856. void main()
  1857. {
  1858. Vec4 a;
  1859. load(u_bufferAddressRead, a);
  1860. Vec4 b;
  1861. load(u_bufferAddressRead + 16ul, b);
  1862. store(u_bufferAddressWrite, a + b);
  1863. })";
  1864. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1865. ShaderProgramInitInfo sprogInit;
  1866. sprogInit.m_computeShader = shader;
  1867. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1868. // Create buffers
  1869. BufferInitInfo info;
  1870. info.m_size = sizeof(Vec4) * 2;
  1871. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  1872. info.m_mapAccess = BufferMapAccessBit::WRITE;
  1873. BufferPtr ptrBuff = gr->newBuffer(info);
  1874. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE));
  1875. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1876. *mapped = VEC;
  1877. ++mapped;
  1878. *mapped = VEC * 10.0f;
  1879. ptrBuff->unmap();
  1880. BufferPtr resBuff =
  1881. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1882. // Run
  1883. CommandBufferInitInfo cinit;
  1884. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1885. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1886. cmdb->bindShaderProgram(prog);
  1887. struct Address
  1888. {
  1889. PtrSize m_addressRead;
  1890. PtrSize m_addressWrite;
  1891. } address;
  1892. address.m_addressRead = ptrBuff->getGpuAddress();
  1893. address.m_addressWrite = resBuff->getGpuAddress();
  1894. cmdb->setPushConstants(&address, sizeof(address));
  1895. cmdb->dispatchCompute(1, 1, 1);
  1896. cmdb->flush();
  1897. gr->finish();
  1898. // Check
  1899. mapped = static_cast<Vec4*>(resBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ));
  1900. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1901. resBuff->unmap();
  1902. COMMON_END();
  1903. }
  1904. ANKI_TEST(Gr, RayQuery)
  1905. {
  1906. COMMON_BEGIN();
  1907. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  1908. if(!useRayTracing)
  1909. {
  1910. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1911. }
  1912. // Index buffer
  1913. BufferPtr idxBuffer;
  1914. if(useRayTracing)
  1915. {
  1916. Array<U16, 3> indices = {0, 1, 2};
  1917. BufferInitInfo init;
  1918. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1919. init.m_usage = BufferUsageBit::INDEX;
  1920. init.m_size = sizeof(indices);
  1921. idxBuffer = gr->newBuffer(init);
  1922. void* addr = idxBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1923. memcpy(addr, &indices[0], sizeof(indices));
  1924. idxBuffer->unmap();
  1925. }
  1926. // Position buffer (add some padding to complicate things a bit)
  1927. BufferPtr vertBuffer;
  1928. if(useRayTracing)
  1929. {
  1930. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1931. BufferInitInfo init;
  1932. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1933. init.m_usage = BufferUsageBit::VERTEX;
  1934. init.m_size = sizeof(verts);
  1935. vertBuffer = gr->newBuffer(init);
  1936. void* addr = vertBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1937. memcpy(addr, &verts[0], sizeof(verts));
  1938. vertBuffer->unmap();
  1939. }
  1940. // BLAS
  1941. AccelerationStructurePtr blas;
  1942. if(useRayTracing)
  1943. {
  1944. AccelerationStructureInitInfo init;
  1945. init.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  1946. init.m_bottomLevel.m_indexBuffer = idxBuffer;
  1947. init.m_bottomLevel.m_indexCount = 3;
  1948. init.m_bottomLevel.m_indexType = IndexType::U16;
  1949. init.m_bottomLevel.m_positionBuffer = vertBuffer;
  1950. init.m_bottomLevel.m_positionCount = 3;
  1951. init.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  1952. init.m_bottomLevel.m_positionStride = 4 * 4;
  1953. blas = gr->newAccelerationStructure(init);
  1954. }
  1955. // TLAS
  1956. AccelerationStructurePtr tlas;
  1957. if(useRayTracing)
  1958. {
  1959. AccelerationStructureInitInfo init;
  1960. init.m_type = AccelerationStructureType::TOP_LEVEL;
  1961. Array<AccelerationStructureInstance, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1962. init.m_topLevel.m_instances = instances;
  1963. tlas = gr->newAccelerationStructure(init);
  1964. }
  1965. // Program
  1966. ShaderProgramPtr prog;
  1967. {
  1968. CString src = R"(
  1969. #if USE_RAY_TRACING
  1970. #extension GL_EXT_ray_query : enable
  1971. #endif
  1972. layout(push_constant, std140, row_major) uniform b_pc
  1973. {
  1974. Mat4 u_vp;
  1975. Vec3 u_cameraPos;
  1976. F32 u_padding0;
  1977. };
  1978. #if USE_RAY_TRACING
  1979. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1980. #endif
  1981. layout(location = 0) in Vec2 in_uv;
  1982. layout(location = 0) out Vec3 out_color;
  1983. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1984. {
  1985. const Vec3 v0v1 = v1 - v0;
  1986. const Vec3 v0v2 = v2 - v0;
  1987. const Vec3 pvec = cross(dir, v0v2);
  1988. const F32 det = dot(v0v1, pvec);
  1989. if(det < 0.00001)
  1990. {
  1991. return false;
  1992. }
  1993. const F32 invDet = 1.0 / det;
  1994. const Vec3 tvec = orig - v0;
  1995. u = dot(tvec, pvec) * invDet;
  1996. if(u < 0.0 || u > 1.0)
  1997. {
  1998. return false;
  1999. }
  2000. const Vec3 qvec = cross(tvec, v0v1);
  2001. v = dot(dir, qvec) * invDet;
  2002. if(v < 0.0 || u + v > 1.0)
  2003. {
  2004. return false;
  2005. }
  2006. t = dot(v0v2, qvec) * invDet;
  2007. return true;
  2008. }
  2009. void main()
  2010. {
  2011. // Unproject
  2012. const Vec2 ndc = in_uv * 2.0 - 1.0;
  2013. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  2014. const Vec3 p3 = p4.xyz / p4.w;
  2015. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  2016. const Vec3 rayOrigin = u_cameraPos;
  2017. #if USE_RAY_TRACING
  2018. Bool hit = false;
  2019. F32 u = 0.0;
  2020. F32 v = 0.0;
  2021. rayQueryEXT rayQuery;
  2022. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2023. 0.01, rayDir, 1000.0);
  2024. rayQueryProceedEXT(rayQuery);
  2025. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2026. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2027. {
  2028. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2029. u = bary.x;
  2030. v = bary.y;
  2031. hit = true;
  2032. }
  2033. #else
  2034. // Manual trace
  2035. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2036. F32 t;
  2037. F32 u;
  2038. F32 v;
  2039. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2040. #endif
  2041. if(hit)
  2042. {
  2043. out_color = Vec3(u, v, 1.0 - (u + v));
  2044. }
  2045. else
  2046. {
  2047. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2048. }
  2049. }
  2050. )";
  2051. StringAuto fragSrc(HeapAllocator<U8>(allocAligned, nullptr));
  2052. if(useRayTracing)
  2053. {
  2054. fragSrc.append("#define USE_RAY_TRACING 1\n");
  2055. }
  2056. else
  2057. {
  2058. fragSrc.append("#define USE_RAY_TRACING 0\n");
  2059. }
  2060. fragSrc.append(src);
  2061. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *gr);
  2062. }
  2063. // Build AS
  2064. if(useRayTracing)
  2065. {
  2066. CommandBufferInitInfo cinit;
  2067. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2068. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2069. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::NONE,
  2070. AccelerationStructureUsageBit::BUILD);
  2071. cmdb->buildAccelerationStructure(blas);
  2072. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::BUILD,
  2073. AccelerationStructureUsageBit::ATTACH);
  2074. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2075. AccelerationStructureUsageBit::BUILD);
  2076. cmdb->buildAccelerationStructure(tlas);
  2077. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2078. AccelerationStructureUsageBit::FRAGMENT_READ);
  2079. cmdb->flush();
  2080. }
  2081. // Draw
  2082. constexpr U32 ITERATIONS = 200;
  2083. for(U i = 0; i < ITERATIONS; ++i)
  2084. {
  2085. HighRezTimer timer;
  2086. timer.start();
  2087. const Vec4 cameraPos = {0.0f, 0.0f, 3.0f, 0.0f};
  2088. const Mat4 viewMat = Mat4{Transform{cameraPos, Mat3x4::getIdentity(), 1.0f}}.getInverse();
  2089. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2090. CommandBufferInitInfo cinit;
  2091. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2092. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2093. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2094. cmdb->bindShaderProgram(prog);
  2095. struct PC
  2096. {
  2097. Mat4 m_vp;
  2098. Vec4 m_cameraPos;
  2099. } pc;
  2100. pc.m_vp = projMat * viewMat;
  2101. pc.m_cameraPos = cameraPos;
  2102. cmdb->setPushConstants(&pc, sizeof(pc));
  2103. if(useRayTracing)
  2104. {
  2105. cmdb->bindAccelerationStructure(0, 0, tlas);
  2106. }
  2107. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2108. FramebufferPtr fb = createColorFb(*gr, presentTex);
  2109. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  2110. TextureSubresourceInfo{});
  2111. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  2112. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  2113. cmdb->endRenderPass();
  2114. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  2115. TextureSubresourceInfo{});
  2116. cmdb->flush();
  2117. gr->swapBuffers();
  2118. timer.stop();
  2119. const F32 TICK = 1.0f / 30.0f;
  2120. if(timer.getElapsedTime() < TICK)
  2121. {
  2122. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2123. }
  2124. }
  2125. COMMON_END();
  2126. }
  2127. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2128. Bool turnInsideOut = false)
  2129. {
  2130. BufferInitInfo inf;
  2131. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2132. inf.m_usage = BufferUsageBit::INDEX | BufferUsageBit::VERTEX | BufferUsageBit::STORAGE_TRACE_RAYS_READ;
  2133. inf.m_size = sizeof(Vec3) * 8;
  2134. vertBuffer = gr.newBuffer(inf);
  2135. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::WRITE);
  2136. // 7------6
  2137. // /| /|
  2138. // 3------2 |
  2139. // | | | |
  2140. // | 4 ---|-5
  2141. // |/ |/
  2142. // 0------1
  2143. positions[0] = Vec3(min.x(), min.y(), max.z());
  2144. positions[1] = Vec3(max.x(), min.y(), max.z());
  2145. positions[2] = Vec3(max.x(), max.y(), max.z());
  2146. positions[3] = Vec3(min.x(), max.y(), max.z());
  2147. positions[4] = Vec3(min.x(), min.y(), min.z());
  2148. positions[5] = Vec3(max.x(), min.y(), min.z());
  2149. positions[6] = Vec3(max.x(), max.y(), min.z());
  2150. positions[7] = Vec3(min.x(), max.y(), min.z());
  2151. vertBuffer->unmap();
  2152. inf.m_size = sizeof(U16) * 36;
  2153. indexBuffer = gr.newBuffer(inf);
  2154. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::WRITE);
  2155. U32 t = 0;
  2156. // Top
  2157. indices[t++] = 3;
  2158. indices[t++] = 2;
  2159. indices[t++] = 7;
  2160. indices[t++] = 2;
  2161. indices[t++] = 6;
  2162. indices[t++] = 7;
  2163. // Bottom
  2164. indices[t++] = 1;
  2165. indices[t++] = 0;
  2166. indices[t++] = 4;
  2167. indices[t++] = 1;
  2168. indices[t++] = 4;
  2169. indices[t++] = 5;
  2170. // Left
  2171. indices[t++] = 0;
  2172. indices[t++] = 3;
  2173. indices[t++] = 4;
  2174. indices[t++] = 3;
  2175. indices[t++] = 7;
  2176. indices[t++] = 4;
  2177. // Right
  2178. indices[t++] = 1;
  2179. indices[t++] = 5;
  2180. indices[t++] = 2;
  2181. indices[t++] = 2;
  2182. indices[t++] = 5;
  2183. indices[t++] = 6;
  2184. // Front
  2185. indices[t++] = 0;
  2186. indices[t++] = 1;
  2187. indices[t++] = 3;
  2188. indices[t++] = 3;
  2189. indices[t++] = 1;
  2190. indices[t++] = 2;
  2191. // Back
  2192. indices[t++] = 4;
  2193. indices[t++] = 7;
  2194. indices[t++] = 6;
  2195. indices[t++] = 5;
  2196. indices[t++] = 4;
  2197. indices[t++] = 6;
  2198. ANKI_ASSERT(t == indices.getSize());
  2199. if(turnInsideOut)
  2200. {
  2201. for(U32 i = 0; i < t; i += 3)
  2202. {
  2203. std::swap(indices[i + 1], indices[i + 2]);
  2204. }
  2205. }
  2206. indexBuffer->unmap();
  2207. }
  2208. enum class GeomWhat
  2209. {
  2210. SMALL_BOX,
  2211. BIG_BOX,
  2212. ROOM,
  2213. LIGHT,
  2214. COUNT,
  2215. FIRST = 0
  2216. };
  2217. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2218. ANKI_TEST(Gr, RayGen)
  2219. {
  2220. COMMON_BEGIN();
  2221. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  2222. if(!useRayTracing)
  2223. {
  2224. ANKI_TEST_LOGW("Ray tracing not supported");
  2225. break;
  2226. }
  2227. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2228. #define MAGIC_MACRO(x) x
  2229. #include <Tests/Gr/RtTypes.h>
  2230. #undef MAGIC_MACRO
  2231. HeapAllocator<U8> alloc(allocAligned, nullptr);
  2232. // Create the offscreen RTs
  2233. Array<TexturePtr, 2> offscreenRts;
  2234. {
  2235. TextureInitInfo inf("T_offscreen#1");
  2236. inf.m_width = WIDTH;
  2237. inf.m_height = HEIGHT;
  2238. inf.m_format = Format::R8G8B8A8_UNORM;
  2239. inf.m_usage = TextureUsageBit::IMAGE_TRACE_RAYS_READ | TextureUsageBit::IMAGE_TRACE_RAYS_WRITE
  2240. | TextureUsageBit::IMAGE_COMPUTE_READ;
  2241. inf.m_initialUsage = TextureUsageBit::IMAGE_COMPUTE_READ;
  2242. offscreenRts[0] = gr->newTexture(inf);
  2243. inf.setName("T_offscreen#2");
  2244. offscreenRts[1] = gr->newTexture(inf);
  2245. }
  2246. // Copy to present program
  2247. ShaderProgramPtr copyToPresentProg;
  2248. {
  2249. const CString src = R"(
  2250. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2251. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2252. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2253. void main()
  2254. {
  2255. const UVec2 size = UVec2(imageSize(u_inImg));
  2256. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2257. {
  2258. return;
  2259. }
  2260. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2261. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2262. })";
  2263. ShaderPtr shader = createShader(src, ShaderType::COMPUTE, *gr);
  2264. ShaderProgramInitInfo sprogInit;
  2265. sprogInit.m_computeShader = shader;
  2266. copyToPresentProg = gr->newShaderProgram(sprogInit);
  2267. }
  2268. // Create the gometries
  2269. struct Geom
  2270. {
  2271. BufferPtr m_vertexBuffer;
  2272. BufferPtr m_indexBuffer;
  2273. Aabb m_aabb;
  2274. Mat3x4 m_worldTransform;
  2275. Mat3 m_worldRotation;
  2276. Bool m_insideOut = false;
  2277. U8 m_asMask = 0b10;
  2278. AccelerationStructurePtr m_blas;
  2279. U32 m_indexCount = 36;
  2280. Vec3 m_diffuseColor = Vec3(0.0f);
  2281. Vec3 m_emissiveColor = Vec3(0.0f);
  2282. };
  2283. Array<Geom, U(GeomWhat::COUNT)> geometries;
  2284. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2285. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2286. geometries[GeomWhat::SMALL_BOX].m_worldTransform = Mat3x4(
  2287. Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz()
  2288. / 2.0f),
  2289. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2290. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2291. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2292. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2293. geometries[GeomWhat::BIG_BOX].m_worldTransform = Mat3x4(
  2294. Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz()
  2295. / 2.0f),
  2296. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2297. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2298. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2299. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2300. geometries[GeomWhat::ROOM].m_worldTransform = Mat3x4(
  2301. Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2302. geometries[GeomWhat::ROOM].m_worldRotation);
  2303. geometries[GeomWhat::ROOM].m_insideOut = true;
  2304. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2305. geometries[GeomWhat::LIGHT].m_aabb =
  2306. Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2307. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2308. geometries[GeomWhat::LIGHT].m_worldTransform = Mat3x4(
  2309. Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2310. geometries[GeomWhat::LIGHT].m_worldRotation);
  2311. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2312. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2313. // Create Buffers
  2314. for(Geom& g : geometries)
  2315. {
  2316. createCubeBuffers(*gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2317. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer,
  2318. g.m_insideOut);
  2319. }
  2320. // Create AS
  2321. AccelerationStructurePtr tlas;
  2322. {
  2323. for(Geom& g : geometries)
  2324. {
  2325. AccelerationStructureInitInfo inf;
  2326. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  2327. inf.m_bottomLevel.m_indexBuffer = g.m_indexBuffer;
  2328. inf.m_bottomLevel.m_indexType = IndexType::U16;
  2329. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2330. inf.m_bottomLevel.m_positionBuffer = g.m_vertexBuffer;
  2331. inf.m_bottomLevel.m_positionCount = 8;
  2332. inf.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  2333. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2334. g.m_blas = gr->newAccelerationStructure(inf);
  2335. }
  2336. // TLAS
  2337. Array<AccelerationStructureInstance, U32(GeomWhat::COUNT)> instances;
  2338. U32 count = 0;
  2339. for(Geom& g : geometries)
  2340. {
  2341. instances[count].m_bottomLevel = g.m_blas;
  2342. instances[count].m_transform = g.m_worldTransform;
  2343. instances[count].m_hitgroupSbtRecordIndex = count;
  2344. instances[count].m_mask = g.m_asMask;
  2345. ++count;
  2346. }
  2347. AccelerationStructureInitInfo inf;
  2348. inf.m_type = AccelerationStructureType::TOP_LEVEL;
  2349. inf.m_topLevel.m_instances = instances;
  2350. tlas = gr->newAccelerationStructure(inf);
  2351. }
  2352. // Create model info
  2353. BufferPtr modelBuffer;
  2354. {
  2355. BufferInitInfo inf;
  2356. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2357. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2358. inf.m_size = sizeof(Model) * U32(GeomWhat::COUNT);
  2359. modelBuffer = gr->newBuffer(inf);
  2360. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::COUNT), BufferMapAccessBit::WRITE);
  2361. memset(&models[0], 0, inf.m_size);
  2362. for(GeomWhat i : EnumIterable<GeomWhat>())
  2363. {
  2364. const Geom& g = geometries[i];
  2365. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2366. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2367. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2368. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2369. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2370. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2371. }
  2372. modelBuffer->unmap();
  2373. }
  2374. // Create the ppline
  2375. ShaderProgramPtr rtProg;
  2376. constexpr U32 rayGenGroupIdx = 1;
  2377. constexpr U32 missGroupIdx = 2;
  2378. constexpr U32 shadowMissGroupIdx = 3;
  2379. constexpr U32 lambertianChitGroupIdx = 4;
  2380. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2381. constexpr U32 emissiveChitGroupIdx = 6;
  2382. constexpr U32 shadowAhitGroupIdx = 7;
  2383. constexpr U32 hitgroupCount = 7;
  2384. {
  2385. const CString commonSrcPart = R"(
  2386. #define Mat3x4Scalar Mat3x4
  2387. %s
  2388. const F32 PI = 3.14159265358979323846;
  2389. struct PayLoad
  2390. {
  2391. Vec3 m_total;
  2392. Vec3 m_weight;
  2393. Vec3 m_scatteredDir;
  2394. F32 m_hitT;
  2395. };
  2396. struct ShadowPayLoad
  2397. {
  2398. F32 m_shadow;
  2399. };
  2400. layout(set = 0, binding = 0, scalar) buffer b_00
  2401. {
  2402. Model u_models[];
  2403. };
  2404. layout(set = 0, binding = 1, scalar) buffer b_01
  2405. {
  2406. Light u_lights[];
  2407. };
  2408. layout(push_constant, scalar) uniform b_pc
  2409. {
  2410. PushConstants u_regs;
  2411. };
  2412. #define PAYLOAD_LOCATION 0
  2413. #define SHADOW_PAYLOAD_LOCATION 1
  2414. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2415. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2416. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2417. {
  2418. const Mesh mesh = model.m_mesh;
  2419. const U32 offset = primitiveId * 6;
  2420. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2421. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2422. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2423. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2424. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2425. return model.m_worldRotation * normal;
  2426. }
  2427. UVec3 rand3DPCG16(UVec3 v)
  2428. {
  2429. v = v * 1664525u + 1013904223u;
  2430. v.x += v.y * v.z;
  2431. v.y += v.z * v.x;
  2432. v.z += v.x * v.y;
  2433. v.x += v.y * v.z;
  2434. v.y += v.z * v.x;
  2435. v.z += v.x * v.y;
  2436. return v >> 16u;
  2437. }
  2438. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2439. {
  2440. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2441. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2442. return Vec2(e1, e2);
  2443. }
  2444. Vec3 hemisphereSampleUniform(Vec2 uv)
  2445. {
  2446. const F32 phi = uv.y * 2.0 * PI;
  2447. const F32 cosTheta = 1.0 - uv.x;
  2448. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2449. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2450. }
  2451. Mat3 rotationFromDirection(Vec3 zAxis)
  2452. {
  2453. Vec3 z = zAxis;
  2454. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2455. F32 a = -1.0 / (sign + z.z);
  2456. F32 b = z.x * z.y * a;
  2457. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2458. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2459. return Mat3(x, y, z);
  2460. }
  2461. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2462. {
  2463. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2464. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2465. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2466. }
  2467. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2468. {
  2469. scatterDir = randomDirectionInHemisphere(normal);
  2470. pdf = dot(normal, scatterDir) / PI;
  2471. }
  2472. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2473. {
  2474. F32 cosine = dot(normal, scatteredDir);
  2475. return max(cosine / PI, 0.0);
  2476. })";
  2477. #define MAGIC_MACRO ANKI_STRINGIZE
  2478. const CString rtTypesStr =
  2479. #include <Tests/Gr/RtTypes.h>
  2480. ;
  2481. #undef MAGIC_MACRO
  2482. StringAuto commonSrc(alloc);
  2483. commonSrc.sprintf(commonSrcPart, rtTypesStr.cstr());
  2484. const CString lambertianSrc = R"(
  2485. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2486. hitAttributeEXT vec2 g_attribs;
  2487. void main()
  2488. {
  2489. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2490. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2491. Vec3 scatteredDir;
  2492. F32 pdf;
  2493. scatterLambertian(normal, scatteredDir, pdf);
  2494. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2495. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2496. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2497. s_payLoad.m_scatteredDir = scatteredDir;
  2498. s_payLoad.m_hitT = gl_HitTEXT;
  2499. })";
  2500. const CString lambertianRoomSrc = R"(
  2501. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2502. void main()
  2503. {
  2504. Vec3 col;
  2505. U32 quad = gl_PrimitiveID / 2;
  2506. if(quad == 2)
  2507. {
  2508. col = Vec3(0.65, 0.05, 0.05);
  2509. }
  2510. else if(quad == 3)
  2511. {
  2512. col = Vec3(0.12, 0.45, 0.15);
  2513. }
  2514. else
  2515. {
  2516. col = Vec3(0.73f);
  2517. }
  2518. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2519. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2520. Vec3 scatteredDir;
  2521. F32 pdf;
  2522. scatterLambertian(normal, scatteredDir, pdf);
  2523. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2524. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2525. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2526. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2527. s_payLoad.m_scatteredDir = scatteredDir;
  2528. s_payLoad.m_hitT = gl_HitTEXT;
  2529. })";
  2530. const CString emissiveSrc = R"(
  2531. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2532. void main()
  2533. {
  2534. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2535. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2536. s_payLoad.m_weight = Vec3(0.0);
  2537. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2538. s_payLoad.m_hitT = -1.0;
  2539. })";
  2540. const CString missSrc = R"(
  2541. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2542. void main()
  2543. {
  2544. //s_payLoad.m_color =
  2545. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2546. //Vec3(0.0);
  2547. s_payLoad.m_weight = Vec3(0.0);
  2548. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2549. s_payLoad.m_hitT = -1.0;
  2550. })";
  2551. const CString shadowAhitSrc = R"(
  2552. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2553. void main()
  2554. {
  2555. s_payLoad.m_shadow += 0.25;
  2556. //terminateRayEXT();
  2557. })";
  2558. const CString shadowChitSrc = R"(
  2559. void main()
  2560. {
  2561. })";
  2562. const CString shadowMissSrc = R"(
  2563. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2564. void main()
  2565. {
  2566. s_payLoad.m_shadow = 1.0;
  2567. })";
  2568. const CString rayGenSrc = R"(
  2569. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2570. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2571. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2572. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2573. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2574. void main()
  2575. {
  2576. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2577. uv.y = 1.0 - uv.y;
  2578. const Vec2 ndc = uv * 2.0 - 1.0;
  2579. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2580. const Vec3 p3 = p4.xyz / p4.w;
  2581. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2582. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2583. Vec3 outColor = Vec3(0.0);
  2584. const U32 sampleCount = 8;
  2585. const U32 maxRecursionDepth = 2;
  2586. for(U32 s = 0; s < sampleCount; ++s)
  2587. {
  2588. Vec3 rayOrigin = u_regs.m_cameraPos;
  2589. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2590. s_payLoad.m_total = Vec3(0.0);
  2591. s_payLoad.m_weight = Vec3(1.0);
  2592. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2593. {
  2594. const U32 cullMask = 0xFF;
  2595. const U32 sbtRecordOffset = 0;
  2596. const U32 sbtRecordStride = 0;
  2597. const U32 missIndex = 0;
  2598. const F32 tMin = 0.1;
  2599. const F32 tMax = 10000.0;
  2600. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2601. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2602. if(s_payLoad.m_hitT > 0.0)
  2603. {
  2604. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2605. rayDir = s_payLoad.m_scatteredDir;
  2606. }
  2607. else
  2608. {
  2609. break;
  2610. }
  2611. }
  2612. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2613. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2614. }
  2615. outColor /= F32(sampleCount);
  2616. #if 0
  2617. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2618. const Vec3 normal = s_payLoad.m_normal;
  2619. if(s_payLoad.m_hitT > 0.0)
  2620. {
  2621. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2622. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2623. {
  2624. s_shadowPayLoad.m_shadow = 0.0;
  2625. const Light light = u_lights[i];
  2626. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2627. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2628. const U32 cullMask = 0x2;
  2629. const U32 sbtRecordOffset = 1;
  2630. const U32 sbtRecordStride = 0;
  2631. const U32 missIndex = 1;
  2632. const F32 tMin = 0.1;
  2633. const F32 tMax = length(randomPointInLight - rayOrigin);
  2634. const U32 flags = gl_RayFlagsOpaqueEXT;
  2635. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2636. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2637. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2638. outColor += normal * light.m_intensity * shadow;
  2639. }
  2640. }
  2641. else
  2642. {
  2643. outColor = diffuseColor;
  2644. }
  2645. #endif
  2646. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2647. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2648. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2649. })";
  2650. ShaderPtr lambertianShader = createShader(
  2651. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2652. ShaderPtr lambertianRoomShader =
  2653. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()),
  2654. ShaderType::CLOSEST_HIT, *gr);
  2655. ShaderPtr emissiveShader = createShader(
  2656. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2657. ShaderPtr shadowAhitShader = createShader(
  2658. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::ANY_HIT, *gr);
  2659. ShaderPtr shadowChitShader = createShader(
  2660. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2661. ShaderPtr missShader =
  2662. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::MISS, *gr);
  2663. ShaderPtr shadowMissShader = createShader(
  2664. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::MISS, *gr);
  2665. ShaderPtr rayGenShader = createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()),
  2666. ShaderType::RAY_GEN, *gr);
  2667. Array<RayTracingHitGroup, 4> hitGroups;
  2668. hitGroups[0].m_closestHitShader = lambertianShader;
  2669. hitGroups[1].m_closestHitShader = lambertianRoomShader;
  2670. hitGroups[2].m_closestHitShader = emissiveShader;
  2671. hitGroups[3].m_closestHitShader = shadowChitShader;
  2672. hitGroups[3].m_anyHitShader = shadowAhitShader;
  2673. Array<ShaderPtr, 2> missShaders = {missShader, shadowMissShader};
  2674. // Add the same 2 times to test multiple ray gen shaders
  2675. Array<ShaderPtr, 2> rayGenShaders = {rayGenShader, rayGenShader};
  2676. ShaderProgramInitInfo inf;
  2677. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2678. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2679. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2680. rtProg = gr->newShaderProgram(inf);
  2681. }
  2682. // Create the SBT
  2683. BufferPtr sbt;
  2684. {
  2685. const U32 recordCount = 1 + 2 + U32(GeomWhat::COUNT) * 2;
  2686. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2687. BufferInitInfo inf;
  2688. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2689. inf.m_usage = BufferUsageBit::SBT;
  2690. inf.m_size = sbtRecordSize * recordCount;
  2691. sbt = gr->newBuffer(inf);
  2692. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::WRITE);
  2693. memset(&mapped[0], 0, inf.m_size);
  2694. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2695. ANKI_TEST_EXPECT_EQ(handles.getSize(),
  2696. gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2697. // Ray gen
  2698. U32 record = 0;
  2699. memcpy(&mapped[sbtRecordSize * record++],
  2700. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2701. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2702. // 2xMiss
  2703. memcpy(&mapped[sbtRecordSize * record++],
  2704. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2705. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2706. memcpy(&mapped[sbtRecordSize * record++],
  2707. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2708. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2709. // Small box
  2710. memcpy(&mapped[sbtRecordSize * record++],
  2711. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2712. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2713. memcpy(&mapped[sbtRecordSize * record++],
  2714. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2715. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2716. // Big box
  2717. memcpy(&mapped[sbtRecordSize * record++],
  2718. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2719. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2720. memcpy(&mapped[sbtRecordSize * record++],
  2721. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2722. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2723. // Room
  2724. memcpy(&mapped[sbtRecordSize * record++],
  2725. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2726. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2727. memcpy(&mapped[sbtRecordSize * record++],
  2728. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2729. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2730. // Light
  2731. memcpy(&mapped[sbtRecordSize * record++],
  2732. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2733. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2734. memcpy(&mapped[sbtRecordSize * record++],
  2735. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2736. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2737. sbt->unmap();
  2738. }
  2739. // Create lights
  2740. BufferPtr lightBuffer;
  2741. constexpr U32 lightCount = 1;
  2742. {
  2743. BufferInitInfo inf;
  2744. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2745. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2746. inf.m_size = sizeof(Light) * lightCount;
  2747. lightBuffer = gr->newBuffer(inf);
  2748. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::WRITE);
  2749. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2750. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2751. lights[0].m_intensity = Vec3(1.0f);
  2752. lightBuffer->unmap();
  2753. }
  2754. // Draw
  2755. constexpr U32 ITERATIONS = 100 * 8;
  2756. for(U32 i = 0; i < ITERATIONS; ++i)
  2757. {
  2758. HighRezTimer timer;
  2759. timer.start();
  2760. const Mat4 viewMat =
  2761. Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f))
  2762. .getInverse();
  2763. const Mat4 projMat =
  2764. Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2765. CommandBufferInitInfo cinit;
  2766. cinit.m_flags =
  2767. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2768. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2769. if(i == 0)
  2770. {
  2771. for(const Geom& g : geometries)
  2772. {
  2773. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::NONE,
  2774. AccelerationStructureUsageBit::BUILD);
  2775. }
  2776. for(const Geom& g : geometries)
  2777. {
  2778. cmdb->buildAccelerationStructure(g.m_blas);
  2779. }
  2780. for(const Geom& g : geometries)
  2781. {
  2782. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::BUILD,
  2783. AccelerationStructureUsageBit::ATTACH);
  2784. }
  2785. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2786. AccelerationStructureUsageBit::BUILD);
  2787. cmdb->buildAccelerationStructure(tlas);
  2788. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2789. AccelerationStructureUsageBit::TRACE_RAYS_READ);
  2790. }
  2791. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2792. TextureViewPtr presentView;
  2793. {
  2794. TextureViewInitInfo inf;
  2795. inf.m_texture = presentTex;
  2796. presentView = gr->newTextureView(inf);
  2797. }
  2798. TextureViewPtr offscreenView, offscreenHistoryView;
  2799. {
  2800. TextureViewInitInfo inf;
  2801. inf.m_texture = offscreenRts[i & 1];
  2802. offscreenView = gr->newTextureView(inf);
  2803. inf.m_texture = offscreenRts[(i + 1) & 1];
  2804. offscreenHistoryView = gr->newTextureView(inf);
  2805. }
  2806. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::NONE, TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2807. TextureSubresourceInfo());
  2808. cmdb->setTextureBarrier(offscreenRts[(i + 1) & 1], TextureUsageBit::IMAGE_COMPUTE_READ,
  2809. TextureUsageBit::IMAGE_TRACE_RAYS_READ, TextureSubresourceInfo());
  2810. cmdb->bindStorageBuffer(0, 0, modelBuffer, 0, MAX_PTR_SIZE);
  2811. cmdb->bindStorageBuffer(0, 1, lightBuffer, 0, MAX_PTR_SIZE);
  2812. cmdb->bindAccelerationStructure(1, 0, tlas);
  2813. cmdb->bindImage(1, 1, offscreenHistoryView);
  2814. cmdb->bindImage(1, 2, offscreenView);
  2815. cmdb->bindShaderProgram(rtProg);
  2816. PushConstants pc;
  2817. pc.m_vp = projMat * viewMat;
  2818. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2819. pc.m_lightCount = lightCount;
  2820. pc.m_frame = i;
  2821. cmdb->setPushConstants(&pc, sizeof(pc));
  2822. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2823. cmdb->traceRays(sbt, 0, sbtRecordSize, U32(GeomWhat::COUNT) * 2, 2, WIDTH, HEIGHT, 1);
  2824. // Copy to present
  2825. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2826. TextureUsageBit::IMAGE_COMPUTE_READ, TextureSubresourceInfo());
  2827. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  2828. TextureSubresourceInfo());
  2829. cmdb->bindImage(0, 0, offscreenView);
  2830. cmdb->bindImage(0, 1, presentView);
  2831. cmdb->bindShaderProgram(copyToPresentProg);
  2832. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2833. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2834. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2835. cmdb->setTextureBarrier(presentTex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::PRESENT,
  2836. TextureSubresourceInfo());
  2837. cmdb->flush();
  2838. gr->swapBuffers();
  2839. timer.stop();
  2840. const F32 TICK = 1.0f / 60.0f;
  2841. if(timer.getElapsedTime() < TICK)
  2842. {
  2843. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2844. }
  2845. }
  2846. COMMON_END();
  2847. }
  2848. ANKI_TEST(Gr, AsyncCompute)
  2849. {
  2850. COMMON_BEGIN()
  2851. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2852. // Create the counting program
  2853. static const char* PROG_SRC = R"(
  2854. layout(local_size_x = 8) in;
  2855. layout(binding = 0, std430) buffer b_buff
  2856. {
  2857. U32 u_counters[];
  2858. };
  2859. void main()
  2860. {
  2861. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2862. {
  2863. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2864. }
  2865. })";
  2866. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  2867. ShaderProgramInitInfo sprogInit;
  2868. sprogInit.m_computeShader = shader;
  2869. ShaderProgramPtr incrementProg = gr->newShaderProgram(sprogInit);
  2870. // Create the check program
  2871. static const char* CHECK_SRC = R"(
  2872. layout(local_size_x = 8) in;
  2873. layout(binding = 0, std430) buffer b_buff
  2874. {
  2875. U32 u_counters[];
  2876. };
  2877. void main()
  2878. {
  2879. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2880. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2881. U32 expectedVal = 0u;
  2882. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2883. {
  2884. expectedVal += i + 1u;
  2885. }
  2886. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2887. })";
  2888. shader = createShader(CHECK_SRC, ShaderType::COMPUTE, *gr);
  2889. sprogInit.m_computeShader = shader;
  2890. ShaderProgramPtr checkProg = gr->newShaderProgram(sprogInit);
  2891. // Create buffers
  2892. BufferInitInfo info;
  2893. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2894. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  2895. info.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  2896. BufferPtr atomicsBuffer = gr->newBuffer(info);
  2897. U32* values =
  2898. static_cast<U32*>(atomicsBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ | BufferMapAccessBit::WRITE));
  2899. memset(values, 0, info.m_size);
  2900. // Pre-create some CPU result buffers
  2901. DynamicArrayAuto<U32> atomicsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2902. atomicsBufferCpu.create(ARRAY_SIZE);
  2903. DynamicArrayAuto<U32> expectedResultsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2904. expectedResultsBufferCpu.create(ARRAY_SIZE);
  2905. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2906. {
  2907. const U32 localInvocation = i % 8;
  2908. U32 expectedVal = 4;
  2909. for(U32 j = 0; j < localInvocation * 20; ++j)
  2910. {
  2911. expectedVal += j + 1;
  2912. }
  2913. expectedResultsBufferCpu[i] = expectedVal;
  2914. }
  2915. // Create the 1st command buffer
  2916. CommandBufferInitInfo cinit;
  2917. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2918. CommandBufferPtr incrementCmdb = gr->newCommandBuffer(cinit);
  2919. incrementCmdb->bindShaderProgram(incrementProg);
  2920. incrementCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2921. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2922. // Create the 2nd command buffer
  2923. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2924. CommandBufferPtr checkCmdb = gr->newCommandBuffer(cinit);
  2925. checkCmdb->bindShaderProgram(checkProg);
  2926. checkCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2927. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2928. // Create the 3rd command buffer
  2929. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2930. CommandBufferPtr incrementCmdb2 = gr->newCommandBuffer(cinit);
  2931. incrementCmdb2->bindShaderProgram(incrementProg);
  2932. incrementCmdb2->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2933. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2934. // Submit
  2935. #if 1
  2936. FencePtr fence;
  2937. incrementCmdb->flush({}, &fence);
  2938. checkCmdb->flush(Array<FencePtr, 1>{fence}, &fence);
  2939. incrementCmdb2->flush(Array<FencePtr, 1>{fence}, &fence);
  2940. fence->clientWait(MAX_SECOND);
  2941. #else
  2942. incrementCmdb->flush();
  2943. gr->finish();
  2944. checkCmdb->flush();
  2945. gr->finish();
  2946. incrementCmdb2->flush();
  2947. gr->finish();
  2948. #endif
  2949. // Verify
  2950. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2951. Bool correct = true;
  2952. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2953. {
  2954. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2955. if(!correct)
  2956. {
  2957. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2958. break;
  2959. }
  2960. }
  2961. atomicsBuffer->unmap();
  2962. ANKI_TEST_EXPECT_EQ(correct, true);
  2963. COMMON_END()
  2964. }
  2965. } // end namespace anki