| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- // Copyright (C) 2009-2020, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- ANKI_SPECIALIZATION_CONSTANT_U32(CLUSTER_COUNT_X, 0, 1u);
- ANKI_SPECIALIZATION_CONSTANT_U32(CLUSTER_COUNT_Y, 1, 1u);
- ANKI_SPECIALIZATION_CONSTANT_U32(CLUSTER_COUNT_Z, 2, 1u);
- ANKI_SPECIALIZATION_CONSTANT_U32(CLUSTER_COUNT, 3, 1u);
- ANKI_SPECIALIZATION_CONSTANT_U32(IR_MIPMAP_COUNT, 4, 1u);
- #pragma anki start vert
- #include <shaders/Common.glsl>
- layout(location = 0) out Vec2 out_uv;
- layout(location = 1) out Vec2 out_clusterIJ;
- out gl_PerVertex
- {
- Vec4 gl_Position;
- };
- void main()
- {
- out_uv = Vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
- Vec2 pos = out_uv * 2.0 - 1.0;
- gl_Position = Vec4(pos, 0.0, 1.0);
- out_clusterIJ = Vec2(CLUSTER_COUNT_X, CLUSTER_COUNT_Y) * out_uv;
- }
- #pragma anki end
- #pragma anki start frag
- #include <shaders/Pack.glsl>
- #include <shaders/Functions.glsl>
- #define LIGHT_SET 0
- #define LIGHT_COMMON_UNIS_BINDING 0
- #define LIGHT_LIGHTS_BINDING 1
- #define LIGHT_INDIRECT_SPECULAR_BINDING 4
- #define LIGHT_GLOBAL_ILLUMINATION_BINDING 7
- #define LIGHT_CLUSTERS_BINDING 9
- #include <shaders/ClusteredShadingCommon.glsl>
- layout(set = 0, binding = 11) uniform sampler u_nearestAnyClampSampler;
- layout(set = 0, binding = 12) uniform sampler u_trilinearClampSampler;
- layout(set = 0, binding = 13) uniform texture2D u_msRt0;
- layout(set = 0, binding = 14) uniform texture2D u_msRt1;
- layout(set = 0, binding = 15) uniform texture2D u_msRt2;
- layout(set = 0, binding = 16) uniform texture2D u_msDepthRt;
- layout(set = 0, binding = 17) uniform texture2D u_ssrRt;
- layout(set = 0, binding = 18) uniform texture2D u_ssaoRt;
- layout(set = 0, binding = 19) uniform texture2D u_ssgiRt;
- layout(set = 0, binding = 20) uniform texture2D u_resolvedSm;
- layout(location = 0) in Vec2 in_uv;
- layout(location = 1) in Vec2 in_clusterIJ;
- layout(location = 0) out Vec3 out_color;
- // Common code for lighting
- #define LIGHTING_COMMON_BRDF() \
- const Vec3 frag2Light = light.m_position - worldPos; \
- const Vec3 l = normalize(frag2Light); \
- const Vec3 specC = computeSpecularColorBrdf(gbuffer, viewDir, l); \
- const Vec3 diffC = diffuseLambert(gbuffer.m_diffuse); \
- const F32 att = computeAttenuationFactor(light.m_squareRadiusOverOne, frag2Light); \
- F32 lambert = max(0.0, dot(gbuffer.m_normal, l));
- void main()
- {
- const F32 depth = textureLod(u_msDepthRt, u_nearestAnyClampSampler, in_uv, 0.0).r;
- const Vec2 ndc = UV_TO_NDC(in_uv);
- if(depth == 1.0)
- {
- out_color = Vec3(0.0);
- return;
- }
- // Get world position
- const Vec4 worldPos4 = u_invViewProjMat * Vec4(ndc, depth, 1.0);
- const Vec3 worldPos = worldPos4.xyz / worldPos4.w;
- // Get first light index
- U32 idxOffset;
- {
- U32 k = computeClusterK(u_clustererMagic, worldPos);
- U32 clusterIdx =
- k * (CLUSTER_COUNT_X * CLUSTER_COUNT_Y) + U32(in_clusterIJ.y) * CLUSTER_COUNT_X + U32(in_clusterIJ.x);
- idxOffset = u_clusters[clusterIdx];
- // out_color = lightHeatmap(idxOffset, 5, 1u << 3); return;
- }
- // Decode GBuffer
- GbufferInfo gbuffer;
- readGBuffer(u_msRt0, u_msRt1, u_msRt2, u_nearestAnyClampSampler, in_uv, 0.0, gbuffer);
- gbuffer.m_subsurface = max(gbuffer.m_subsurface, SUBSURFACE_MIN);
- // SM
- Vec4 resolvedSm = textureLod(u_resolvedSm, u_trilinearClampSampler, in_uv, 0.0);
- U32 resolvedSmIdx = 0;
- // SSAO
- const F32 ssao = textureLod(u_ssaoRt, u_trilinearClampSampler, in_uv, 0.0).r;
- gbuffer.m_diffuse *= ssao;
- // Ambient and emissive color
- out_color = gbuffer.m_diffuse * gbuffer.m_emission;
- // Dir light
- Vec3 viewDir = normalize(u_cameraPos - worldPos);
- if(u_dirLight.m_active != 0u)
- {
- F32 shadowFactor;
- if(u_dirLight.m_cascadeCount > 0)
- {
- shadowFactor = resolvedSm[0];
- ++resolvedSmIdx;
- }
- else
- {
- shadowFactor = 1.0;
- }
- const Vec3 l = -u_dirLight.m_dir;
- const F32 lambert = max(gbuffer.m_subsurface, dot(l, gbuffer.m_normal));
- const Vec3 diffC = diffuseLambert(gbuffer.m_diffuse);
- const Vec3 specC = computeSpecularColorBrdf(gbuffer, viewDir, l);
- out_color += (diffC + specC) * u_dirLight.m_diffuseColor * (shadowFactor * lambert);
- }
- // Point lights
- U32 idx;
- ANKI_LOOP while((idx = u_lightIndices[idxOffset++]) != MAX_U32)
- {
- PointLight light = u_pointLights[idx];
- LIGHTING_COMMON_BRDF();
- ANKI_BRANCH if(light.m_shadowAtlasTileScale >= 0.0)
- {
- const F32 shadow = resolvedSm[resolvedSmIdx++];
- lambert *= shadow;
- }
- out_color += (diffC + specC) * light.m_diffuseColor * (att * max(gbuffer.m_subsurface, lambert));
- }
- // Spot lights
- ANKI_LOOP while((idx = u_lightIndices[idxOffset++]) != MAX_U32)
- {
- SpotLight light = u_spotLights[idx];
- LIGHTING_COMMON_BRDF();
- const F32 spot = computeSpotFactor(l, light.m_outerCos, light.m_innerCos, light.m_dir);
- const F32 shadowmapLayerIdx = light.m_shadowmapId;
- ANKI_BRANCH if(shadowmapLayerIdx >= 0.0)
- {
- const F32 shadow = resolvedSm[resolvedSmIdx++];
- lambert *= shadow;
- }
- out_color += (diffC + specC) * light.m_diffuseColor * (att * spot * max(gbuffer.m_subsurface, lambert));
- }
- // Indirect specular
- {
- // Do the probe read
- Vec3 specIndirect = Vec3(0.0);
- const Vec3 reflDir = reflect(-viewDir, gbuffer.m_normal);
- const F32 reflLod = F32(IR_MIPMAP_COUNT - 1u) * gbuffer.m_roughness;
- if(subgroupAll(u_lightIndices[idxOffset] != MAX_U32 && u_lightIndices[idxOffset + 1u] == MAX_U32))
- {
- // Only one probe, do a fast path without blend weight
- const ReflectionProbe probe = u_reflectionProbes[u_lightIndices[idxOffset]];
- idxOffset += 2u;
- // Sample
- const Vec3 cubeUv = intersectProbe(worldPos, reflDir, probe.m_aabbMin, probe.m_aabbMax, probe.m_position);
- const Vec4 cubeArrUv = Vec4(cubeUv, probe.m_cubemapIndex);
- specIndirect = textureLod(u_reflectionsTex, u_trilinearClampSampler, cubeArrUv, reflLod).rgb;
- }
- else
- {
- // Zero or more than one probes, do a slow path that blends them together
- F32 totalBlendWeight = EPSILON;
- // Loop probes
- ANKI_LOOP while((idx = u_lightIndices[idxOffset++]) != MAX_U32)
- {
- const ReflectionProbe probe = u_reflectionProbes[idx];
- // Compute blend weight
- const F32 blendWeight = computeProbeBlendWeight(worldPos, probe.m_aabbMin, probe.m_aabbMax, 0.2);
- totalBlendWeight += blendWeight;
- // Sample reflections
- const Vec3 cubeUv =
- intersectProbe(worldPos, reflDir, probe.m_aabbMin, probe.m_aabbMax, probe.m_position);
- const Vec4 cubeArrUv = Vec4(cubeUv, probe.m_cubemapIndex);
- Vec3 c = textureLod(u_reflectionsTex, u_trilinearClampSampler, cubeArrUv, reflLod).rgb;
- specIndirect += c * blendWeight;
- }
- // Normalize the colors
- specIndirect /= totalBlendWeight;
- }
- // Read the SSL result
- const Vec4 ssr = textureLod(u_ssrRt, u_trilinearClampSampler, in_uv, 0.0);
- // Combine the SSR and probe reflections and write the result
- const Vec3 finalSpecIndirect = specIndirect * ssr.a + ssr.rgb;
- // Compute env BRDF
- const F32 NoV = max(EPSILON, dot(gbuffer.m_normal, viewDir));
- const Vec3 env =
- envBRDF(gbuffer.m_specular, gbuffer.m_roughness, u_integrationLut, u_trilinearClampSampler, NoV);
- out_color += finalSpecIndirect * env;
- }
- // Indirect diffuse
- {
- Vec3 diffIndirect;
- const U32 crntProbeIdx = u_lightIndices[idxOffset];
- if(subgroupAllEqual(crntProbeIdx)
- && subgroupAll(crntProbeIdx != MAX_U32 && u_lightIndices[idxOffset + 1u] == MAX_U32))
- {
- // All subgroups point to the same probe and there is only one probe, do a fast path without blend weight
- GlobalIlluminationProbe probe = u_giProbes[subgroupBroadcastFirst(crntProbeIdx)]; // It should be uniform
- // Sample
- diffIndirect = sampleGlobalIllumination(worldPos, gbuffer.m_normal, probe, u_globalIlluminationTextures,
- u_trilinearClampSampler);
- }
- else
- {
- // Zero or more than one probes, do a slow path that blends them together
- F32 totalBlendWeight = EPSILON;
- diffIndirect = Vec3(0.0);
- Bool laneActive = true;
- ANKI_LOOP while(laneActive)
- {
- U32 uniformIdxOffset = subgroupBroadcastFirst(idxOffset); // Should be uniform
- const Bool laneMatch = uniformIdxOffset == idxOffset;
- if(laneMatch)
- {
- laneActive = false;
- // Loop probes
- ANKI_LOOP while((idx = u_lightIndices[uniformIdxOffset++]) != MAX_U32)
- {
- GlobalIlluminationProbe probe = u_giProbes[idx];
- // Compute blend weight
- const F32 blendWeight =
- computeProbeBlendWeight(worldPos, probe.m_aabbMin, probe.m_aabbMax, probe.m_fadeDistance);
- totalBlendWeight += blendWeight;
- // Sample
- const Vec3 c = sampleGlobalIllumination(worldPos, gbuffer.m_normal, probe,
- u_globalIlluminationTextures, u_trilinearClampSampler);
- diffIndirect += c * blendWeight;
- }
- }
- }
- // Normalize
- diffIndirect /= totalBlendWeight;
- }
- const Vec3 ssgi = textureLod(u_ssgiRt, u_trilinearClampSampler, in_uv, 0.0).rgb;
- diffIndirect += ssgi;
- out_color += diffIndirect * gbuffer.m_diffuse;
- }
- }
- #pragma anki end
|