Renderer.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Util/Tracer.h>
  7. #include <AnKi/Util/CVarSet.h>
  8. #include <AnKi/Util/HighRezTimer.h>
  9. #include <AnKi/Collision/Aabb.h>
  10. #include <AnKi/Collision/Plane.h>
  11. #include <AnKi/Collision/Functions.h>
  12. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  13. #include <AnKi/GpuMemory/GpuSceneBuffer.h>
  14. #include <AnKi/Scene/Components/CameraComponent.h>
  15. #include <AnKi/Scene/Components/LightComponent.h>
  16. #include <AnKi/Scene/Components/SkyboxComponent.h>
  17. #include <AnKi/Core/StatsSet.h>
  18. #include <AnKi/Core/App.h>
  19. #include <AnKi/Renderer/ProbeReflections.h>
  20. #include <AnKi/Renderer/GBuffer.h>
  21. #include <AnKi/Renderer/GBufferPost.h>
  22. #include <AnKi/Renderer/LightShading.h>
  23. #include <AnKi/Renderer/ShadowMapping.h>
  24. #include <AnKi/Renderer/FinalComposite.h>
  25. #include <AnKi/Renderer/Bloom.h>
  26. #include <AnKi/Renderer/Tonemapping.h>
  27. #include <AnKi/Renderer/ForwardShading.h>
  28. #include <AnKi/Renderer/LensFlare.h>
  29. #include <AnKi/Renderer/Dbg.h>
  30. #include <AnKi/Renderer/VolumetricFog.h>
  31. #include <AnKi/Renderer/DepthDownscale.h>
  32. #include <AnKi/Renderer/TemporalAA.h>
  33. #include <AnKi/Renderer/UiStage.h>
  34. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  35. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  36. #include <AnKi/Renderer/ShadowmapsResolve.h>
  37. #include <AnKi/Renderer/RtShadows.h>
  38. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  39. #include <AnKi/Renderer/MotionVectors.h>
  40. #include <AnKi/Renderer/TemporalUpscaler.h>
  41. #include <AnKi/Renderer/VrsSriGeneration.h>
  42. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  43. #include <AnKi/Renderer/ClusterBinning.h>
  44. #include <AnKi/Renderer/Ssao.h>
  45. #include <AnKi/Renderer/Sky.h>
  46. #include <AnKi/Renderer/MotionBlur.h>
  47. #include <AnKi/Renderer/RtMaterialFetchDbg.h>
  48. #include <AnKi/Renderer/Reflections.h>
  49. #include <AnKi/Renderer/IndirectDiffuse.h>
  50. #include <AnKi/Renderer/IndirectDiffuseClipmaps.h>
  51. #include <AnKi/Renderer/Utils/Drawer.h>
  52. #include <AnKi/Renderer/Utils/GpuVisibility.h>
  53. #include <AnKi/Renderer/Utils/MipmapGenerator.h>
  54. #include <AnKi/Renderer/Utils/Readback.h>
  55. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  56. namespace anki {
  57. static StatCounter g_primitivesDrawnStatVar(StatCategory::kRenderer, "Primitives drawn", StatFlag::kMainThreadUpdates | StatFlag::kZeroEveryFrame);
  58. static StatCounter g_rendererCpuTimeStatVar(StatCategory::kTime, "Renderer",
  59. StatFlag::kMilisecond | StatFlag::kShowAverage | StatFlag::kMainThreadUpdates);
  60. /// Generate a Halton jitter in [-0.5, 0.5]
  61. static Vec2 generateJitter(U32 frame)
  62. {
  63. // Halton jitter
  64. Vec2 result(0.0f);
  65. constexpr U32 baseX = 2;
  66. U32 index = frame + 1;
  67. F32 invBase = 1.0f / baseX;
  68. F32 fraction = invBase;
  69. while(index > 0)
  70. {
  71. result.x() += F32(index % baseX) * fraction;
  72. index /= baseX;
  73. fraction *= invBase;
  74. }
  75. constexpr U32 baseY = 3;
  76. index = frame + 1;
  77. invBase = 1.0f / baseY;
  78. fraction = invBase;
  79. while(index > 0)
  80. {
  81. result.y() += F32(index % baseY) * fraction;
  82. index /= baseY;
  83. fraction *= invBase;
  84. }
  85. result.x() -= 0.5f;
  86. result.y() -= 0.5f;
  87. return result;
  88. }
  89. Renderer::Renderer()
  90. {
  91. }
  92. Renderer::~Renderer()
  93. {
  94. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) deleteInstance(RendererMemoryPool::getSingleton(), m_##name2);
  95. #include <AnKi/Renderer/RendererObject.def.h>
  96. }
  97. Error Renderer::init(const RendererInitInfo& inf)
  98. {
  99. ANKI_TRACE_SCOPED_EVENT(RInit);
  100. const Error err = initInternal(inf);
  101. if(err)
  102. {
  103. ANKI_R_LOGE("Failed to initialize the renderer");
  104. }
  105. return err;
  106. }
  107. Error Renderer::initInternal(const RendererInitInfo& inf)
  108. {
  109. RendererMemoryPool::allocateSingleton(inf.m_allocCallback, inf.m_allocCallbackUserData);
  110. m_framePool.init(inf.m_allocCallback, inf.m_allocCallbackUserData, 10_MB, 1.0f);
  111. m_frameCount = 0;
  112. m_swapchainResolution = inf.m_swapchainSize;
  113. m_rgraph = GrManager::getSingleton().newRenderGraph();
  114. // Set from the config
  115. m_postProcessResolution = UVec2(Vec2(m_swapchainResolution) * g_renderScalingCVar);
  116. alignRoundDown(2, m_postProcessResolution.x());
  117. alignRoundDown(2, m_postProcessResolution.y());
  118. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_internalRenderScalingCVar);
  119. alignRoundDown(2, m_internalResolution.x());
  120. alignRoundDown(2, m_internalResolution.y());
  121. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  122. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  123. m_tileCounts.x() = (m_internalResolution.x() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  124. m_tileCounts.y() = (m_internalResolution.y() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  125. m_zSplitCount = g_zSplitCountCVar;
  126. if(g_meshletRenderingCVar && !GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  127. {
  128. m_meshletRenderingType = MeshletRenderingType::kSoftware;
  129. }
  130. else if(GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  131. {
  132. m_meshletRenderingType = MeshletRenderingType::kMeshShaders;
  133. }
  134. else
  135. {
  136. m_meshletRenderingType = MeshletRenderingType::kNone;
  137. }
  138. // A few sanity checks
  139. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  140. {
  141. ANKI_R_LOGE("Incorrect sizes");
  142. return Error::kUserData;
  143. }
  144. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  145. // Dummy resources
  146. {
  147. TextureInitInfo texinit("DummyTexture");
  148. texinit.m_width = texinit.m_height = 4;
  149. texinit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kRtvDsvWrite;
  150. texinit.m_format = Format::kR8G8B8A8_Unorm;
  151. m_dummyResources.m_texture2DSrv = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  152. texinit.m_depth = 4;
  153. texinit.m_type = TextureType::k3D;
  154. texinit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllUav;
  155. m_dummyResources.m_texture3DSrv = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  156. texinit.m_type = TextureType::k2D;
  157. texinit.m_usage = TextureUsageBit::kAllUav;
  158. texinit.m_depth = 1;
  159. m_dummyResources.m_texture2DUav = createAndClearRenderTarget(texinit, TextureUsageBit::kAllUav);
  160. texinit.m_depth = 4;
  161. texinit.m_type = TextureType::k3D;
  162. m_dummyResources.m_texture3DUav = createAndClearRenderTarget(texinit, TextureUsageBit::kAllUav);
  163. m_dummyResources.m_buffer = GrManager::getSingleton().newBuffer(
  164. BufferInitInfo(1024, BufferUsageBit::kAllConstant | BufferUsageBit::kAllUav, BufferMapAccessBit::kNone, "DummyBuffer"));
  165. }
  166. {
  167. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/FillBuffer.ankiprogbin", m_fillBufferProg));
  168. ShaderProgramResourceVariantInitInfo initInf(m_fillBufferProg);
  169. const ShaderProgramResourceVariant* variant;
  170. m_fillBufferProg->getOrCreateVariant(initInf, variant);
  171. m_fillBufferGrProg.reset(&variant->getProgram());
  172. }
  173. // Init the stages
  174. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) \
  175. if(initCondition) \
  176. { \
  177. m_##name2 = newInstance<name>(RendererMemoryPool::getSingleton()); \
  178. ANKI_R_LOGV("Initializing " ANKI_STRINGIZE(name)); \
  179. const Error err = m_##name2->init(); \
  180. if(err) \
  181. { \
  182. ANKI_R_LOGE("Initialization failed: " ANKI_STRINGIZE(name)); \
  183. return err; \
  184. } \
  185. }
  186. #include <AnKi/Renderer/RendererObject.def.h>
  187. // Init samplers
  188. {
  189. SamplerInitInfo sinit("NearestNearestClamp");
  190. sinit.m_addressing = SamplingAddressing::kClamp;
  191. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  192. sinit.m_minMagFilter = SamplingFilter::kNearest;
  193. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  194. sinit.setName("NearestNearestRepeat");
  195. sinit.m_addressing = SamplingAddressing::kRepeat;
  196. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  197. sinit.m_minMagFilter = SamplingFilter::kNearest;
  198. m_samplers.m_nearestNearestRepeat = GrManager::getSingleton().newSampler(sinit);
  199. sinit.setName("TrilinearClamp");
  200. sinit.m_addressing = SamplingAddressing::kClamp;
  201. sinit.m_minMagFilter = SamplingFilter::kLinear;
  202. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  203. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  204. sinit.setName("TrilinearRepeat");
  205. sinit.m_addressing = SamplingAddressing::kRepeat;
  206. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  207. if(g_textureAnisotropyCVar <= 1u)
  208. {
  209. m_samplers.m_trilinearRepeatAniso = m_samplers.m_trilinearRepeat;
  210. }
  211. else
  212. {
  213. sinit.setName("TrilinearRepeatAniso");
  214. sinit.m_anisotropyLevel = g_textureAnisotropyCVar;
  215. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  216. }
  217. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  218. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  219. if(getTemporalUpscaler().getEnabled())
  220. {
  221. // DLSS wants more bias
  222. scalingMipBias -= 1.0f;
  223. }
  224. sinit.m_lodBias = scalingMipBias;
  225. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  226. sinit = {};
  227. sinit.setName("TrilinearClampShadow");
  228. sinit.m_minMagFilter = SamplingFilter::kLinear;
  229. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  230. sinit.m_compareOperation = CompareOperation::kLessEqual;
  231. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  232. }
  233. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  234. {
  235. m_jitterOffsets[i] = generateJitter(i);
  236. }
  237. if(m_swapchainResolution != m_postProcessResolution)
  238. {
  239. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/Blit.ankiprogbin", m_blitProg));
  240. ShaderProgramResourceVariantInitInfo varInit(m_blitProg);
  241. const ShaderProgramResourceVariant* variant;
  242. varInit.requestTechniqueAndTypes(ShaderTypeBit::kVertex | ShaderTypeBit::kPixel);
  243. m_blitProg->getOrCreateVariant(varInit, variant);
  244. m_blitGrProg.reset(&variant->getProgram());
  245. ANKI_R_LOGI("There will be a blit pass to the swapchain because render scaling is not 1.0");
  246. }
  247. return Error::kNone;
  248. }
  249. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  250. {
  251. // Import RTs first
  252. m_bloom2->importRenderTargets(ctx);
  253. m_tonemapping->importRenderTargets(ctx);
  254. m_vrsSriGeneration->importRenderTargets(ctx);
  255. m_gbuffer->importRenderTargets(ctx);
  256. // Populate render graph. WARNING Watch the order
  257. gpuSceneCopy(ctx);
  258. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  259. if(m_accelerationStructureBuilder)
  260. {
  261. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  262. }
  263. m_gbuffer->populateRenderGraph(ctx);
  264. m_shadowMapping->populateRenderGraph(ctx);
  265. m_clusterBinning2->populateRenderGraph(ctx);
  266. m_generatedSky->populateRenderGraph(ctx);
  267. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  268. if(m_indirectDiffuseClipmaps)
  269. {
  270. m_indirectDiffuseClipmaps->populateRenderGraph(ctx);
  271. }
  272. m_probeReflections->populateRenderGraph(ctx);
  273. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  274. m_motionVectors->populateRenderGraph(ctx);
  275. m_gbufferPost->populateRenderGraph(ctx);
  276. m_depthDownscale->populateRenderGraph(ctx);
  277. if(m_rtShadows)
  278. {
  279. m_rtShadows->populateRenderGraph(ctx);
  280. }
  281. if(m_rtMaterialFetchDbg)
  282. {
  283. m_rtMaterialFetchDbg->populateRenderGraph(ctx);
  284. }
  285. m_indirectDiffuse->populateRenderGraph(ctx);
  286. m_reflections->populateRenderGraph(ctx);
  287. m_shadowmapsResolve->populateRenderGraph(ctx);
  288. m_volumetricFog->populateRenderGraph(ctx);
  289. m_lensFlare->populateRenderGraph(ctx);
  290. m_ssao->populateRenderGraph(ctx);
  291. m_forwardShading->populateRenderGraph(ctx); // This may feel out of place but it's only visibility. Keep it just before light shading
  292. m_lightShading->populateRenderGraph(ctx);
  293. if(getTemporalUpscaler().getEnabled())
  294. {
  295. m_temporalUpscaler->populateRenderGraph(ctx);
  296. }
  297. else
  298. {
  299. m_temporalAA->populateRenderGraph(ctx);
  300. }
  301. m_vrsSriGeneration->populateRenderGraph(ctx);
  302. m_tonemapping->populateRenderGraph(ctx);
  303. m_motionBlur->populateRenderGraph(ctx);
  304. m_bloom2->populateRenderGraph(ctx);
  305. m_dbg->populateRenderGraph(ctx);
  306. m_finalComposite->populateRenderGraph(ctx);
  307. return Error::kNone;
  308. }
  309. void Renderer::writeGlobalRendererConstants(RenderingContext& ctx, GlobalRendererConstants& outConsts)
  310. {
  311. ANKI_TRACE_SCOPED_EVENT(RWriteGlobalRendererConstants);
  312. GlobalRendererConstants consts;
  313. memset(&consts, 0, sizeof(consts));
  314. consts.m_renderingSize = Vec2(F32(m_internalResolution.x()), F32(m_internalResolution.y()));
  315. consts.m_time = F32(HighRezTimer::getCurrentTime());
  316. consts.m_frame = m_frameCount & kMaxU32;
  317. Plane nearPlane;
  318. extractClipPlane(ctx.m_matrices.m_viewProjection, FrustumPlaneType::kNear, nearPlane);
  319. consts.m_nearPlaneWSpace = Vec4(nearPlane.getNormal().xyz(), nearPlane.getOffset());
  320. consts.m_cameraPosition = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  321. consts.m_tileCounts = m_tileCounts;
  322. consts.m_zSplitCount = m_zSplitCount;
  323. consts.m_zSplitCountOverFrustumLength = F32(m_zSplitCount) / (ctx.m_matrices.m_far - ctx.m_matrices.m_near);
  324. consts.m_zSplitMagic.x() = (ctx.m_matrices.m_near - ctx.m_matrices.m_far) / (ctx.m_matrices.m_near * F32(m_zSplitCount));
  325. consts.m_zSplitMagic.y() = ctx.m_matrices.m_far / (ctx.m_matrices.m_near * F32(m_zSplitCount));
  326. consts.m_lightVolumeLastZSplit = min(g_volumetricLightingAccumulationFinalZSplitCVar - 1, m_zSplitCount);
  327. consts.m_reflectionProbesMipCount = F32(m_probeReflections->getReflectionTextureMipmapCount());
  328. consts.m_matrices = ctx.m_matrices;
  329. consts.m_previousMatrices = ctx.m_prevMatrices;
  330. // Directional light
  331. const LightComponent* dirLight = SceneGraph::getSingleton().getDirectionalLight();
  332. if(dirLight)
  333. {
  334. DirectionalLight& out = consts.m_directionalLight;
  335. const U32 shadowCascadeCount = (dirLight->getShadowEnabled()) ? g_shadowCascadeCountCVar : 0;
  336. out.m_diffuseColor = dirLight->getDiffuseColor().xyz();
  337. out.m_power = dirLight->getLightPower();
  338. out.m_shadowCascadeCount_31bit_active_1bit = shadowCascadeCount << 1u;
  339. out.m_shadowCascadeCount_31bit_active_1bit |= 1;
  340. out.m_direction = dirLight->getDirection();
  341. out.m_shadowCascadeDistances =
  342. Vec4(g_shadowCascade0DistanceCVar, g_shadowCascade1DistanceCVar, g_shadowCascade2DistanceCVar, g_shadowCascade3DistanceCVar);
  343. for(U cascade = 0; cascade < shadowCascadeCount; ++cascade)
  344. {
  345. ANKI_ASSERT(ctx.m_dirLightTextureMatrices[cascade] != Mat4::getZero());
  346. out.m_textureMatrices[cascade] = ctx.m_dirLightTextureMatrices[cascade];
  347. out.m_cascadeFarPlanes[cascade] = ctx.m_dirLightFarPlanes[cascade];
  348. out.m_cascadePcfTexelRadius[cascade] = ctx.m_dirLightPcfTexelRadius[cascade];
  349. }
  350. }
  351. else
  352. {
  353. consts.m_directionalLight.m_shadowCascadeCount_31bit_active_1bit = 0;
  354. }
  355. // Sky
  356. const SkyboxComponent* sky = SceneGraph::getSingleton().getSkybox();
  357. const Bool isSolidColor =
  358. (!sky || sky->getSkyboxType() == SkyboxType::kSolidColor || (!dirLight && sky->getSkyboxType() == SkyboxType::kGenerated));
  359. if(isSolidColor)
  360. {
  361. consts.m_sky.m_solidColor = (sky) ? sky->getSolidColor() : Vec3(0.0);
  362. consts.m_sky.m_type = 0;
  363. }
  364. else if(sky->getSkyboxType() == SkyboxType::kImage2D)
  365. {
  366. consts.m_sky.m_type = 1;
  367. }
  368. else
  369. {
  370. consts.m_sky.m_type = 2;
  371. }
  372. if(m_indirectDiffuseClipmaps)
  373. {
  374. for(U32 i = 0; i < kIndirectDiffuseClipmapCount; ++i)
  375. {
  376. consts.m_indirectDiffuseClipmaps[i] = m_indirectDiffuseClipmaps->getClipmapsInfo()[i];
  377. }
  378. }
  379. outConsts = consts;
  380. }
  381. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  382. {
  383. ANKI_ASSERT(!!(usage & TextureUsageBit::kRtvDsvWrite) || !!(usage & TextureUsageBit::kUavCompute));
  384. TextureInitInfo init(name);
  385. init.m_width = w;
  386. init.m_height = h;
  387. init.m_depth = 1;
  388. init.m_layerCount = 1;
  389. init.m_type = TextureType::k2D;
  390. init.m_format = format;
  391. init.m_mipmapCount = 1;
  392. init.m_samples = 1;
  393. init.m_usage = usage;
  394. return init;
  395. }
  396. RenderTargetDesc Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  397. {
  398. RenderTargetDesc init(name);
  399. init.m_width = w;
  400. init.m_height = h;
  401. init.m_depth = 1;
  402. init.m_layerCount = 1;
  403. init.m_type = TextureType::k2D;
  404. init.m_format = format;
  405. init.m_mipmapCount = 1;
  406. init.m_samples = 1;
  407. init.m_usage = TextureUsageBit::kNone;
  408. return init;
  409. }
  410. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  411. {
  412. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite) || !!(inf.m_usage & TextureUsageBit::kUavCompute));
  413. const U faceCount = textureTypeIsCube(inf.m_type) ? 6 : 1;
  414. Bool useCompute = false;
  415. if(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite))
  416. {
  417. useCompute = false;
  418. }
  419. else if(!!(inf.m_usage & TextureUsageBit::kUavCompute))
  420. {
  421. useCompute = true;
  422. }
  423. else
  424. {
  425. ANKI_ASSERT(!"Can't handle that");
  426. }
  427. // Create tex
  428. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  429. // Clear all surfaces
  430. CommandBufferInitInfo cmdbinit;
  431. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  432. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  433. {
  434. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  435. }
  436. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  437. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  438. {
  439. for(U32 face = 0; face < faceCount; ++face)
  440. {
  441. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  442. {
  443. if(!useCompute)
  444. {
  445. RenderTarget rt;
  446. rt.m_clearValue = clearVal;
  447. if(getFormatInfo(inf.m_format).isDepthStencil())
  448. {
  449. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  450. if(getFormatInfo(inf.m_format).isDepth())
  451. {
  452. aspect |= DepthStencilAspectBit::kDepth;
  453. }
  454. if(getFormatInfo(inf.m_format).isStencil())
  455. {
  456. aspect |= DepthStencilAspectBit::kStencil;
  457. }
  458. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer, aspect));
  459. }
  460. else
  461. {
  462. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  463. }
  464. TextureBarrierInfo barrier = {rt.m_textureView, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite};
  465. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  466. if(getFormatInfo(inf.m_format).isDepthStencil())
  467. {
  468. cmdb->beginRenderPass({}, &rt);
  469. }
  470. else
  471. {
  472. cmdb->beginRenderPass({rt});
  473. }
  474. cmdb->endRenderPass();
  475. if(!!initialUsage)
  476. {
  477. barrier.m_previousUsage = TextureUsageBit::kRtvDsvWrite;
  478. barrier.m_nextUsage = initialUsage;
  479. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  480. }
  481. }
  482. else
  483. {
  484. // Compute
  485. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  486. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  487. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  488. I32 componentType = 0;
  489. if(formatInfo.m_shaderType == 0)
  490. {
  491. componentType = 0;
  492. }
  493. else if(formatInfo.m_shaderType == 1)
  494. {
  495. componentType = 1;
  496. }
  497. else
  498. {
  499. ANKI_ASSERT(!"Not supported");
  500. }
  501. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  502. const ShaderProgramResourceVariant* variant;
  503. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  504. cmdb->bindShaderProgram(&variant->getProgram());
  505. cmdb->setFastConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  506. const TextureView view(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  507. cmdb->bindUav(0, 0, view);
  508. const TextureBarrierInfo barrier = {view, TextureUsageBit::kNone, TextureUsageBit::kUavCompute};
  509. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  510. UVec3 wgSize;
  511. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  512. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  513. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  514. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  515. if(!!initialUsage)
  516. {
  517. const TextureBarrierInfo barrier = {view, TextureUsageBit::kUavCompute, initialUsage};
  518. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  519. }
  520. }
  521. }
  522. }
  523. }
  524. cmdb->endRecording();
  525. FencePtr fence;
  526. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  527. fence->clientWait(10.0_sec);
  528. return tex;
  529. }
  530. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  531. {
  532. #if ANKI_ASSERTIONS_ENABLED
  533. for(const DebugRtInfo& inf : m_debugRts)
  534. {
  535. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  536. }
  537. #endif
  538. ANKI_ASSERT(obj);
  539. DebugRtInfo inf;
  540. inf.m_obj = obj;
  541. inf.m_rtName = rtName;
  542. m_debugRts.emplaceBack(std::move(inf));
  543. }
  544. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  545. {
  546. if(m_currentDebugRtName.isEmpty()) [[likely]]
  547. {
  548. return false;
  549. }
  550. RendererObject* obj = nullptr;
  551. for(const DebugRtInfo& inf : m_debugRts)
  552. {
  553. if(inf.m_rtName == m_currentDebugRtName)
  554. {
  555. obj = inf.m_obj;
  556. }
  557. }
  558. if(obj)
  559. {
  560. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  561. return true;
  562. }
  563. else
  564. {
  565. ANKI_R_LOGE("Debug rendertarget doesn't exist: %s", m_currentDebugRtName.cstr());
  566. m_currentDebugRtName = {};
  567. return false;
  568. }
  569. }
  570. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  571. {
  572. m_currentDebugRtName.destroy();
  573. if(!rtName.isEmpty() && rtName.getLength() > 0)
  574. {
  575. m_currentDebugRtName = rtName;
  576. }
  577. }
  578. Format Renderer::getHdrFormat() const
  579. {
  580. Format out;
  581. if(!g_highQualityHdrCVar)
  582. {
  583. out = Format::kB10G11R11_Ufloat_Pack32;
  584. }
  585. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  586. {
  587. out = Format::kR16G16B16_Sfloat;
  588. }
  589. else
  590. {
  591. out = Format::kR16G16B16A16_Sfloat;
  592. }
  593. return out;
  594. }
  595. Format Renderer::getDepthNoStencilFormat() const
  596. {
  597. if(ANKI_PLATFORM_MOBILE)
  598. {
  599. return Format::kX8D24_Unorm_Pack32;
  600. }
  601. else
  602. {
  603. return Format::kD32_Sfloat;
  604. }
  605. }
  606. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  607. {
  608. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  609. m_runCtx.m_gpuSceneHandle =
  610. rgraph.importBuffer(GpuSceneBuffer::getSingleton().getBufferView(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  611. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  612. {
  613. NonGraphicsRenderPass& rpass = rgraph.newNonGraphicsRenderPass("GPU scene patching");
  614. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kUavCompute);
  615. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  616. ANKI_TRACE_SCOPED_EVENT(GpuSceneCopy);
  617. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  618. });
  619. }
  620. }
  621. #if ANKI_STATS_ENABLED
  622. void Renderer::updatePipelineStats()
  623. {
  624. RendererDynamicArray<PipelineQueryPtr>& arr = m_pipelineQueries[m_frameCount % kMaxFramesInFlight];
  625. U64 sum = 0;
  626. for(PipelineQueryPtr& q : arr)
  627. {
  628. U64 value;
  629. const PipelineQueryResult res = q->getResult(value);
  630. if(res == PipelineQueryResult::kNotAvailable)
  631. {
  632. ANKI_R_LOGW("Pipeline query result is not available");
  633. }
  634. else
  635. {
  636. sum += value;
  637. }
  638. }
  639. arr.destroy();
  640. g_primitivesDrawnStatVar.set(sum);
  641. }
  642. #endif
  643. Error Renderer::render(Texture* presentTex)
  644. {
  645. ANKI_TRACE_SCOPED_EVENT(Render);
  646. const Second startTime = HighRezTimer::getCurrentTime();
  647. // First thing, reset the temp mem pool
  648. m_framePool.reset();
  649. RenderingContext ctx(&m_framePool);
  650. ctx.m_renderGraphDescr.setStatisticsEnabled(ANKI_STATS_ENABLED);
  651. ctx.m_swapchainRenderTarget = ctx.m_renderGraphDescr.importRenderTarget(presentTex, TextureUsageBit::kNone);
  652. #if ANKI_STATS_ENABLED
  653. updatePipelineStats();
  654. #endif
  655. const CameraComponent& cam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  656. ctx.m_prevMatrices = m_prevMatrices;
  657. ctx.m_matrices.m_cameraTransform = Mat3x4(cam.getFrustum().getWorldTransform());
  658. ctx.m_matrices.m_view = cam.getFrustum().getViewMatrix();
  659. ctx.m_matrices.m_projection = cam.getFrustum().getProjectionMatrix();
  660. ctx.m_matrices.m_viewProjection = cam.getFrustum().getViewProjectionMatrix();
  661. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  662. jitter *= 2.0f; // In [-1, 1]
  663. const Vec2 ndcPixelSize = 1.0f / Vec2(m_internalResolution);
  664. jitter *= ndcPixelSize;
  665. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  666. ctx.m_matrices.m_jitter.setTranslationPart(Vec3(jitter, 0.0f));
  667. ctx.m_matrices.m_jitterOffsetNdc = jitter;
  668. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  669. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  670. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.invert();
  671. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.invert();
  672. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.invert();
  673. ctx.m_matrices.m_reprojection = ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjection;
  674. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  675. ctx.m_matrices.m_projMat00_11_22_23 = Vec4(ctx.m_matrices.m_projection(0, 0), ctx.m_matrices.m_projection(1, 1),
  676. ctx.m_matrices.m_projection(2, 2), ctx.m_matrices.m_projection(2, 3));
  677. ctx.m_matrices.m_near = cam.getNear();
  678. ctx.m_matrices.m_far = cam.getFar();
  679. // Allocate global constants
  680. GlobalRendererConstants* globalConsts;
  681. {
  682. U32 alignment = (GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferNaturalAlignment)
  683. ? sizeof(*globalConsts)
  684. : GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferBindOffsetAlignment;
  685. alignment = computeCompoundAlignment(alignment, GrManager::getSingleton().getDeviceCapabilities().m_constantBufferBindOffsetAlignment);
  686. ctx.m_globalRenderingConstantsBuffer = RebarTransientMemoryPool::getSingleton().allocate(sizeof(*globalConsts), alignment, globalConsts);
  687. }
  688. ANKI_CHECK(populateRenderGraph(ctx));
  689. // Blit renderer's result to swapchain
  690. const Bool bNeedsBlit = m_postProcessResolution != m_swapchainResolution;
  691. if(bNeedsBlit)
  692. {
  693. GraphicsRenderPass& pass = ctx.m_renderGraphDescr.newGraphicsRenderPass("Final Blit");
  694. pass.setRenderpassInfo({GraphicsRenderPassTargetDesc(ctx.m_swapchainRenderTarget)});
  695. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kRtvDsvWrite);
  696. pass.newTextureDependency(m_finalComposite->getRenderTarget(), TextureUsageBit::kSrvPixel);
  697. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  698. ANKI_TRACE_SCOPED_EVENT(BlitAndUi);
  699. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  700. cmdb.setViewport(0, 0, m_swapchainResolution.x(), m_swapchainResolution.y());
  701. cmdb.bindShaderProgram(m_blitGrProg.get());
  702. cmdb.bindSampler(0, 0, m_samplers.m_trilinearClamp.get());
  703. rgraphCtx.bindSrv(0, 0, m_finalComposite->getRenderTarget());
  704. cmdb.draw(PrimitiveTopology::kTriangles, 3);
  705. // Draw the UI
  706. m_uiStage->draw(m_swapchainResolution.x(), m_swapchainResolution.y(), cmdb);
  707. });
  708. }
  709. // Create a dummy pass to transition the presentable image to present
  710. {
  711. NonGraphicsRenderPass& pass = ctx.m_renderGraphDescr.newNonGraphicsRenderPass("Present");
  712. pass.setWork([]([[maybe_unused]] RenderPassWorkContext& rgraphCtx) {
  713. // Do nothing. This pass is dummy
  714. });
  715. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kPresent);
  716. }
  717. writeGlobalRendererConstants(ctx, *globalConsts);
  718. // Bake the render graph
  719. m_rgraph->compileNewGraph(ctx.m_renderGraphDescr, m_framePool);
  720. // Flush
  721. FencePtr fence;
  722. m_rgraph->recordAndSubmitCommandBuffers(&fence);
  723. // Misc
  724. m_rgraph->reset();
  725. ++m_frameCount;
  726. m_prevMatrices = ctx.m_matrices;
  727. m_readbackManager->endFrame(fence.get());
  728. // Stats
  729. if(ANKI_STATS_ENABLED || ANKI_TRACING_ENABLED)
  730. {
  731. g_rendererCpuTimeStatVar.set((HighRezTimer::getCurrentTime() - startTime) * 1000.0);
  732. RenderGraphStatistics rgraphStats;
  733. m_rgraph->getStatistics(rgraphStats);
  734. g_rendererGpuTimeStatVar.set(rgraphStats.m_gpuTime * 1000.0);
  735. if(rgraphStats.m_gpuTime > 0.0)
  736. {
  737. // WARNING: The name of the event is somewhat special. Search it to see why
  738. ANKI_TRACE_CUSTOM_EVENT(GpuFrameTime, rgraphStats.m_cpuStartTime, rgraphStats.m_gpuTime);
  739. }
  740. }
  741. return Error::kNone;
  742. }
  743. } // end namespace anki