Gr.cpp 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <Tests/Gr/GrCommon.h>
  7. #include <AnKi/Gr.h>
  8. #include <AnKi/Core/NativeWindow.h>
  9. #include <AnKi/Input/Input.h>
  10. #include <AnKi/Core/ConfigSet.h>
  11. #include <AnKi/Util/HighRezTimer.h>
  12. #include <AnKi/Core/GpuMemoryPools.h>
  13. #include <AnKi/Resource/TransferGpuAllocator.h>
  14. #include <AnKi/ShaderCompiler/Glslang.h>
  15. #include <AnKi/ShaderCompiler/ShaderProgramParser.h>
  16. #include <AnKi/Collision/Aabb.h>
  17. #include <ctime>
  18. namespace anki {
  19. const U WIDTH = 1024;
  20. const U HEIGHT = 768;
  21. static const char* VERT_SRC = R"(
  22. out gl_PerVertex
  23. {
  24. vec4 gl_Position;
  25. };
  26. void main()
  27. {
  28. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  29. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  30. })";
  31. static const char* VERT_QUAD_STRIP_SRC = R"(
  32. out gl_PerVertex
  33. {
  34. vec4 gl_Position;
  35. };
  36. layout(location = 0) out Vec2 out_uv;
  37. void main()
  38. {
  39. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  40. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  41. out_uv = gl_Position.xy / 2.0 + 0.5;
  42. })";
  43. static const char* VERT_UBO_SRC = R"(
  44. out gl_PerVertex
  45. {
  46. vec4 gl_Position;
  47. };
  48. layout(set = 0, binding = 0) uniform u0_
  49. {
  50. vec4 u_color[3];
  51. };
  52. layout(set = 0, binding = 1) uniform u1_
  53. {
  54. vec4 u_rotation2d;
  55. };
  56. layout(location = 0) out vec3 out_color;
  57. void main()
  58. {
  59. out_color = u_color[gl_VertexID].rgb;
  60. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  61. mat2 rot = mat2(
  62. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  63. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  64. gl_Position = vec4(pos, 0.0, 1.0);
  65. })";
  66. static const char* VERT_INP_SRC = R"(
  67. layout(location = 0) in vec3 in_position;
  68. layout(location = 1) in vec3 in_color0;
  69. layout(location = 2) in vec3 in_color1;
  70. out gl_PerVertex
  71. {
  72. vec4 gl_Position;
  73. };
  74. layout(location = 0) out vec3 out_color0;
  75. layout(location = 1) out vec3 out_color1;
  76. void main()
  77. {
  78. gl_Position = vec4(in_position, 1.0);
  79. out_color0 = in_color0;
  80. out_color1 = in_color1;
  81. })";
  82. static const char* VERT_QUAD_SRC = R"(
  83. out gl_PerVertex
  84. {
  85. vec4 gl_Position;
  86. };
  87. layout(location = 0) out vec2 out_uv;
  88. void main()
  89. {
  90. const vec2 POSITIONS[6] =
  91. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  92. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  93. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  94. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  95. })";
  96. static const char* VERT_MRT_SRC = R"(
  97. out gl_PerVertex
  98. {
  99. vec4 gl_Position;
  100. };
  101. layout(location = 0) in vec3 in_pos;
  102. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  103. {
  104. mat4 u_mvp;
  105. };
  106. void main()
  107. {
  108. gl_Position = u_mvp * vec4(in_pos, 1.0);
  109. })";
  110. static const char* FRAG_SRC = R"(layout (location = 0) out vec4 out_color;
  111. void main()
  112. {
  113. out_color = vec4(0.5);
  114. })";
  115. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  116. layout(location = 0) in vec3 in_color;
  117. void main()
  118. {
  119. out_color = vec4(in_color, 1.0);
  120. })";
  121. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  122. layout(location = 0) in vec3 in_color0;
  123. layout(location = 1) in vec3 in_color1;
  124. void main()
  125. {
  126. out_color = vec4(in_color0 + in_color1, 1.0);
  127. })";
  128. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  129. layout(location = 0) in vec2 in_uv;
  130. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  131. void main()
  132. {
  133. out_color = texture(u_tex0, in_uv);
  134. })";
  135. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  136. layout(set = 0, binding = 0) uniform u0_
  137. {
  138. vec4 u_uv;
  139. };
  140. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  141. void main()
  142. {
  143. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  144. })";
  145. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  146. layout (location = 1) out vec4 out_color1;
  147. layout(set = 0, binding = 1, std140) uniform u1_
  148. {
  149. vec4 u_color0;
  150. vec4 u_color1;
  151. };
  152. void main()
  153. {
  154. out_color0 = u_color0;
  155. out_color1 = u_color1;
  156. })";
  157. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  158. layout(location = 0) in vec2 in_uv;
  159. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  160. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  161. void main()
  162. {
  163. vec2 uv = in_uv;
  164. #ifdef ANKI_VK
  165. uv.y = 1.0 - uv.y;
  166. #endif
  167. float factor = uv.x;
  168. vec3 col0 = texture(u_tex0, uv).rgb;
  169. vec3 col1 = texture(u_tex1, uv).rgb;
  170. out_color = vec4(col1 + col0, 1.0);
  171. })";
  172. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  173. layout (location = 0) out vec4 out_color;
  174. layout(location = 0) in vec2 in_uv;
  175. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  176. void main()
  177. {
  178. out_color = textureLod(u_tex0, in_uv, 1.0);
  179. })";
  180. static const char* COMP_WRITE_IMAGE_SRC = R"(
  181. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  182. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  183. layout(set = 1, binding = 0) buffer ss1_
  184. {
  185. vec4 u_color;
  186. };
  187. void main()
  188. {
  189. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  190. })";
  191. static NativeWindow* win = nullptr;
  192. static GrManager* gr = nullptr;
  193. static StagingGpuMemoryPool* stagingMem = nullptr;
  194. static Input* input = nullptr;
  195. #define COMMON_BEGIN() \
  196. stagingMem = new StagingGpuMemoryPool(); \
  197. ConfigSet cfg(allocAligned, nullptr); \
  198. cfg.setWidth(WIDTH); \
  199. cfg.setHeight(HEIGHT); \
  200. cfg.setGrValidation(true); \
  201. cfg.setGrVsync(false); \
  202. cfg.setGrRayTracing(true); \
  203. cfg.setGrDebugMarkers(true); \
  204. win = createWindow(cfg); \
  205. ANKI_TEST_EXPECT_NO_ERR(Input::newInstance(allocAligned, nullptr, win, input)); \
  206. gr = createGrManager(&cfg, win); \
  207. ANKI_TEST_EXPECT_NO_ERR(stagingMem->init(gr, cfg)); \
  208. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  209. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB, gr, gr->getAllocator())); \
  210. while(true) \
  211. {
  212. #define COMMON_END() \
  213. break; \
  214. } \
  215. gr->finish(); \
  216. delete transfAlloc; \
  217. delete stagingMem; \
  218. GrManager::deleteInstance(gr); \
  219. Input::deleteInstance(input); \
  220. NativeWindow::deleteInstance(win); \
  221. win = nullptr; \
  222. gr = nullptr; \
  223. stagingMem = nullptr;
  224. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  225. {
  226. StagingGpuMemoryToken token;
  227. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::UNIFORM, token);
  228. cmdb->bindUniformBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  229. return ptr;
  230. }
  231. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  232. {
  233. StagingGpuMemoryToken token;
  234. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::STORAGE, token);
  235. cmdb->bindStorageBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  236. return ptr;
  237. }
  238. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  239. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  240. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  241. do \
  242. { \
  243. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  244. void* f = handle_.getMappedMemory(); \
  245. memcpy(f, ptr_, size_); \
  246. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, surf_)); \
  247. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  248. } while(0)
  249. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  250. do \
  251. { \
  252. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  253. void* f = handle_.getMappedMemory(); \
  254. memcpy(f, ptr_, size_); \
  255. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, vol_)); \
  256. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  257. } while(0)
  258. const Format DS_FORMAT = Format::D24_UNORM_S8_UINT;
  259. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  260. {
  261. ShaderPtr vert = createShader(vertSrc, ShaderType::VERTEX, gr);
  262. ShaderPtr frag = createShader(fragSrc, ShaderType::FRAGMENT, gr);
  263. ShaderProgramInitInfo inf;
  264. inf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  265. inf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  266. return gr.newShaderProgram(inf);
  267. }
  268. static FramebufferPtr createColorFb(GrManager& gr, TexturePtr tex)
  269. {
  270. TextureViewInitInfo init;
  271. init.m_texture = tex;
  272. TextureViewPtr view = gr.newTextureView(init);
  273. FramebufferInitInfo fbinit;
  274. fbinit.m_colorAttachmentCount = 1;
  275. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{1.0, 0.0, 1.0, 1.0}};
  276. fbinit.m_colorAttachments[0].m_textureView = view;
  277. return gr.newFramebuffer(fbinit);
  278. }
  279. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  280. {
  281. static const Array<F32, 8 * 3> pos = {
  282. {1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  283. static const Array<U16, 6 * 2 * 3> idx = {
  284. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  285. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  286. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::WRITE);
  287. memcpy(mapped, &pos[0], sizeof(pos));
  288. verts->unmap();
  289. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::INDEX, BufferMapAccessBit::WRITE));
  290. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::WRITE);
  291. memcpy(mapped, &idx[0], sizeof(idx));
  292. indices->unmap();
  293. }
  294. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  295. {
  296. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  297. TextureSubresourceInfo());
  298. }
  299. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  300. {
  301. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  302. TextureSubresourceInfo());
  303. }
  304. ANKI_TEST(Gr, GrManager){COMMON_BEGIN() COMMON_END()}
  305. ANKI_TEST(Gr, Shader)
  306. {
  307. COMMON_BEGIN()
  308. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::FRAGMENT, *gr);
  309. COMMON_END()
  310. }
  311. ANKI_TEST(Gr, ShaderProgram)
  312. {
  313. COMMON_BEGIN()
  314. ShaderProgramPtr ppline = createProgram(VERT_SRC, FRAG_SRC, *gr);
  315. COMMON_END()
  316. }
  317. ANKI_TEST(Gr, ClearScreen)
  318. {
  319. COMMON_BEGIN()
  320. ANKI_TEST_LOGI("Expect to see a magenta background");
  321. U iterations = 100;
  322. while(iterations--)
  323. {
  324. HighRezTimer timer;
  325. timer.start();
  326. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  327. FramebufferPtr fb = createColorFb(*gr, presentTex);
  328. CommandBufferInitInfo cinit;
  329. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  330. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  331. presentBarrierA(cmdb, presentTex);
  332. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  333. cmdb->endRenderPass();
  334. presentBarrierB(cmdb, presentTex);
  335. cmdb->flush();
  336. gr->swapBuffers();
  337. timer.stop();
  338. const F32 TICK = 1.0f / 30.0f;
  339. if(timer.getElapsedTime() < TICK)
  340. {
  341. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  342. }
  343. }
  344. COMMON_END()
  345. }
  346. ANKI_TEST(Gr, SimpleDrawcall)
  347. {
  348. COMMON_BEGIN()
  349. ANKI_TEST_LOGI("Expect to see a grey triangle");
  350. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  351. const U ITERATIONS = 200;
  352. for(U i = 0; i < ITERATIONS; ++i)
  353. {
  354. HighRezTimer timer;
  355. timer.start();
  356. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  357. FramebufferPtr fb = createColorFb(*gr, presentTex);
  358. CommandBufferInitInfo cinit;
  359. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  360. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  361. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  362. cmdb->bindShaderProgram(prog);
  363. presentBarrierA(cmdb, presentTex);
  364. cmdb->beginRenderPass(fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  365. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  366. cmdb->endRenderPass();
  367. presentBarrierB(cmdb, presentTex);
  368. cmdb->flush();
  369. gr->swapBuffers();
  370. timer.stop();
  371. const F32 TICK = 1.0f / 30.0f;
  372. if(timer.getElapsedTime() < TICK)
  373. {
  374. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  375. }
  376. }
  377. COMMON_END()
  378. }
  379. ANKI_TEST(Gr, ViewportAndScissor)
  380. {
  381. #if 0
  382. COMMON_BEGIN()
  383. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  384. "the area around the quad");
  385. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  386. srand(time(nullptr));
  387. Array<FramebufferPtr, 4> fb;
  388. for(FramebufferPtr& f : fb)
  389. {
  390. FramebufferInitInfo fbinit;
  391. fbinit.m_colorAttachmentCount = 1;
  392. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  393. f = gr->newFramebuffer(fbinit);
  394. }
  395. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  396. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  397. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  398. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  399. const U ITERATIONS = 400;
  400. const U SCISSOR_MARGIN = 20;
  401. const U RENDER_AREA_MARGIN = 10;
  402. for(U i = 0; i < ITERATIONS; ++i)
  403. {
  404. HighRezTimer timer;
  405. timer.start();
  406. gr->beginFrame();
  407. CommandBufferInitInfo cinit;
  408. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  409. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  410. U idx = (i / 30) % 4;
  411. auto vp = VIEWPORTS[idx];
  412. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  413. cmdb->setScissor(
  414. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  415. cmdb->bindShaderProgram(prog);
  416. cmdb->beginRenderPass(fb[i % 4],
  417. {},
  418. {},
  419. vp[0] + RENDER_AREA_MARGIN,
  420. vp[1] + RENDER_AREA_MARGIN,
  421. vp[2] - RENDER_AREA_MARGIN * 2,
  422. vp[3] - RENDER_AREA_MARGIN * 2);
  423. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  424. cmdb->endRenderPass();
  425. cmdb->flush();
  426. gr->swapBuffers();
  427. timer.stop();
  428. const F32 TICK = 1.0f / 30.0f;
  429. if(timer.getElapsedTime() < TICK)
  430. {
  431. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  432. }
  433. }
  434. COMMON_END()
  435. #endif
  436. }
  437. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  438. {
  439. srand(U32(time(nullptr)));
  440. COMMON_BEGIN()
  441. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  442. "Around that quad is a border that changes color. "
  443. "The quads appear counter-clockwise");
  444. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  445. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *gr);
  446. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  447. const U RT_WIDTH = 32;
  448. const U RT_HEIGHT = 16;
  449. TextureInitInfo init;
  450. init.m_depth = 1;
  451. init.m_format = COL_FORMAT;
  452. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  453. init.m_height = RT_HEIGHT;
  454. init.m_width = RT_WIDTH;
  455. init.m_mipmapCount = 1;
  456. init.m_depth = 1;
  457. init.m_layerCount = 1;
  458. init.m_samples = 1;
  459. init.m_type = TextureType::_2D;
  460. TexturePtr rt = gr->newTexture(init);
  461. TextureViewInitInfo viewInit(rt);
  462. TextureViewPtr texView = gr->newTextureView(viewInit);
  463. Array<FramebufferPtr, 4> fb;
  464. for(FramebufferPtr& f : fb)
  465. {
  466. TextureViewInitInfo viewInf(rt);
  467. TextureViewPtr view = gr->newTextureView(viewInf);
  468. FramebufferInitInfo fbinit;
  469. fbinit.m_colorAttachmentCount = 1;
  470. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  471. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  472. fbinit.m_colorAttachments[0].m_textureView = view;
  473. f = gr->newFramebuffer(fbinit);
  474. }
  475. SamplerInitInfo samplerInit;
  476. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  477. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  478. SamplerPtr sampler = gr->newSampler(samplerInit);
  479. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  480. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  481. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  482. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  483. const U32 ITERATIONS = 400;
  484. const U32 SCISSOR_MARGIN = 2;
  485. const U32 RENDER_AREA_MARGIN = 1;
  486. for(U32 i = 0; i < ITERATIONS; ++i)
  487. {
  488. HighRezTimer timer;
  489. timer.start();
  490. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  491. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  492. if(i == 0)
  493. {
  494. CommandBufferInitInfo cinit;
  495. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  496. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  497. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  498. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  499. TextureSurfaceInfo(0, 0, 0, 0));
  500. cmdb->beginRenderPass(fb[0], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  501. cmdb->endRenderPass();
  502. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  503. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  504. cmdb->flush();
  505. }
  506. CommandBufferInitInfo cinit;
  507. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  508. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  509. // Draw offscreen
  510. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::SAMPLED_FRAGMENT,
  511. TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureSurfaceInfo(0, 0, 0, 0));
  512. auto vp = VIEWPORTS[(i / 30) % 4];
  513. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  514. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2,
  515. vp[3] - SCISSOR_MARGIN * 2);
  516. cmdb->bindShaderProgram(prog);
  517. cmdb->beginRenderPass(fb[i % 4], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {},
  518. vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN, vp[2] - RENDER_AREA_MARGIN * 2,
  519. vp[3] - RENDER_AREA_MARGIN * 2);
  520. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  521. cmdb->endRenderPass();
  522. // Draw onscreen
  523. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  524. cmdb->setScissor(0, 0, win->getWidth(), win->getHeight());
  525. cmdb->bindShaderProgram(blitProg);
  526. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  527. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  528. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  529. presentBarrierA(cmdb, presentTex);
  530. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  531. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  532. cmdb->endRenderPass();
  533. presentBarrierB(cmdb, presentTex);
  534. cmdb->flush();
  535. gr->swapBuffers();
  536. timer.stop();
  537. const F32 TICK = 1.0f / 30.0f;
  538. if(timer.getElapsedTime() < TICK)
  539. {
  540. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  541. }
  542. }
  543. COMMON_END()
  544. }
  545. ANKI_TEST(Gr, Buffer)
  546. {
  547. COMMON_BEGIN()
  548. BufferInitInfo buffInit("a");
  549. buffInit.m_size = 512;
  550. buffInit.m_usage = BufferUsageBit::ALL_UNIFORM;
  551. buffInit.m_mapAccess = BufferMapAccessBit::NONE;
  552. BufferPtr a = gr->newBuffer(buffInit);
  553. buffInit.setName("b");
  554. buffInit.m_size = 64;
  555. buffInit.m_usage = BufferUsageBit::ALL_STORAGE;
  556. buffInit.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  557. BufferPtr b = gr->newBuffer(buffInit);
  558. void* ptr = b->map(0, 64, BufferMapAccessBit::WRITE);
  559. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  560. U8 ptr2[64];
  561. memset(ptr, 0xCC, 64);
  562. memset(ptr2, 0xCC, 64);
  563. b->unmap();
  564. ptr = b->map(0, 64, BufferMapAccessBit::READ);
  565. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  566. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  567. b->unmap();
  568. COMMON_END()
  569. }
  570. ANKI_TEST(Gr, DrawWithUniforms)
  571. {
  572. COMMON_BEGIN()
  573. // A non-uploaded buffer
  574. BufferPtr b =
  575. gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::WRITE));
  576. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::WRITE));
  577. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  578. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  579. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  580. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  581. b->unmap();
  582. // Progm
  583. ShaderProgramPtr prog = createProgram(VERT_UBO_SRC, FRAG_UBO_SRC, *gr);
  584. const U ITERATION_COUNT = 100;
  585. U iterations = ITERATION_COUNT;
  586. while(iterations--)
  587. {
  588. HighRezTimer timer;
  589. timer.start();
  590. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  591. FramebufferPtr fb = createColorFb(*gr, presentTex);
  592. CommandBufferInitInfo cinit;
  593. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  594. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  595. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  596. cmdb->bindShaderProgram(prog);
  597. presentBarrierA(cmdb, presentTex);
  598. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  599. cmdb->bindUniformBuffer(0, 0, b, 0, MAX_PTR_SIZE);
  600. // Uploaded buffer
  601. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  602. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  603. (*rotMat)[0] = cos(angle);
  604. (*rotMat)[1] = -sin(angle);
  605. (*rotMat)[2] = sin(angle);
  606. (*rotMat)[3] = cos(angle);
  607. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  608. cmdb->endRenderPass();
  609. presentBarrierB(cmdb, presentTex);
  610. cmdb->flush();
  611. gr->swapBuffers();
  612. timer.stop();
  613. const F32 TICK = 1.0f / 30.0f;
  614. if(timer.getElapsedTime() < TICK)
  615. {
  616. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  617. }
  618. }
  619. COMMON_END()
  620. }
  621. ANKI_TEST(Gr, DrawWithVertex)
  622. {
  623. COMMON_BEGIN()
  624. // The buffers
  625. struct Vert
  626. {
  627. Vec3 m_pos;
  628. Array<U8, 4> m_color;
  629. };
  630. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  631. BufferPtr b = gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  632. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::WRITE));
  633. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  634. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  635. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  636. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  637. ptr[0].m_color = {{255, 0, 0}};
  638. ptr[1].m_color = {{0, 255, 0}};
  639. ptr[2].m_color = {{0, 0, 255}};
  640. b->unmap();
  641. BufferPtr c = gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  642. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::WRITE));
  643. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  644. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  645. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  646. c->unmap();
  647. // Prog
  648. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *gr);
  649. U iterations = 100;
  650. while(iterations--)
  651. {
  652. HighRezTimer timer;
  653. timer.start();
  654. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  655. FramebufferPtr fb = createColorFb(*gr, presentTex);
  656. CommandBufferInitInfo cinit;
  657. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  658. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  659. cmdb->bindVertexBuffer(0, b, 0, sizeof(Vert));
  660. cmdb->bindVertexBuffer(1, c, 0, sizeof(Vec3));
  661. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  662. cmdb->setVertexAttribute(1, 0, Format::R8G8B8_UNORM, sizeof(Vec3));
  663. cmdb->setVertexAttribute(2, 1, Format::R32G32B32_SFLOAT, 0);
  664. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  665. cmdb->setPolygonOffset(0.0, 0.0);
  666. cmdb->bindShaderProgram(prog);
  667. presentBarrierA(cmdb, presentTex);
  668. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  669. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  670. cmdb->endRenderPass();
  671. presentBarrierB(cmdb, presentTex);
  672. cmdb->flush();
  673. gr->swapBuffers();
  674. timer.stop();
  675. const F32 TICK = 1.0f / 30.0f;
  676. if(timer.getElapsedTime() < TICK)
  677. {
  678. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  679. }
  680. }
  681. COMMON_END()
  682. }
  683. ANKI_TEST(Gr, Sampler)
  684. {
  685. COMMON_BEGIN()
  686. SamplerInitInfo init;
  687. SamplerPtr b = gr->newSampler(init);
  688. COMMON_END()
  689. }
  690. ANKI_TEST(Gr, Texture)
  691. {
  692. COMMON_BEGIN()
  693. TextureInitInfo init;
  694. init.m_depth = 1;
  695. init.m_format = Format::R8G8B8_UNORM;
  696. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT;
  697. init.m_height = 4;
  698. init.m_width = 4;
  699. init.m_mipmapCount = 2;
  700. init.m_depth = 1;
  701. init.m_layerCount = 1;
  702. init.m_samples = 1;
  703. init.m_type = TextureType::_2D;
  704. TexturePtr b = gr->newTexture(init);
  705. TextureViewInitInfo view(b);
  706. TextureViewPtr v = gr->newTextureView(view);
  707. COMMON_END()
  708. }
  709. ANKI_TEST(Gr, DrawWithTexture)
  710. {
  711. COMMON_BEGIN()
  712. //
  713. // Create sampler
  714. //
  715. SamplerInitInfo samplerInit;
  716. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  717. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  718. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  719. SamplerPtr sampler = gr->newSampler(samplerInit);
  720. //
  721. // Create texture A
  722. //
  723. TextureInitInfo init;
  724. init.m_depth = 1;
  725. init.m_format = Format::R8G8B8_UNORM;
  726. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  727. init.m_height = 2;
  728. init.m_width = 2;
  729. init.m_mipmapCount = 2;
  730. init.m_samples = 1;
  731. init.m_depth = 1;
  732. init.m_layerCount = 1;
  733. init.m_type = TextureType::_2D;
  734. TexturePtr a = gr->newTexture(init);
  735. TextureViewPtr aView = gr->newTextureView(TextureViewInitInfo(a));
  736. //
  737. // Create texture B
  738. //
  739. init.m_width = 4;
  740. init.m_height = 4;
  741. init.m_mipmapCount = 3;
  742. init.m_usage =
  743. TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::GENERATE_MIPMAPS;
  744. TexturePtr b = gr->newTexture(init);
  745. TextureViewPtr bView = gr->newTextureView(TextureViewInitInfo(b));
  746. //
  747. // Upload all textures
  748. //
  749. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  750. Array<U8, 3> mip1 = {{128, 128, 128}};
  751. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0,
  752. 255, 255, 255, 255, 255, 128, 0, 0, 0, 128, 0, 0, 0, 128, 128, 128,
  753. 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  754. CommandBufferInitInfo cmdbinit;
  755. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  756. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  757. // Set barriers
  758. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  759. TextureSurfaceInfo(0, 0, 0, 0));
  760. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  761. TextureSurfaceInfo(1, 0, 0, 0));
  762. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  763. TextureSurfaceInfo(0, 0, 0, 0));
  764. TransferGpuAllocatorHandle handle0, handle1, handle2;
  765. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  766. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  767. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  768. // Gen mips
  769. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::GENERATE_MIPMAPS,
  770. TextureSurfaceInfo(0, 0, 0, 0));
  771. cmdb->generateMipmaps2d(gr->newTextureView(TextureViewInitInfo(b)));
  772. // Set barriers
  773. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  774. TextureSurfaceInfo(0, 0, 0, 0));
  775. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  776. TextureSurfaceInfo(1, 0, 0, 0));
  777. for(U32 i = 0; i < 3; ++i)
  778. {
  779. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::GENERATE_MIPMAPS, TextureUsageBit::SAMPLED_FRAGMENT,
  780. TextureSurfaceInfo(i, 0, 0, 0));
  781. }
  782. FencePtr fence;
  783. cmdb->flush({}, &fence);
  784. transfAlloc->release(handle0, fence);
  785. transfAlloc->release(handle1, fence);
  786. transfAlloc->release(handle2, fence);
  787. //
  788. // Create prog
  789. //
  790. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  791. layout(location = 0) in vec2 in_uv;
  792. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  793. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  794. layout(push_constant) uniform b_pc
  795. {
  796. Vec4 u_viewport;
  797. };
  798. void main()
  799. {
  800. if(gl_FragCoord.x < u_viewport.x / 2.0)
  801. {
  802. if(gl_FragCoord.y < u_viewport.y / 2.0)
  803. {
  804. vec2 uv = in_uv * 2.0;
  805. out_color = textureLod(u_tex0, uv, 0.0);
  806. }
  807. else
  808. {
  809. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  810. out_color = textureLod(u_tex0, uv, 1.0);
  811. }
  812. }
  813. else
  814. {
  815. if(gl_FragCoord.y < u_viewport.y / 2.0)
  816. {
  817. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  818. out_color = textureLod(u_tex1, uv, 0.0);
  819. }
  820. else
  821. {
  822. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  823. out_color = textureLod(u_tex1, uv, 1.0);
  824. }
  825. }
  826. })";
  827. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *gr);
  828. //
  829. // Draw
  830. //
  831. const U ITERATION_COUNT = 200;
  832. U iterations = ITERATION_COUNT;
  833. while(iterations--)
  834. {
  835. HighRezTimer timer;
  836. timer.start();
  837. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  838. FramebufferPtr fb = createColorFb(*gr, presentTex);
  839. CommandBufferInitInfo cinit;
  840. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  841. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  842. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  843. cmdb->bindShaderProgram(prog);
  844. presentBarrierA(cmdb, presentTex);
  845. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  846. Vec4 pc(F32(win->getWidth()), F32(win->getHeight()), 0.0f, 0.0f);
  847. cmdb->setPushConstants(&pc, sizeof(pc));
  848. cmdb->bindTextureAndSampler(0, 0, aView, sampler);
  849. cmdb->bindTextureAndSampler(0, 1, bView, sampler);
  850. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  851. cmdb->endRenderPass();
  852. presentBarrierB(cmdb, presentTex);
  853. cmdb->flush();
  854. gr->swapBuffers();
  855. timer.stop();
  856. const F32 TICK = 1.0f / 30.0f;
  857. if(timer.getElapsedTime() < TICK)
  858. {
  859. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  860. }
  861. }
  862. COMMON_END()
  863. }
  864. static void drawOffscreenDrawcalls([[maybe_unused]] GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb,
  865. U32 viewPortSize, BufferPtr indexBuff, BufferPtr vertBuff)
  866. {
  867. static F32 ang = -2.5f;
  868. ang += toRad(2.5f);
  869. Mat4 viewMat(Vec4(0.0, 0.0, 5.0, 1.0), Mat3::getIdentity(), 1.0f);
  870. viewMat.invert();
  871. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  872. Mat4 modelMat(Vec4(-0.5, -0.5, 0.0, 1.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), 1.0f);
  873. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  874. *mvp = projMat * viewMat * modelMat;
  875. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  876. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  877. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  878. cmdb->bindVertexBuffer(0, vertBuff, 0, sizeof(Vec3));
  879. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  880. cmdb->bindShaderProgram(prog);
  881. cmdb->bindIndexBuffer(indexBuff, 0, IndexType::U16);
  882. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  883. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  884. // 2nd draw
  885. modelMat = Mat4(Vec4(0.5, 0.5, 0.0, 1.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), 1.0f);
  886. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  887. *mvp = projMat * viewMat * modelMat;
  888. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  889. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  890. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  891. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  892. }
  893. static void drawOffscreen(GrManager& gr, Bool useSecondLevel)
  894. {
  895. //
  896. // Create textures
  897. //
  898. SamplerInitInfo samplerInit;
  899. samplerInit.m_minMagFilter = SamplingFilter::LINEAR;
  900. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  901. SamplerPtr sampler = gr.newSampler(samplerInit);
  902. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  903. const U TEX_SIZE = 256;
  904. TextureInitInfo init;
  905. init.m_format = COL_FORMAT;
  906. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  907. init.m_height = TEX_SIZE;
  908. init.m_width = TEX_SIZE;
  909. init.m_type = TextureType::_2D;
  910. TexturePtr col0 = gr.newTexture(init);
  911. TexturePtr col1 = gr.newTexture(init);
  912. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0));
  913. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1));
  914. init.m_format = DS_FORMAT;
  915. TexturePtr dp = gr.newTexture(init);
  916. //
  917. // Create FB
  918. //
  919. FramebufferInitInfo fbinit;
  920. fbinit.m_colorAttachmentCount = 2;
  921. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0));
  922. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  923. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1));
  924. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  925. TextureViewInitInfo viewInit(dp);
  926. viewInit.m_depthStencilAspect = DepthStencilAspectBit::DEPTH;
  927. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  928. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  929. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  930. //
  931. // Create buffs
  932. //
  933. BufferPtr verts, indices;
  934. createCube(gr, verts, indices);
  935. //
  936. // Create progs
  937. //
  938. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  939. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  940. //
  941. // Draw
  942. //
  943. const U ITERATION_COUNT = 200;
  944. U iterations = ITERATION_COUNT;
  945. while(iterations--)
  946. {
  947. HighRezTimer timer;
  948. timer.start();
  949. CommandBufferInitInfo cinit;
  950. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  951. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  952. cmdb->setPolygonOffset(0.0, 0.0);
  953. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  954. TextureSurfaceInfo(0, 0, 0, 0));
  955. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  956. TextureSurfaceInfo(0, 0, 0, 0));
  957. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::NONE, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  958. TextureSurfaceInfo(0, 0, 0, 0));
  959. cmdb->beginRenderPass(
  960. fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}},
  961. TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT);
  962. if(!useSecondLevel)
  963. {
  964. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  965. }
  966. else
  967. {
  968. CommandBufferInitInfo cinit;
  969. cinit.m_flags = CommandBufferFlag::SECOND_LEVEL | CommandBufferFlag::GENERAL_WORK;
  970. cinit.m_framebuffer = fb;
  971. CommandBufferPtr cmdb2 = gr.newCommandBuffer(cinit);
  972. drawOffscreenDrawcalls(gr, prog, cmdb2, TEX_SIZE, indices, verts);
  973. cmdb2->flush();
  974. cmdb->pushSecondLevelCommandBuffer(cmdb2);
  975. }
  976. cmdb->endRenderPass();
  977. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  978. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  979. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  980. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  981. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  982. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  983. // Draw quad
  984. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  985. FramebufferPtr dfb = createColorFb(gr, presentTex);
  986. presentBarrierA(cmdb, presentTex);
  987. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  988. cmdb->bindShaderProgram(resolveProg);
  989. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  990. cmdb->bindTextureAndSampler(0, 0, col0View, sampler);
  991. cmdb->bindTextureAndSampler(0, 2, col1View, sampler);
  992. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  993. cmdb->endRenderPass();
  994. presentBarrierB(cmdb, presentTex);
  995. cmdb->flush();
  996. // End
  997. gr.swapBuffers();
  998. timer.stop();
  999. const F32 TICK = 1.0f / 30.0f;
  1000. if(timer.getElapsedTime() < TICK)
  1001. {
  1002. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1003. }
  1004. }
  1005. }
  1006. ANKI_TEST(Gr, DrawOffscreen)
  1007. {
  1008. COMMON_BEGIN()
  1009. drawOffscreen(*gr, false);
  1010. COMMON_END()
  1011. }
  1012. ANKI_TEST(Gr, DrawWithSecondLevel)
  1013. {
  1014. COMMON_BEGIN()
  1015. drawOffscreen(*gr, true);
  1016. COMMON_END()
  1017. }
  1018. ANKI_TEST(Gr, ImageLoadStore)
  1019. {
  1020. COMMON_BEGIN()
  1021. SamplerInitInfo samplerInit;
  1022. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1023. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1024. SamplerPtr sampler = gr->newSampler(samplerInit);
  1025. TextureInitInfo init;
  1026. init.m_width = init.m_height = 4;
  1027. init.m_mipmapCount = 2;
  1028. init.m_usage =
  1029. TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED | TextureUsageBit::IMAGE_COMPUTE_WRITE;
  1030. init.m_type = TextureType::_2D;
  1031. init.m_format = Format::R8G8B8A8_UNORM;
  1032. TexturePtr tex = gr->newTexture(init);
  1033. TextureViewInitInfo viewInit(tex);
  1034. viewInit.m_firstMipmap = 1;
  1035. viewInit.m_mipmapCount = 1;
  1036. TextureViewPtr view = gr->newTextureView(viewInit);
  1037. // Prog
  1038. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *gr);
  1039. // Create shader & compute prog
  1040. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::COMPUTE, *gr);
  1041. ShaderProgramInitInfo sprogInit;
  1042. sprogInit.m_computeShader = shader;
  1043. ShaderProgramPtr compProg = gr->newShaderProgram(sprogInit);
  1044. // Write texture data
  1045. CommandBufferInitInfo cmdbinit;
  1046. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1047. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1048. TextureSurfaceInfo(0, 0, 0, 0));
  1049. ClearValue clear;
  1050. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1051. TextureViewInitInfo viewInit2(tex, TextureSurfaceInfo(0, 0, 0, 0));
  1052. cmdb->clearTextureView(gr->newTextureView(viewInit2), clear);
  1053. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1054. TextureSurfaceInfo(0, 0, 0, 0));
  1055. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1056. TextureSurfaceInfo(1, 0, 0, 0));
  1057. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1058. TextureViewInitInfo viewInit3(tex, TextureSurfaceInfo(1, 0, 0, 0));
  1059. cmdb->clearTextureView(gr->newTextureView(viewInit3), clear);
  1060. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1061. TextureSurfaceInfo(1, 0, 0, 0));
  1062. cmdb->flush();
  1063. const U ITERATION_COUNT = 100;
  1064. U iterations = ITERATION_COUNT;
  1065. while(iterations--)
  1066. {
  1067. HighRezTimer timer;
  1068. timer.start();
  1069. CommandBufferInitInfo cinit;
  1070. cinit.m_flags =
  1071. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1072. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1073. // Write image
  1074. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1075. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1076. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1077. TextureSurfaceInfo(1, 0, 0, 0));
  1078. cmdb->bindShaderProgram(compProg);
  1079. cmdb->bindImage(0, 0, view);
  1080. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1081. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::SAMPLED_FRAGMENT,
  1082. TextureSurfaceInfo(1, 0, 0, 0));
  1083. // Present image
  1084. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1085. cmdb->bindShaderProgram(prog);
  1086. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1087. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1088. presentBarrierA(cmdb, presentTex);
  1089. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1090. cmdb->bindTextureAndSampler(0, 0, gr->newTextureView(TextureViewInitInfo(tex)), sampler);
  1091. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1092. cmdb->endRenderPass();
  1093. presentBarrierB(cmdb, presentTex);
  1094. cmdb->flush();
  1095. // End
  1096. gr->swapBuffers();
  1097. timer.stop();
  1098. const F32 TICK = 1.0f / 30.0f;
  1099. if(timer.getElapsedTime() < TICK)
  1100. {
  1101. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1102. }
  1103. }
  1104. COMMON_END()
  1105. }
  1106. ANKI_TEST(Gr, 3DTextures)
  1107. {
  1108. COMMON_BEGIN()
  1109. SamplerInitInfo samplerInit;
  1110. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1111. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1112. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  1113. SamplerPtr sampler = gr->newSampler(samplerInit);
  1114. //
  1115. // Create texture A
  1116. //
  1117. TextureInitInfo init;
  1118. init.m_depth = 1;
  1119. init.m_format = Format::R8G8B8A8_UNORM;
  1120. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  1121. init.m_height = 2;
  1122. init.m_width = 2;
  1123. init.m_mipmapCount = 2;
  1124. init.m_samples = 1;
  1125. init.m_depth = 2;
  1126. init.m_layerCount = 1;
  1127. init.m_type = TextureType::_3D;
  1128. TexturePtr a = gr->newTexture(init);
  1129. //
  1130. // Upload all textures
  1131. //
  1132. Array<U8, 2 * 2 * 2 * 4> mip0 = {{255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0,
  1133. 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1134. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1135. CommandBufferInitInfo cmdbinit;
  1136. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1137. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1138. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1139. TextureVolumeInfo(0));
  1140. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1141. TextureVolumeInfo(1));
  1142. TransferGpuAllocatorHandle handle0, handle1;
  1143. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1144. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1145. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1146. TextureVolumeInfo(0));
  1147. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1148. TextureVolumeInfo(1));
  1149. FencePtr fence;
  1150. cmdb->flush({}, &fence);
  1151. transfAlloc->release(handle0, fence);
  1152. transfAlloc->release(handle1, fence);
  1153. //
  1154. // Rest
  1155. //
  1156. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *gr);
  1157. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0),
  1158. Vec4(0, 0, 1, 0), Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0),
  1159. Vec4(0, 0, 0, 1)}};
  1160. const U ITERATION_COUNT = 100;
  1161. U iterations = ITERATION_COUNT;
  1162. while(iterations--)
  1163. {
  1164. HighRezTimer timer;
  1165. timer.start();
  1166. CommandBufferInitInfo cinit;
  1167. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1168. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1169. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1170. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1171. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1172. presentBarrierA(cmdb, presentTex);
  1173. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1174. cmdb->bindShaderProgram(prog);
  1175. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1176. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1177. *uv = TEX_COORDS_LOD[idx];
  1178. cmdb->bindTextureAndSampler(0, 1, gr->newTextureView(TextureViewInitInfo(a)), sampler);
  1179. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1180. cmdb->endRenderPass();
  1181. presentBarrierB(cmdb, presentTex);
  1182. cmdb->flush();
  1183. // End
  1184. gr->swapBuffers();
  1185. timer.stop();
  1186. const F32 TICK = 1.0f / 15.0f;
  1187. if(timer.getElapsedTime() < TICK)
  1188. {
  1189. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1190. }
  1191. }
  1192. COMMON_END()
  1193. }
  1194. static RenderTargetDescription newRTDescr(CString name)
  1195. {
  1196. RenderTargetDescription texInf(name);
  1197. texInf.m_width = texInf.m_height = 16;
  1198. texInf.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1199. texInf.m_format = Format::R8G8B8A8_UNORM;
  1200. texInf.bake();
  1201. return texInf;
  1202. }
  1203. ANKI_TEST(Gr, RenderGraph)
  1204. {
  1205. COMMON_BEGIN()
  1206. StackAllocator<U8> alloc(allocAligned, nullptr, 2_MB);
  1207. RenderGraphDescription descr(alloc);
  1208. RenderGraphPtr rgraph = gr->newRenderGraph();
  1209. const U GI_MIP_COUNT = 4;
  1210. TextureInitInfo texI("dummy");
  1211. texI.m_width = texI.m_height = 16;
  1212. texI.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1213. texI.m_format = Format::R8G8B8A8_UNORM;
  1214. TexturePtr dummyTex = gr->newTexture(texI);
  1215. // SM
  1216. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1217. {
  1218. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1219. pass.newDependency({smScratchRt, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT});
  1220. }
  1221. // SM to exponential SM
  1222. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1223. {
  1224. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1225. pass.newDependency({smScratchRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1226. pass.newDependency({smExpRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1227. }
  1228. // GI gbuff
  1229. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1230. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1231. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1232. {
  1233. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1234. pass.newDependency({giGbuffNormRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1235. pass.newDependency({giGbuffDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1236. pass.newDependency({giGbuffDiffRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1237. }
  1238. // GI light
  1239. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1240. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1241. {
  1242. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  1243. GraphicsRenderPassDescription& pass =
  1244. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI lp%u", faceIdx).toCString());
  1245. pass.newDependency({giGiLightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, subresource});
  1246. pass.newDependency({giGbuffNormRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1247. pass.newDependency({giGbuffDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1248. pass.newDependency({giGbuffDiffRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1249. }
  1250. // GI light mips
  1251. {
  1252. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1253. {
  1254. GraphicsRenderPassDescription& pass =
  1255. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI mip%u", faceIdx).toCString());
  1256. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1257. {
  1258. TextureSurfaceInfo surf(mip, 0, faceIdx, 0);
  1259. pass.newDependency({giGiLightRt, TextureUsageBit::GENERATE_MIPMAPS, surf});
  1260. }
  1261. }
  1262. }
  1263. // Gbuffer
  1264. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1265. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1266. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1267. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1268. {
  1269. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1270. pass.newDependency({gbuffRt0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1271. pass.newDependency({gbuffRt1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1272. pass.newDependency({gbuffRt2, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1273. pass.newDependency({gbuffDepth, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1274. }
  1275. // Half depth
  1276. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1277. {
  1278. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1279. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1280. pass.newDependency({halfDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1281. }
  1282. // Quarter depth
  1283. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1284. {
  1285. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1286. pass.newDependency({quarterDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1287. pass.newDependency({halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1288. }
  1289. // SSAO
  1290. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1291. {
  1292. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1293. pass.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1294. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1295. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1296. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1297. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1298. pass2.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1299. pass2.newDependency({ssaoVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1300. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1301. pass3.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1302. pass3.newDependency({ssaoVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1303. }
  1304. // Volumetric
  1305. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1306. {
  1307. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1308. pass.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1309. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1310. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1311. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1312. pass2.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1313. pass2.newDependency({volVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1314. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1315. pass3.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1316. pass3.newDependency({volVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1317. }
  1318. // Forward shading
  1319. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1320. {
  1321. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1322. pass.newDependency({fsRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1323. pass.newDependency(
  1324. {halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::FRAMEBUFFER_ATTACHMENT_READ});
  1325. pass.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1326. }
  1327. // Light shading
  1328. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1329. {
  1330. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1331. pass.newDependency({lightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1332. pass.newDependency({gbuffRt0, TextureUsageBit::SAMPLED_FRAGMENT});
  1333. pass.newDependency({gbuffRt1, TextureUsageBit::SAMPLED_FRAGMENT});
  1334. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1335. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1336. pass.newDependency({smExpRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1337. pass.newDependency({giGiLightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1338. pass.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1339. pass.newDependency({fsRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1340. }
  1341. // TAA
  1342. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1343. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1344. {
  1345. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1346. pass.newDependency({lightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1347. pass.newDependency({taaRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1348. pass.newDependency({taaHistoryRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1349. }
  1350. rgraph->compileNewGraph(descr, alloc);
  1351. COMMON_END()
  1352. }
  1353. /// Test workarounds for some unsupported formats
  1354. ANKI_TEST(Gr, VkWorkarounds)
  1355. {
  1356. COMMON_BEGIN()
  1357. // Create program
  1358. static const char* COMP_SRC = R"(
  1359. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1360. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1361. layout(set = 0, binding = 1) buffer s_
  1362. {
  1363. uvec4 u_result;
  1364. };
  1365. shared uint g_wrong;
  1366. void main()
  1367. {
  1368. g_wrong = 0;
  1369. memoryBarrierShared();
  1370. barrier();
  1371. int lod = -1;
  1372. uint idx;
  1373. if(gl_LocalInvocationID.z == 0)
  1374. {
  1375. // First mip
  1376. lod = 0;
  1377. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1378. }
  1379. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1380. {
  1381. lod = 1;
  1382. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1383. }
  1384. if(lod != -1)
  1385. {
  1386. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1387. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1388. {
  1389. atomicAdd(g_wrong, 1);
  1390. }
  1391. }
  1392. memoryBarrierShared();
  1393. barrier();
  1394. if(g_wrong != 0)
  1395. {
  1396. u_result = uvec4(1);
  1397. }
  1398. else
  1399. {
  1400. u_result = uvec4(2);
  1401. }
  1402. })";
  1403. ShaderPtr comp = createShader(COMP_SRC, ShaderType::COMPUTE, *gr);
  1404. ShaderProgramInitInfo sinf;
  1405. sinf.m_computeShader = comp;
  1406. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1407. // Create the texture
  1408. TextureInitInfo texInit;
  1409. texInit.m_width = texInit.m_height = 8;
  1410. texInit.m_format = Format::R8G8B8_UINT;
  1411. texInit.m_type = TextureType::_2D;
  1412. texInit.m_usage = TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED;
  1413. texInit.m_mipmapCount = 2;
  1414. TexturePtr tex = gr->newTexture(texInit);
  1415. TextureViewPtr texView = gr->newTextureView(TextureViewInitInfo(tex));
  1416. SamplerInitInfo samplerInit;
  1417. SamplerPtr sampler = gr->newSampler(samplerInit);
  1418. // Create the buffer to copy to the texture
  1419. BufferPtr uploadBuff = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3,
  1420. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1421. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::WRITE));
  1422. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1423. {
  1424. data[0] = U8(i);
  1425. data[1] = U8(i + 1);
  1426. data[2] = U8(i + 2);
  1427. data += 3;
  1428. }
  1429. uploadBuff->unmap();
  1430. BufferPtr uploadBuff2 = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3,
  1431. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1432. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::WRITE));
  1433. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1434. {
  1435. data[0] = U8(i);
  1436. data[1] = U8(i + 1);
  1437. data[2] = U8(i + 2);
  1438. data += 3;
  1439. }
  1440. uploadBuff2->unmap();
  1441. // Create the result buffer
  1442. BufferPtr resultBuff =
  1443. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1444. // Upload data and test them
  1445. CommandBufferInitInfo cmdbInit;
  1446. cmdbInit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1447. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbInit);
  1448. TextureSubresourceInfo subresource;
  1449. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1450. cmdb->setTextureBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION, subresource);
  1451. cmdb->copyBufferToTextureView(uploadBuff, 0, uploadBuff->getSize(),
  1452. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(0, 0, 0, 0))));
  1453. cmdb->copyBufferToTextureView(uploadBuff2, 0, uploadBuff2->getSize(),
  1454. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(1, 0, 0, 0))));
  1455. cmdb->setTextureBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE, subresource);
  1456. cmdb->bindShaderProgram(prog);
  1457. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  1458. cmdb->bindStorageBuffer(0, 1, resultBuff, 0, resultBuff->getSize());
  1459. cmdb->dispatchCompute(1, 1, 1);
  1460. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferUsageBit::STORAGE_COMPUTE_WRITE, 0,
  1461. resultBuff->getSize());
  1462. cmdb->flush();
  1463. gr->finish();
  1464. // Get the result
  1465. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1466. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1467. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1468. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1469. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1470. resultBuff->unmap();
  1471. COMMON_END()
  1472. }
  1473. ANKI_TEST(Gr, SpecConsts)
  1474. {
  1475. COMMON_BEGIN()
  1476. static const char* VERT_SRC = R"(
  1477. layout(constant_id = 0) const int const0 = 0;
  1478. layout(constant_id = 2) const float const1 = 0.0;
  1479. out gl_PerVertex
  1480. {
  1481. vec4 gl_Position;
  1482. };
  1483. layout(location = 0) flat out int out_const0;
  1484. layout(location = 1) flat out float out_const1;
  1485. void main()
  1486. {
  1487. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1488. vec2 pos = uv * 2.0 - 1.0;
  1489. gl_Position = vec4(pos, 0.0, 1.0);
  1490. out_const0 = const0;
  1491. out_const1 = const1;
  1492. }
  1493. )";
  1494. static const char* FRAG_SRC = R"(
  1495. layout(constant_id = 0) const int const0 = 0;
  1496. layout(constant_id = 1) const float const1 = 0.0;
  1497. layout(location = 0) flat in int in_const0;
  1498. layout(location = 1) flat in float in_const1;
  1499. layout(location = 0) out vec4 out_color;
  1500. layout(set = 0, binding = 0) buffer s_
  1501. {
  1502. uvec4 u_result;
  1503. };
  1504. void main()
  1505. {
  1506. out_color = vec4(1.0);
  1507. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1508. {
  1509. if(in_const0 != 2147483647 || in_const1 != 1234.5678 || const0 != -2147483647 || const1 != -1.0)
  1510. {
  1511. u_result = uvec4(1u);
  1512. }
  1513. else
  1514. {
  1515. u_result = uvec4(2u);
  1516. }
  1517. }
  1518. }
  1519. )";
  1520. ShaderPtr vert =
  1521. createShader(VERT_SRC, ShaderType::VERTEX, *gr,
  1522. Array<ShaderSpecializationConstValue, 3>{{ShaderSpecializationConstValue(2147483647),
  1523. ShaderSpecializationConstValue(-1.0f),
  1524. ShaderSpecializationConstValue(1234.5678f)}});
  1525. ShaderPtr frag = createShader(FRAG_SRC, ShaderType::FRAGMENT, *gr,
  1526. Array<ShaderSpecializationConstValue, 2>{{ShaderSpecializationConstValue(-2147483647),
  1527. ShaderSpecializationConstValue(-1.0f)}});
  1528. ShaderProgramInitInfo sinf;
  1529. sinf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  1530. sinf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  1531. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1532. // Create the result buffer
  1533. BufferPtr resultBuff =
  1534. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1535. // Draw
  1536. CommandBufferInitInfo cinit;
  1537. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1538. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1539. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1540. cmdb->bindShaderProgram(prog);
  1541. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1542. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1543. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1544. presentBarrierA(cmdb, presentTex);
  1545. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1546. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1547. cmdb->endRenderPass();
  1548. presentBarrierB(cmdb, presentTex);
  1549. cmdb->flush();
  1550. gr->swapBuffers();
  1551. gr->finish();
  1552. // Get the result
  1553. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1554. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1555. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1556. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1557. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1558. resultBuff->unmap();
  1559. COMMON_END()
  1560. }
  1561. ANKI_TEST(Gr, PushConsts)
  1562. {
  1563. COMMON_BEGIN()
  1564. static const char* VERT_SRC = R"(
  1565. struct PC
  1566. {
  1567. vec4 color;
  1568. ivec4 icolor;
  1569. vec4 arr[2];
  1570. mat4 mat;
  1571. };
  1572. layout(push_constant, std140) uniform pc_
  1573. {
  1574. PC regs;
  1575. };
  1576. out gl_PerVertex
  1577. {
  1578. vec4 gl_Position;
  1579. };
  1580. layout(location = 0) out vec4 out_color;
  1581. void main()
  1582. {
  1583. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1584. vec2 pos = uv * 2.0 - 1.0;
  1585. gl_Position = vec4(pos, 0.0, 1.0);
  1586. out_color = regs.color;
  1587. }
  1588. )";
  1589. static const char* FRAG_SRC = R"(
  1590. struct PC
  1591. {
  1592. vec4 color;
  1593. ivec4 icolor;
  1594. vec4 arr[2];
  1595. mat4 mat;
  1596. };
  1597. layout(push_constant, std140) uniform pc_
  1598. {
  1599. PC regs;
  1600. };
  1601. layout(location = 0) in vec4 in_color;
  1602. layout(location = 0) out vec4 out_color;
  1603. layout(set = 0, binding = 0) buffer s_
  1604. {
  1605. uvec4 u_result;
  1606. };
  1607. void main()
  1608. {
  1609. out_color = vec4(1.0);
  1610. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1611. {
  1612. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1613. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1614. || regs.mat[1][0] != 0.5)
  1615. {
  1616. u_result = uvec4(1u);
  1617. }
  1618. else
  1619. {
  1620. u_result = uvec4(2u);
  1621. }
  1622. }
  1623. }
  1624. )";
  1625. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  1626. // Create the result buffer
  1627. BufferPtr resultBuff = gr->newBuffer(BufferInitInfo(
  1628. sizeof(UVec4), BufferUsageBit::ALL_STORAGE | BufferUsageBit::TRANSFER_DESTINATION, BufferMapAccessBit::READ));
  1629. // Draw
  1630. CommandBufferInitInfo cinit;
  1631. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1632. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1633. cmdb->fillBuffer(resultBuff, 0, resultBuff->getSize(), 0);
  1634. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::STORAGE_FRAGMENT_WRITE, 0,
  1635. resultBuff->getSize());
  1636. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1637. cmdb->bindShaderProgram(prog);
  1638. struct PushConstants
  1639. {
  1640. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1641. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1642. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1643. Mat4 m_mat = Mat4(0.0f);
  1644. } pc;
  1645. pc.m_mat(0, 1) = 0.5f;
  1646. cmdb->setPushConstants(&pc, sizeof(pc));
  1647. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1648. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1649. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1650. presentBarrierA(cmdb, presentTex);
  1651. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1652. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1653. cmdb->endRenderPass();
  1654. presentBarrierB(cmdb, presentTex);
  1655. cmdb->flush();
  1656. gr->swapBuffers();
  1657. gr->finish();
  1658. // Get the result
  1659. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1660. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1661. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1662. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1663. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1664. resultBuff->unmap();
  1665. COMMON_END()
  1666. }
  1667. ANKI_TEST(Gr, BindingWithArray)
  1668. {
  1669. COMMON_BEGIN()
  1670. // Create result buffer
  1671. BufferPtr resBuff =
  1672. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1673. Array<BufferPtr, 4> uniformBuffers;
  1674. F32 count = 1.0f;
  1675. for(BufferPtr& ptr : uniformBuffers)
  1676. {
  1677. ptr = gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::WRITE));
  1678. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::WRITE));
  1679. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1680. count += 4.0f;
  1681. ptr->unmap();
  1682. }
  1683. // Create program
  1684. static const char* PROG_SRC = R"(
  1685. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1686. layout(set = 0, binding = 0) uniform u_
  1687. {
  1688. vec4 m_vec;
  1689. } u_ubos[4];
  1690. layout(set = 0, binding = 1) writeonly buffer ss_
  1691. {
  1692. vec4 u_result;
  1693. };
  1694. void main()
  1695. {
  1696. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1697. })";
  1698. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1699. ShaderProgramInitInfo sprogInit;
  1700. sprogInit.m_computeShader = shader;
  1701. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1702. // Run
  1703. CommandBufferInitInfo cinit;
  1704. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1705. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1706. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1707. {
  1708. cmdb->bindUniformBuffer(0, 0, uniformBuffers[i], 0, MAX_PTR_SIZE, i);
  1709. }
  1710. cmdb->bindStorageBuffer(0, 1, resBuff, 0, MAX_PTR_SIZE);
  1711. cmdb->bindShaderProgram(prog);
  1712. cmdb->dispatchCompute(1, 1, 1);
  1713. cmdb->flush();
  1714. gr->finish();
  1715. // Check result
  1716. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::READ));
  1717. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1718. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1719. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1720. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1721. resBuff->unmap();
  1722. COMMON_END();
  1723. }
  1724. ANKI_TEST(Gr, Bindless)
  1725. {
  1726. #if 0
  1727. COMMON_BEGIN()
  1728. // Create texture A
  1729. TextureInitInfo texInit;
  1730. texInit.m_width = 1;
  1731. texInit.m_height = 1;
  1732. texInit.m_format = Format::R32G32B32A32_UINT;
  1733. texInit.m_usage = TextureUsageBit::ALL_IMAGE | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::ALL_SAMPLED;
  1734. texInit.m_mipmapCount = 1;
  1735. TexturePtr texA = gr->newTexture(texInit);
  1736. // Create texture B
  1737. TexturePtr texB = gr->newTexture(texInit);
  1738. // Create texture C
  1739. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1740. TexturePtr texC = gr->newTexture(texInit);
  1741. // Create sampler
  1742. SamplerInitInfo samplerInit;
  1743. SamplerPtr sampler = gr->newSampler(samplerInit);
  1744. // Create views
  1745. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1746. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1747. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1748. // Create result buffer
  1749. BufferPtr resBuff =
  1750. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1751. // Create program A
  1752. static const char* PROG_SRC = R"(
  1753. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1754. ANKI_BINDLESS_SET(0u);
  1755. layout(set = 1, binding = 0) writeonly buffer ss_
  1756. {
  1757. uvec4 u_result;
  1758. };
  1759. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1760. layout(push_constant) uniform pc_
  1761. {
  1762. uvec4 u_texIndices;
  1763. };
  1764. void main()
  1765. {
  1766. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1767. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1768. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1769. u_result = val0 + val1 + uvec4(val2);
  1770. })";
  1771. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1772. ShaderProgramInitInfo sprogInit;
  1773. sprogInit.m_computeShader = shader;
  1774. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1775. // Run
  1776. CommandBufferInitInfo cinit;
  1777. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1778. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1779. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1780. TextureSurfaceInfo());
  1781. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1782. TextureSurfaceInfo());
  1783. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1784. TextureSurfaceInfo());
  1785. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1786. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1787. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1788. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1789. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1790. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1791. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1792. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_READ,
  1793. TextureSurfaceInfo());
  1794. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1795. TextureSurfaceInfo());
  1796. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1797. TextureSurfaceInfo());
  1798. cmdb->bindStorageBuffer(1, 0, resBuff, 0, MAX_PTR_SIZE);
  1799. cmdb->bindSampler(1, 1, sampler);
  1800. cmdb->bindShaderProgram(prog);
  1801. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1802. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1803. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1804. UVec4 pc(idx0, idx1, idx2, 0);
  1805. cmdb->setPushConstants(&pc, sizeof(pc));
  1806. cmdb->bindAllBindless(0);
  1807. cmdb->dispatchCompute(1, 1, 1);
  1808. // Read result
  1809. FencePtr fence;
  1810. cmdb->flush({}, &fence);
  1811. transfAlloc->release(handle0, fence);
  1812. transfAlloc->release(handle1, fence);
  1813. transfAlloc->release(handle2, fence);
  1814. gr->finish();
  1815. // Check result
  1816. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::READ));
  1817. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1818. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1819. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1820. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1821. resBuff->unmap();
  1822. COMMON_END()
  1823. #endif
  1824. }
  1825. ANKI_TEST(Gr, BufferAddress)
  1826. {
  1827. COMMON_BEGIN()
  1828. // Create program
  1829. static const char* PROG_SRC = R"(
  1830. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1831. ANKI_DEFINE_LOAD_STORE(Vec4, 4)
  1832. layout(push_constant) uniform u_
  1833. {
  1834. U64 u_bufferAddressRead;
  1835. U64 u_bufferAddressWrite;
  1836. };
  1837. void main()
  1838. {
  1839. Vec4 a;
  1840. load(u_bufferAddressRead, a);
  1841. Vec4 b;
  1842. load(u_bufferAddressRead + 16ul, b);
  1843. store(u_bufferAddressWrite, a + b);
  1844. })";
  1845. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1846. ShaderProgramInitInfo sprogInit;
  1847. sprogInit.m_computeShader = shader;
  1848. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1849. // Create buffers
  1850. BufferInitInfo info;
  1851. info.m_size = sizeof(Vec4) * 2;
  1852. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  1853. info.m_mapAccess = BufferMapAccessBit::WRITE;
  1854. BufferPtr ptrBuff = gr->newBuffer(info);
  1855. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE));
  1856. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1857. *mapped = VEC;
  1858. ++mapped;
  1859. *mapped = VEC * 10.0f;
  1860. ptrBuff->unmap();
  1861. BufferPtr resBuff =
  1862. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1863. // Run
  1864. CommandBufferInitInfo cinit;
  1865. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1866. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1867. cmdb->bindShaderProgram(prog);
  1868. struct Address
  1869. {
  1870. PtrSize m_addressRead;
  1871. PtrSize m_addressWrite;
  1872. } address;
  1873. address.m_addressRead = ptrBuff->getGpuAddress();
  1874. address.m_addressWrite = resBuff->getGpuAddress();
  1875. cmdb->setPushConstants(&address, sizeof(address));
  1876. cmdb->dispatchCompute(1, 1, 1);
  1877. cmdb->flush();
  1878. gr->finish();
  1879. // Check
  1880. mapped = static_cast<Vec4*>(resBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ));
  1881. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1882. resBuff->unmap();
  1883. COMMON_END();
  1884. }
  1885. ANKI_TEST(Gr, RayQuery)
  1886. {
  1887. COMMON_BEGIN();
  1888. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  1889. if(!useRayTracing)
  1890. {
  1891. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1892. }
  1893. // Index buffer
  1894. BufferPtr idxBuffer;
  1895. if(useRayTracing)
  1896. {
  1897. Array<U16, 3> indices = {0, 1, 2};
  1898. BufferInitInfo init;
  1899. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1900. init.m_usage = BufferUsageBit::INDEX;
  1901. init.m_size = sizeof(indices);
  1902. idxBuffer = gr->newBuffer(init);
  1903. void* addr = idxBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1904. memcpy(addr, &indices[0], sizeof(indices));
  1905. idxBuffer->unmap();
  1906. }
  1907. // Position buffer (add some padding to complicate things a bit)
  1908. BufferPtr vertBuffer;
  1909. if(useRayTracing)
  1910. {
  1911. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1912. BufferInitInfo init;
  1913. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1914. init.m_usage = BufferUsageBit::VERTEX;
  1915. init.m_size = sizeof(verts);
  1916. vertBuffer = gr->newBuffer(init);
  1917. void* addr = vertBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1918. memcpy(addr, &verts[0], sizeof(verts));
  1919. vertBuffer->unmap();
  1920. }
  1921. // BLAS
  1922. AccelerationStructurePtr blas;
  1923. if(useRayTracing)
  1924. {
  1925. AccelerationStructureInitInfo init;
  1926. init.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  1927. init.m_bottomLevel.m_indexBuffer = idxBuffer;
  1928. init.m_bottomLevel.m_indexCount = 3;
  1929. init.m_bottomLevel.m_indexType = IndexType::U16;
  1930. init.m_bottomLevel.m_positionBuffer = vertBuffer;
  1931. init.m_bottomLevel.m_positionCount = 3;
  1932. init.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  1933. init.m_bottomLevel.m_positionStride = 4 * 4;
  1934. blas = gr->newAccelerationStructure(init);
  1935. }
  1936. // TLAS
  1937. AccelerationStructurePtr tlas;
  1938. if(useRayTracing)
  1939. {
  1940. AccelerationStructureInitInfo init;
  1941. init.m_type = AccelerationStructureType::TOP_LEVEL;
  1942. Array<AccelerationStructureInstance, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1943. init.m_topLevel.m_instances = instances;
  1944. tlas = gr->newAccelerationStructure(init);
  1945. }
  1946. // Program
  1947. ShaderProgramPtr prog;
  1948. {
  1949. CString src = R"(
  1950. #if USE_RAY_TRACING
  1951. #extension GL_EXT_ray_query : enable
  1952. #endif
  1953. layout(push_constant, std140, row_major) uniform b_pc
  1954. {
  1955. Mat4 u_vp;
  1956. Vec3 u_cameraPos;
  1957. F32 u_padding0;
  1958. };
  1959. #if USE_RAY_TRACING
  1960. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1961. #endif
  1962. layout(location = 0) in Vec2 in_uv;
  1963. layout(location = 0) out Vec3 out_color;
  1964. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1965. {
  1966. const Vec3 v0v1 = v1 - v0;
  1967. const Vec3 v0v2 = v2 - v0;
  1968. const Vec3 pvec = cross(dir, v0v2);
  1969. const F32 det = dot(v0v1, pvec);
  1970. if(det < 0.00001)
  1971. {
  1972. return false;
  1973. }
  1974. const F32 invDet = 1.0 / det;
  1975. const Vec3 tvec = orig - v0;
  1976. u = dot(tvec, pvec) * invDet;
  1977. if(u < 0.0 || u > 1.0)
  1978. {
  1979. return false;
  1980. }
  1981. const Vec3 qvec = cross(tvec, v0v1);
  1982. v = dot(dir, qvec) * invDet;
  1983. if(v < 0.0 || u + v > 1.0)
  1984. {
  1985. return false;
  1986. }
  1987. t = dot(v0v2, qvec) * invDet;
  1988. return true;
  1989. }
  1990. void main()
  1991. {
  1992. // Unproject
  1993. const Vec2 ndc = in_uv * 2.0 - 1.0;
  1994. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  1995. const Vec3 p3 = p4.xyz / p4.w;
  1996. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  1997. const Vec3 rayOrigin = u_cameraPos;
  1998. #if USE_RAY_TRACING
  1999. Bool hit = false;
  2000. F32 u = 0.0;
  2001. F32 v = 0.0;
  2002. rayQueryEXT rayQuery;
  2003. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2004. 0.01, rayDir, 1000.0);
  2005. rayQueryProceedEXT(rayQuery);
  2006. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2007. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2008. {
  2009. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2010. u = bary.x;
  2011. v = bary.y;
  2012. hit = true;
  2013. }
  2014. #else
  2015. // Manual trace
  2016. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2017. F32 t;
  2018. F32 u;
  2019. F32 v;
  2020. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2021. #endif
  2022. if(hit)
  2023. {
  2024. out_color = Vec3(u, v, 1.0 - (u + v));
  2025. }
  2026. else
  2027. {
  2028. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2029. }
  2030. }
  2031. )";
  2032. StringAuto fragSrc(HeapAllocator<U8>(allocAligned, nullptr));
  2033. if(useRayTracing)
  2034. {
  2035. fragSrc.append("#define USE_RAY_TRACING 1\n");
  2036. }
  2037. else
  2038. {
  2039. fragSrc.append("#define USE_RAY_TRACING 0\n");
  2040. }
  2041. fragSrc.append(src);
  2042. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *gr);
  2043. }
  2044. // Build AS
  2045. if(useRayTracing)
  2046. {
  2047. CommandBufferInitInfo cinit;
  2048. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2049. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2050. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::NONE,
  2051. AccelerationStructureUsageBit::BUILD);
  2052. cmdb->buildAccelerationStructure(blas);
  2053. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::BUILD,
  2054. AccelerationStructureUsageBit::ATTACH);
  2055. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2056. AccelerationStructureUsageBit::BUILD);
  2057. cmdb->buildAccelerationStructure(tlas);
  2058. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2059. AccelerationStructureUsageBit::FRAGMENT_READ);
  2060. cmdb->flush();
  2061. }
  2062. // Draw
  2063. constexpr U32 ITERATIONS = 200;
  2064. for(U i = 0; i < ITERATIONS; ++i)
  2065. {
  2066. HighRezTimer timer;
  2067. timer.start();
  2068. const Vec4 cameraPos = {0.0f, 0.0f, 3.0f, 0.0f};
  2069. const Mat4 viewMat = Mat4{Transform{cameraPos, Mat3x4::getIdentity(), 1.0f}}.getInverse();
  2070. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2071. CommandBufferInitInfo cinit;
  2072. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2073. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2074. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2075. cmdb->bindShaderProgram(prog);
  2076. struct PC
  2077. {
  2078. Mat4 m_vp;
  2079. Vec4 m_cameraPos;
  2080. } pc;
  2081. pc.m_vp = projMat * viewMat;
  2082. pc.m_cameraPos = cameraPos;
  2083. cmdb->setPushConstants(&pc, sizeof(pc));
  2084. if(useRayTracing)
  2085. {
  2086. cmdb->bindAccelerationStructure(0, 0, tlas);
  2087. }
  2088. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2089. FramebufferPtr fb = createColorFb(*gr, presentTex);
  2090. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  2091. TextureSubresourceInfo{});
  2092. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  2093. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  2094. cmdb->endRenderPass();
  2095. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  2096. TextureSubresourceInfo{});
  2097. cmdb->flush();
  2098. gr->swapBuffers();
  2099. timer.stop();
  2100. const F32 TICK = 1.0f / 30.0f;
  2101. if(timer.getElapsedTime() < TICK)
  2102. {
  2103. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2104. }
  2105. }
  2106. COMMON_END();
  2107. }
  2108. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2109. Bool turnInsideOut = false)
  2110. {
  2111. BufferInitInfo inf;
  2112. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2113. inf.m_usage = BufferUsageBit::INDEX | BufferUsageBit::VERTEX | BufferUsageBit::STORAGE_TRACE_RAYS_READ;
  2114. inf.m_size = sizeof(Vec3) * 8;
  2115. vertBuffer = gr.newBuffer(inf);
  2116. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::WRITE);
  2117. // 7------6
  2118. // /| /|
  2119. // 3------2 |
  2120. // | | | |
  2121. // | 4 ---|-5
  2122. // |/ |/
  2123. // 0------1
  2124. positions[0] = Vec3(min.x(), min.y(), max.z());
  2125. positions[1] = Vec3(max.x(), min.y(), max.z());
  2126. positions[2] = Vec3(max.x(), max.y(), max.z());
  2127. positions[3] = Vec3(min.x(), max.y(), max.z());
  2128. positions[4] = Vec3(min.x(), min.y(), min.z());
  2129. positions[5] = Vec3(max.x(), min.y(), min.z());
  2130. positions[6] = Vec3(max.x(), max.y(), min.z());
  2131. positions[7] = Vec3(min.x(), max.y(), min.z());
  2132. vertBuffer->unmap();
  2133. inf.m_size = sizeof(U16) * 36;
  2134. indexBuffer = gr.newBuffer(inf);
  2135. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::WRITE);
  2136. U32 t = 0;
  2137. // Top
  2138. indices[t++] = 3;
  2139. indices[t++] = 2;
  2140. indices[t++] = 7;
  2141. indices[t++] = 2;
  2142. indices[t++] = 6;
  2143. indices[t++] = 7;
  2144. // Bottom
  2145. indices[t++] = 1;
  2146. indices[t++] = 0;
  2147. indices[t++] = 4;
  2148. indices[t++] = 1;
  2149. indices[t++] = 4;
  2150. indices[t++] = 5;
  2151. // Left
  2152. indices[t++] = 0;
  2153. indices[t++] = 3;
  2154. indices[t++] = 4;
  2155. indices[t++] = 3;
  2156. indices[t++] = 7;
  2157. indices[t++] = 4;
  2158. // Right
  2159. indices[t++] = 1;
  2160. indices[t++] = 5;
  2161. indices[t++] = 2;
  2162. indices[t++] = 2;
  2163. indices[t++] = 5;
  2164. indices[t++] = 6;
  2165. // Front
  2166. indices[t++] = 0;
  2167. indices[t++] = 1;
  2168. indices[t++] = 3;
  2169. indices[t++] = 3;
  2170. indices[t++] = 1;
  2171. indices[t++] = 2;
  2172. // Back
  2173. indices[t++] = 4;
  2174. indices[t++] = 7;
  2175. indices[t++] = 6;
  2176. indices[t++] = 5;
  2177. indices[t++] = 4;
  2178. indices[t++] = 6;
  2179. ANKI_ASSERT(t == indices.getSize());
  2180. if(turnInsideOut)
  2181. {
  2182. for(U32 i = 0; i < t; i += 3)
  2183. {
  2184. std::swap(indices[i + 1], indices[i + 2]);
  2185. }
  2186. }
  2187. indexBuffer->unmap();
  2188. }
  2189. enum class GeomWhat
  2190. {
  2191. SMALL_BOX,
  2192. BIG_BOX,
  2193. ROOM,
  2194. LIGHT,
  2195. COUNT,
  2196. FIRST = 0
  2197. };
  2198. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2199. ANKI_TEST(Gr, RayGen)
  2200. {
  2201. COMMON_BEGIN();
  2202. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  2203. if(!useRayTracing)
  2204. {
  2205. ANKI_TEST_LOGW("Ray tracing not supported");
  2206. break;
  2207. }
  2208. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2209. #define MAGIC_MACRO(x) x
  2210. #include <Tests/Gr/RtTypes.h>
  2211. #undef MAGIC_MACRO
  2212. HeapAllocator<U8> alloc(allocAligned, nullptr);
  2213. // Create the offscreen RTs
  2214. Array<TexturePtr, 2> offscreenRts;
  2215. {
  2216. TextureInitInfo inf("T_offscreen#1");
  2217. inf.m_width = WIDTH;
  2218. inf.m_height = HEIGHT;
  2219. inf.m_format = Format::R8G8B8A8_UNORM;
  2220. inf.m_usage = TextureUsageBit::IMAGE_TRACE_RAYS_READ | TextureUsageBit::IMAGE_TRACE_RAYS_WRITE
  2221. | TextureUsageBit::IMAGE_COMPUTE_READ;
  2222. offscreenRts[0] = gr->newTexture(inf);
  2223. inf.setName("T_offscreen#2");
  2224. offscreenRts[1] = gr->newTexture(inf);
  2225. }
  2226. // Copy to present program
  2227. ShaderProgramPtr copyToPresentProg;
  2228. {
  2229. const CString src = R"(
  2230. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2231. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2232. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2233. void main()
  2234. {
  2235. const UVec2 size = UVec2(imageSize(u_inImg));
  2236. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2237. {
  2238. return;
  2239. }
  2240. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2241. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2242. })";
  2243. ShaderPtr shader = createShader(src, ShaderType::COMPUTE, *gr);
  2244. ShaderProgramInitInfo sprogInit;
  2245. sprogInit.m_computeShader = shader;
  2246. copyToPresentProg = gr->newShaderProgram(sprogInit);
  2247. }
  2248. // Create the gometries
  2249. struct Geom
  2250. {
  2251. BufferPtr m_vertexBuffer;
  2252. BufferPtr m_indexBuffer;
  2253. Aabb m_aabb;
  2254. Mat3x4 m_worldTransform;
  2255. Mat3 m_worldRotation;
  2256. Bool m_insideOut = false;
  2257. U8 m_asMask = 0b10;
  2258. AccelerationStructurePtr m_blas;
  2259. U32 m_indexCount = 36;
  2260. Vec3 m_diffuseColor = Vec3(0.0f);
  2261. Vec3 m_emissiveColor = Vec3(0.0f);
  2262. };
  2263. Array<Geom, U(GeomWhat::COUNT)> geometries;
  2264. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2265. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2266. geometries[GeomWhat::SMALL_BOX].m_worldTransform = Mat3x4(
  2267. Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz()
  2268. / 2.0f),
  2269. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2270. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2271. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2272. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2273. geometries[GeomWhat::BIG_BOX].m_worldTransform = Mat3x4(
  2274. Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz()
  2275. / 2.0f),
  2276. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2277. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2278. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2279. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2280. geometries[GeomWhat::ROOM].m_worldTransform = Mat3x4(
  2281. Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2282. geometries[GeomWhat::ROOM].m_worldRotation);
  2283. geometries[GeomWhat::ROOM].m_insideOut = true;
  2284. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2285. geometries[GeomWhat::LIGHT].m_aabb =
  2286. Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2287. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2288. geometries[GeomWhat::LIGHT].m_worldTransform = Mat3x4(
  2289. Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2290. geometries[GeomWhat::LIGHT].m_worldRotation);
  2291. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2292. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2293. // Create Buffers
  2294. for(Geom& g : geometries)
  2295. {
  2296. createCubeBuffers(*gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2297. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer,
  2298. g.m_insideOut);
  2299. }
  2300. // Create AS
  2301. AccelerationStructurePtr tlas;
  2302. {
  2303. for(Geom& g : geometries)
  2304. {
  2305. AccelerationStructureInitInfo inf;
  2306. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  2307. inf.m_bottomLevel.m_indexBuffer = g.m_indexBuffer;
  2308. inf.m_bottomLevel.m_indexType = IndexType::U16;
  2309. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2310. inf.m_bottomLevel.m_positionBuffer = g.m_vertexBuffer;
  2311. inf.m_bottomLevel.m_positionCount = 8;
  2312. inf.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  2313. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2314. g.m_blas = gr->newAccelerationStructure(inf);
  2315. }
  2316. // TLAS
  2317. Array<AccelerationStructureInstance, U32(GeomWhat::COUNT)> instances;
  2318. U32 count = 0;
  2319. for(Geom& g : geometries)
  2320. {
  2321. instances[count].m_bottomLevel = g.m_blas;
  2322. instances[count].m_transform = g.m_worldTransform;
  2323. instances[count].m_hitgroupSbtRecordIndex = count;
  2324. instances[count].m_mask = g.m_asMask;
  2325. ++count;
  2326. }
  2327. AccelerationStructureInitInfo inf;
  2328. inf.m_type = AccelerationStructureType::TOP_LEVEL;
  2329. inf.m_topLevel.m_instances = instances;
  2330. tlas = gr->newAccelerationStructure(inf);
  2331. }
  2332. // Create model info
  2333. BufferPtr modelBuffer;
  2334. {
  2335. BufferInitInfo inf;
  2336. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2337. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2338. inf.m_size = sizeof(Model) * U32(GeomWhat::COUNT);
  2339. modelBuffer = gr->newBuffer(inf);
  2340. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::COUNT), BufferMapAccessBit::WRITE);
  2341. memset(&models[0], 0, inf.m_size);
  2342. for(GeomWhat i : EnumIterable<GeomWhat>())
  2343. {
  2344. const Geom& g = geometries[i];
  2345. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2346. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2347. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2348. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2349. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2350. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2351. }
  2352. modelBuffer->unmap();
  2353. }
  2354. // Create the ppline
  2355. ShaderProgramPtr rtProg;
  2356. constexpr U32 rayGenGroupIdx = 1;
  2357. constexpr U32 missGroupIdx = 2;
  2358. constexpr U32 shadowMissGroupIdx = 3;
  2359. constexpr U32 lambertianChitGroupIdx = 4;
  2360. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2361. constexpr U32 emissiveChitGroupIdx = 6;
  2362. constexpr U32 shadowAhitGroupIdx = 7;
  2363. constexpr U32 hitgroupCount = 7;
  2364. {
  2365. const CString commonSrcPart = R"(
  2366. #define Mat3x4Scalar Mat3x4
  2367. %s
  2368. const F32 PI = 3.14159265358979323846;
  2369. struct PayLoad
  2370. {
  2371. Vec3 m_total;
  2372. Vec3 m_weight;
  2373. Vec3 m_scatteredDir;
  2374. F32 m_hitT;
  2375. };
  2376. struct ShadowPayLoad
  2377. {
  2378. F32 m_shadow;
  2379. };
  2380. layout(set = 0, binding = 0, scalar) buffer b_00
  2381. {
  2382. Model u_models[];
  2383. };
  2384. layout(set = 0, binding = 1, scalar) buffer b_01
  2385. {
  2386. Light u_lights[];
  2387. };
  2388. layout(push_constant, scalar) uniform b_pc
  2389. {
  2390. PushConstants u_regs;
  2391. };
  2392. #define PAYLOAD_LOCATION 0
  2393. #define SHADOW_PAYLOAD_LOCATION 1
  2394. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2395. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2396. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2397. {
  2398. const Mesh mesh = model.m_mesh;
  2399. const U32 offset = primitiveId * 6;
  2400. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2401. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2402. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2403. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2404. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2405. return model.m_worldRotation * normal;
  2406. }
  2407. UVec3 rand3DPCG16(UVec3 v)
  2408. {
  2409. v = v * 1664525u + 1013904223u;
  2410. v.x += v.y * v.z;
  2411. v.y += v.z * v.x;
  2412. v.z += v.x * v.y;
  2413. v.x += v.y * v.z;
  2414. v.y += v.z * v.x;
  2415. v.z += v.x * v.y;
  2416. return v >> 16u;
  2417. }
  2418. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2419. {
  2420. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2421. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2422. return Vec2(e1, e2);
  2423. }
  2424. Vec3 hemisphereSampleUniform(Vec2 uv)
  2425. {
  2426. const F32 phi = uv.y * 2.0 * PI;
  2427. const F32 cosTheta = 1.0 - uv.x;
  2428. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2429. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2430. }
  2431. Mat3 rotationFromDirection(Vec3 zAxis)
  2432. {
  2433. Vec3 z = zAxis;
  2434. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2435. F32 a = -1.0 / (sign + z.z);
  2436. F32 b = z.x * z.y * a;
  2437. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2438. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2439. return Mat3(x, y, z);
  2440. }
  2441. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2442. {
  2443. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2444. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2445. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2446. }
  2447. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2448. {
  2449. scatterDir = randomDirectionInHemisphere(normal);
  2450. pdf = dot(normal, scatterDir) / PI;
  2451. }
  2452. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2453. {
  2454. F32 cosine = dot(normal, scatteredDir);
  2455. return max(cosine / PI, 0.0);
  2456. })";
  2457. #define MAGIC_MACRO ANKI_STRINGIZE
  2458. const CString rtTypesStr =
  2459. #include <Tests/Gr/RtTypes.h>
  2460. ;
  2461. #undef MAGIC_MACRO
  2462. StringAuto commonSrc(alloc);
  2463. commonSrc.sprintf(commonSrcPart, rtTypesStr.cstr());
  2464. const CString lambertianSrc = R"(
  2465. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2466. hitAttributeEXT vec2 g_attribs;
  2467. void main()
  2468. {
  2469. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2470. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2471. Vec3 scatteredDir;
  2472. F32 pdf;
  2473. scatterLambertian(normal, scatteredDir, pdf);
  2474. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2475. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2476. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2477. s_payLoad.m_scatteredDir = scatteredDir;
  2478. s_payLoad.m_hitT = gl_HitTEXT;
  2479. })";
  2480. const CString lambertianRoomSrc = R"(
  2481. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2482. void main()
  2483. {
  2484. Vec3 col;
  2485. U32 quad = gl_PrimitiveID / 2;
  2486. if(quad == 2)
  2487. {
  2488. col = Vec3(0.65, 0.05, 0.05);
  2489. }
  2490. else if(quad == 3)
  2491. {
  2492. col = Vec3(0.12, 0.45, 0.15);
  2493. }
  2494. else
  2495. {
  2496. col = Vec3(0.73f);
  2497. }
  2498. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2499. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2500. Vec3 scatteredDir;
  2501. F32 pdf;
  2502. scatterLambertian(normal, scatteredDir, pdf);
  2503. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2504. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2505. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2506. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2507. s_payLoad.m_scatteredDir = scatteredDir;
  2508. s_payLoad.m_hitT = gl_HitTEXT;
  2509. })";
  2510. const CString emissiveSrc = R"(
  2511. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2512. void main()
  2513. {
  2514. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2515. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2516. s_payLoad.m_weight = Vec3(0.0);
  2517. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2518. s_payLoad.m_hitT = -1.0;
  2519. })";
  2520. const CString missSrc = R"(
  2521. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2522. void main()
  2523. {
  2524. //s_payLoad.m_color =
  2525. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2526. //Vec3(0.0);
  2527. s_payLoad.m_weight = Vec3(0.0);
  2528. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2529. s_payLoad.m_hitT = -1.0;
  2530. })";
  2531. const CString shadowAhitSrc = R"(
  2532. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2533. void main()
  2534. {
  2535. s_payLoad.m_shadow += 0.25;
  2536. //terminateRayEXT();
  2537. })";
  2538. const CString shadowChitSrc = R"(
  2539. void main()
  2540. {
  2541. })";
  2542. const CString shadowMissSrc = R"(
  2543. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2544. void main()
  2545. {
  2546. s_payLoad.m_shadow = 1.0;
  2547. })";
  2548. const CString rayGenSrc = R"(
  2549. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2550. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2551. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2552. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2553. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2554. void main()
  2555. {
  2556. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2557. uv.y = 1.0 - uv.y;
  2558. const Vec2 ndc = uv * 2.0 - 1.0;
  2559. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2560. const Vec3 p3 = p4.xyz / p4.w;
  2561. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2562. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2563. Vec3 outColor = Vec3(0.0);
  2564. const U32 sampleCount = 8;
  2565. const U32 maxRecursionDepth = 2;
  2566. for(U32 s = 0; s < sampleCount; ++s)
  2567. {
  2568. Vec3 rayOrigin = u_regs.m_cameraPos;
  2569. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2570. s_payLoad.m_total = Vec3(0.0);
  2571. s_payLoad.m_weight = Vec3(1.0);
  2572. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2573. {
  2574. const U32 cullMask = 0xFF;
  2575. const U32 sbtRecordOffset = 0;
  2576. const U32 sbtRecordStride = 0;
  2577. const U32 missIndex = 0;
  2578. const F32 tMin = 0.1;
  2579. const F32 tMax = 10000.0;
  2580. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2581. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2582. if(s_payLoad.m_hitT > 0.0)
  2583. {
  2584. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2585. rayDir = s_payLoad.m_scatteredDir;
  2586. }
  2587. else
  2588. {
  2589. break;
  2590. }
  2591. }
  2592. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2593. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2594. }
  2595. outColor /= F32(sampleCount);
  2596. #if 0
  2597. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2598. const Vec3 normal = s_payLoad.m_normal;
  2599. if(s_payLoad.m_hitT > 0.0)
  2600. {
  2601. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2602. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2603. {
  2604. s_shadowPayLoad.m_shadow = 0.0;
  2605. const Light light = u_lights[i];
  2606. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2607. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2608. const U32 cullMask = 0x2;
  2609. const U32 sbtRecordOffset = 1;
  2610. const U32 sbtRecordStride = 0;
  2611. const U32 missIndex = 1;
  2612. const F32 tMin = 0.1;
  2613. const F32 tMax = length(randomPointInLight - rayOrigin);
  2614. const U32 flags = gl_RayFlagsOpaqueEXT;
  2615. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2616. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2617. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2618. outColor += normal * light.m_intensity * shadow;
  2619. }
  2620. }
  2621. else
  2622. {
  2623. outColor = diffuseColor;
  2624. }
  2625. #endif
  2626. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2627. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2628. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2629. })";
  2630. ShaderPtr lambertianShader = createShader(
  2631. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2632. ShaderPtr lambertianRoomShader =
  2633. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()),
  2634. ShaderType::CLOSEST_HIT, *gr);
  2635. ShaderPtr emissiveShader = createShader(
  2636. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2637. ShaderPtr shadowAhitShader = createShader(
  2638. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::ANY_HIT, *gr);
  2639. ShaderPtr shadowChitShader = createShader(
  2640. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2641. ShaderPtr missShader =
  2642. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::MISS, *gr);
  2643. ShaderPtr shadowMissShader = createShader(
  2644. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::MISS, *gr);
  2645. ShaderPtr rayGenShader = createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()),
  2646. ShaderType::RAY_GEN, *gr);
  2647. Array<RayTracingHitGroup, 4> hitGroups;
  2648. hitGroups[0].m_closestHitShader = lambertianShader;
  2649. hitGroups[1].m_closestHitShader = lambertianRoomShader;
  2650. hitGroups[2].m_closestHitShader = emissiveShader;
  2651. hitGroups[3].m_closestHitShader = shadowChitShader;
  2652. hitGroups[3].m_anyHitShader = shadowAhitShader;
  2653. Array<ShaderPtr, 2> missShaders = {missShader, shadowMissShader};
  2654. // Add the same 2 times to test multiple ray gen shaders
  2655. Array<ShaderPtr, 2> rayGenShaders = {rayGenShader, rayGenShader};
  2656. ShaderProgramInitInfo inf;
  2657. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2658. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2659. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2660. rtProg = gr->newShaderProgram(inf);
  2661. }
  2662. // Create the SBT
  2663. BufferPtr sbt;
  2664. {
  2665. const U32 recordCount = 1 + 2 + U32(GeomWhat::COUNT) * 2;
  2666. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2667. BufferInitInfo inf;
  2668. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2669. inf.m_usage = BufferUsageBit::SBT;
  2670. inf.m_size = sbtRecordSize * recordCount;
  2671. sbt = gr->newBuffer(inf);
  2672. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::WRITE);
  2673. memset(&mapped[0], 0, inf.m_size);
  2674. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2675. ANKI_TEST_EXPECT_EQ(handles.getSize(),
  2676. gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2677. // Ray gen
  2678. U32 record = 0;
  2679. memcpy(&mapped[sbtRecordSize * record++],
  2680. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2681. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2682. // 2xMiss
  2683. memcpy(&mapped[sbtRecordSize * record++],
  2684. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2685. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2686. memcpy(&mapped[sbtRecordSize * record++],
  2687. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2688. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2689. // Small box
  2690. memcpy(&mapped[sbtRecordSize * record++],
  2691. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2692. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2693. memcpy(&mapped[sbtRecordSize * record++],
  2694. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2695. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2696. // Big box
  2697. memcpy(&mapped[sbtRecordSize * record++],
  2698. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2699. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2700. memcpy(&mapped[sbtRecordSize * record++],
  2701. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2702. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2703. // Room
  2704. memcpy(&mapped[sbtRecordSize * record++],
  2705. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2706. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2707. memcpy(&mapped[sbtRecordSize * record++],
  2708. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2709. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2710. // Light
  2711. memcpy(&mapped[sbtRecordSize * record++],
  2712. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2713. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2714. memcpy(&mapped[sbtRecordSize * record++],
  2715. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2716. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2717. sbt->unmap();
  2718. }
  2719. // Create lights
  2720. BufferPtr lightBuffer;
  2721. constexpr U32 lightCount = 1;
  2722. {
  2723. BufferInitInfo inf;
  2724. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2725. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2726. inf.m_size = sizeof(Light) * lightCount;
  2727. lightBuffer = gr->newBuffer(inf);
  2728. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::WRITE);
  2729. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2730. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2731. lights[0].m_intensity = Vec3(1.0f);
  2732. lightBuffer->unmap();
  2733. }
  2734. // Draw
  2735. constexpr U32 ITERATIONS = 100 * 8;
  2736. for(U32 i = 0; i < ITERATIONS; ++i)
  2737. {
  2738. HighRezTimer timer;
  2739. timer.start();
  2740. const Mat4 viewMat =
  2741. Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f))
  2742. .getInverse();
  2743. const Mat4 projMat =
  2744. Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2745. CommandBufferInitInfo cinit;
  2746. cinit.m_flags =
  2747. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2748. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2749. if(i == 0)
  2750. {
  2751. for(const Geom& g : geometries)
  2752. {
  2753. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::NONE,
  2754. AccelerationStructureUsageBit::BUILD);
  2755. }
  2756. for(const Geom& g : geometries)
  2757. {
  2758. cmdb->buildAccelerationStructure(g.m_blas);
  2759. }
  2760. for(const Geom& g : geometries)
  2761. {
  2762. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::BUILD,
  2763. AccelerationStructureUsageBit::ATTACH);
  2764. }
  2765. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2766. AccelerationStructureUsageBit::BUILD);
  2767. cmdb->buildAccelerationStructure(tlas);
  2768. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2769. AccelerationStructureUsageBit::TRACE_RAYS_READ);
  2770. }
  2771. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2772. TextureViewPtr presentView;
  2773. {
  2774. TextureViewInitInfo inf;
  2775. inf.m_texture = presentTex;
  2776. presentView = gr->newTextureView(inf);
  2777. }
  2778. TextureViewPtr offscreenView, offscreenHistoryView;
  2779. {
  2780. TextureViewInitInfo inf;
  2781. inf.m_texture = offscreenRts[i & 1];
  2782. offscreenView = gr->newTextureView(inf);
  2783. inf.m_texture = offscreenRts[(i + 1) & 1];
  2784. offscreenHistoryView = gr->newTextureView(inf);
  2785. }
  2786. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::NONE, TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2787. TextureSubresourceInfo());
  2788. cmdb->setTextureBarrier(offscreenRts[(i + 1) & 1], TextureUsageBit::IMAGE_COMPUTE_READ,
  2789. TextureUsageBit::IMAGE_TRACE_RAYS_READ, TextureSubresourceInfo());
  2790. cmdb->bindStorageBuffer(0, 0, modelBuffer, 0, MAX_PTR_SIZE);
  2791. cmdb->bindStorageBuffer(0, 1, lightBuffer, 0, MAX_PTR_SIZE);
  2792. cmdb->bindAccelerationStructure(1, 0, tlas);
  2793. cmdb->bindImage(1, 1, offscreenHistoryView);
  2794. cmdb->bindImage(1, 2, offscreenView);
  2795. cmdb->bindShaderProgram(rtProg);
  2796. PushConstants pc;
  2797. pc.m_vp = projMat * viewMat;
  2798. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2799. pc.m_lightCount = lightCount;
  2800. pc.m_frame = i;
  2801. cmdb->setPushConstants(&pc, sizeof(pc));
  2802. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2803. cmdb->traceRays(sbt, 0, sbtRecordSize, U32(GeomWhat::COUNT) * 2, 2, WIDTH, HEIGHT, 1);
  2804. // Copy to present
  2805. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2806. TextureUsageBit::IMAGE_COMPUTE_READ, TextureSubresourceInfo());
  2807. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  2808. TextureSubresourceInfo());
  2809. cmdb->bindImage(0, 0, offscreenView);
  2810. cmdb->bindImage(0, 1, presentView);
  2811. cmdb->bindShaderProgram(copyToPresentProg);
  2812. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2813. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2814. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2815. cmdb->setTextureBarrier(presentTex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::PRESENT,
  2816. TextureSubresourceInfo());
  2817. cmdb->flush();
  2818. gr->swapBuffers();
  2819. timer.stop();
  2820. const F32 TICK = 1.0f / 60.0f;
  2821. if(timer.getElapsedTime() < TICK)
  2822. {
  2823. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2824. }
  2825. }
  2826. COMMON_END();
  2827. }
  2828. ANKI_TEST(Gr, AsyncCompute)
  2829. {
  2830. COMMON_BEGIN()
  2831. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2832. // Create the counting program
  2833. static const char* PROG_SRC = R"(
  2834. layout(local_size_x = 8) in;
  2835. layout(binding = 0, std430) buffer b_buff
  2836. {
  2837. U32 u_counters[];
  2838. };
  2839. void main()
  2840. {
  2841. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2842. {
  2843. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2844. }
  2845. })";
  2846. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  2847. ShaderProgramInitInfo sprogInit;
  2848. sprogInit.m_computeShader = shader;
  2849. ShaderProgramPtr incrementProg = gr->newShaderProgram(sprogInit);
  2850. // Create the check program
  2851. static const char* CHECK_SRC = R"(
  2852. layout(local_size_x = 8) in;
  2853. layout(binding = 0, std430) buffer b_buff
  2854. {
  2855. U32 u_counters[];
  2856. };
  2857. void main()
  2858. {
  2859. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2860. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2861. U32 expectedVal = 0u;
  2862. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2863. {
  2864. expectedVal += i + 1u;
  2865. }
  2866. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2867. })";
  2868. shader = createShader(CHECK_SRC, ShaderType::COMPUTE, *gr);
  2869. sprogInit.m_computeShader = shader;
  2870. ShaderProgramPtr checkProg = gr->newShaderProgram(sprogInit);
  2871. // Create buffers
  2872. BufferInitInfo info;
  2873. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2874. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  2875. info.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  2876. BufferPtr atomicsBuffer = gr->newBuffer(info);
  2877. U32* values =
  2878. static_cast<U32*>(atomicsBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ | BufferMapAccessBit::WRITE));
  2879. memset(values, 0, info.m_size);
  2880. // Pre-create some CPU result buffers
  2881. DynamicArrayAuto<U32> atomicsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2882. atomicsBufferCpu.create(ARRAY_SIZE);
  2883. DynamicArrayAuto<U32> expectedResultsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2884. expectedResultsBufferCpu.create(ARRAY_SIZE);
  2885. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2886. {
  2887. const U32 localInvocation = i % 8;
  2888. U32 expectedVal = 4;
  2889. for(U32 j = 0; j < localInvocation * 20; ++j)
  2890. {
  2891. expectedVal += j + 1;
  2892. }
  2893. expectedResultsBufferCpu[i] = expectedVal;
  2894. }
  2895. // Create the 1st command buffer
  2896. CommandBufferInitInfo cinit;
  2897. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2898. CommandBufferPtr incrementCmdb = gr->newCommandBuffer(cinit);
  2899. incrementCmdb->bindShaderProgram(incrementProg);
  2900. incrementCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2901. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2902. // Create the 2nd command buffer
  2903. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2904. CommandBufferPtr checkCmdb = gr->newCommandBuffer(cinit);
  2905. checkCmdb->bindShaderProgram(checkProg);
  2906. checkCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2907. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2908. // Create the 3rd command buffer
  2909. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2910. CommandBufferPtr incrementCmdb2 = gr->newCommandBuffer(cinit);
  2911. incrementCmdb2->bindShaderProgram(incrementProg);
  2912. incrementCmdb2->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2913. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2914. // Submit
  2915. #if 1
  2916. FencePtr fence;
  2917. incrementCmdb->flush({}, &fence);
  2918. checkCmdb->flush(Array<FencePtr, 1>{fence}, &fence);
  2919. incrementCmdb2->flush(Array<FencePtr, 1>{fence}, &fence);
  2920. fence->clientWait(MAX_SECOND);
  2921. #else
  2922. incrementCmdb->flush();
  2923. gr->finish();
  2924. checkCmdb->flush();
  2925. gr->finish();
  2926. incrementCmdb2->flush();
  2927. gr->finish();
  2928. #endif
  2929. // Verify
  2930. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2931. Bool correct = true;
  2932. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2933. {
  2934. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2935. if(!correct)
  2936. {
  2937. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2938. break;
  2939. }
  2940. }
  2941. atomicsBuffer->unmap();
  2942. ANKI_TEST_EXPECT_EQ(correct, true);
  2943. COMMON_END()
  2944. }
  2945. } // end namespace anki