PhysicsWorld.cpp 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Physics/PhysicsWorld.h>
  6. #include <AnKi/Physics/PhysicsCollisionShape.h>
  7. #include <AnKi/Physics/PhysicsBody.h>
  8. #include <AnKi/Physics/PhysicsTrigger.h>
  9. #include <AnKi/Physics/PhysicsPlayerController.h>
  10. #include <AnKi/Util/Rtti.h>
  11. #include <BulletCollision/Gimpact/btGImpactCollisionAlgorithm.h>
  12. namespace anki {
  13. // Ugly but there is no other way
  14. static HeapAllocator<U8>* g_alloc = nullptr;
  15. static void* btAlloc(size_t size)
  16. {
  17. ANKI_ASSERT(g_alloc);
  18. return g_alloc->getMemoryPool().allocate(size, 16);
  19. }
  20. static void btFree(void* ptr)
  21. {
  22. ANKI_ASSERT(g_alloc);
  23. g_alloc->getMemoryPool().free(ptr);
  24. }
  25. /// Broad phase collision callback.
  26. class PhysicsWorld::MyOverlapFilterCallback : public btOverlapFilterCallback
  27. {
  28. public:
  29. Bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const override
  30. {
  31. ANKI_ASSERT(proxy0 && proxy1);
  32. const btCollisionObject* btObj0 = static_cast<const btCollisionObject*>(proxy0->m_clientObject);
  33. const btCollisionObject* btObj1 = static_cast<const btCollisionObject*>(proxy1->m_clientObject);
  34. ANKI_ASSERT(btObj0 && btObj1);
  35. const PhysicsObject* aobj0 = static_cast<const PhysicsObject*>(btObj0->getUserPointer());
  36. const PhysicsObject* aobj1 = static_cast<const PhysicsObject*>(btObj1->getUserPointer());
  37. if(aobj0 == nullptr || aobj1 == nullptr)
  38. {
  39. return false;
  40. }
  41. const PhysicsFilteredObject* fobj0 = dcast<const PhysicsFilteredObject*>(aobj0);
  42. const PhysicsFilteredObject* fobj1 = dcast<const PhysicsFilteredObject*>(aobj1);
  43. // First check the masks
  44. Bool collide = !!(fobj0->getMaterialGroup() & fobj1->getMaterialMask());
  45. collide = collide && !!(fobj1->getMaterialGroup() & fobj0->getMaterialMask());
  46. if(!collide)
  47. {
  48. return false;
  49. }
  50. // Reject if they are both static
  51. if(ANKI_UNLIKELY(fobj0->getMaterialGroup() == PhysicsMaterialBit::STATIC_GEOMETRY
  52. && fobj1->getMaterialGroup() == PhysicsMaterialBit::STATIC_GEOMETRY))
  53. {
  54. return false;
  55. }
  56. // Detailed tests using callbacks
  57. if(fobj0->getPhysicsBroadPhaseFilterCallback())
  58. {
  59. collide = fobj0->getPhysicsBroadPhaseFilterCallback()->needsCollision(*fobj0, *fobj1);
  60. if(!collide)
  61. {
  62. return false;
  63. }
  64. }
  65. if(fobj1->getPhysicsBroadPhaseFilterCallback())
  66. {
  67. collide = fobj1->getPhysicsBroadPhaseFilterCallback()->needsCollision(*fobj1, *fobj0);
  68. if(!collide)
  69. {
  70. return false;
  71. }
  72. }
  73. return true;
  74. }
  75. };
  76. class PhysicsWorld::MyRaycastCallback : public btCollisionWorld::RayResultCallback
  77. {
  78. public:
  79. PhysicsWorldRayCastCallback* m_raycast = nullptr;
  80. Bool needsCollision(btBroadphaseProxy* proxy) const override
  81. {
  82. ANKI_ASSERT(proxy);
  83. const btCollisionObject* cobj = static_cast<const btCollisionObject*>(proxy->m_clientObject);
  84. ANKI_ASSERT(cobj);
  85. const PhysicsObject* pobj = static_cast<const PhysicsObject*>(cobj->getUserPointer());
  86. ANKI_ASSERT(pobj);
  87. const PhysicsFilteredObject* fobj = dcast<const PhysicsFilteredObject*>(pobj);
  88. return !!(fobj->getMaterialGroup() & m_raycast->m_materialMask);
  89. }
  90. btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, Bool normalInWorldSpace) final
  91. {
  92. // No idea why
  93. if(m_raycast->m_firstHit)
  94. {
  95. m_closestHitFraction = rayResult.m_hitFraction;
  96. }
  97. m_collisionObject = rayResult.m_collisionObject;
  98. Vec3 worldNormal;
  99. if(normalInWorldSpace)
  100. {
  101. worldNormal = toAnki(rayResult.m_hitNormalLocal);
  102. }
  103. else
  104. {
  105. worldNormal = toAnki(m_collisionObject->getWorldTransform().getBasis() * rayResult.m_hitNormalLocal);
  106. }
  107. Vec3 hitPointWorld = mix(m_raycast->m_from, m_raycast->m_to, rayResult.m_hitFraction);
  108. // Call the callback
  109. PhysicsObject* pobj = static_cast<PhysicsObject*>(m_collisionObject->getUserPointer());
  110. ANKI_ASSERT(pobj);
  111. m_raycast->processResult(dcast<PhysicsFilteredObject&>(*pobj), worldNormal, hitPointWorld);
  112. return m_closestHitFraction;
  113. }
  114. };
  115. PhysicsWorld::PhysicsWorld()
  116. {
  117. }
  118. PhysicsWorld::~PhysicsWorld()
  119. {
  120. destroyMarkedForDeletion();
  121. ANKI_ASSERT(m_objectsCreatedCount.load() == 0 && "Forgot to delete some objects");
  122. m_world.destroy();
  123. m_solver.destroy();
  124. m_dispatcher.destroy();
  125. m_collisionConfig.destroy();
  126. m_broadphase.destroy();
  127. m_gpc.destroy();
  128. m_alloc.deleteInstance(m_filterCallback);
  129. g_alloc = nullptr;
  130. }
  131. Error PhysicsWorld::init(AllocAlignedCallback allocCb, void* allocCbData)
  132. {
  133. m_alloc = HeapAllocator<U8>(allocCb, allocCbData);
  134. m_tmpAlloc = StackAllocator<U8>(allocCb, allocCbData, 1_KB, 2.0f);
  135. // Set allocators
  136. g_alloc = &m_alloc;
  137. btAlignedAllocSetCustom(btAlloc, btFree);
  138. // Create objects
  139. m_broadphase.init();
  140. m_gpc.init();
  141. m_broadphase->getOverlappingPairCache()->setInternalGhostPairCallback(m_gpc.get());
  142. m_filterCallback = m_alloc.newInstance<MyOverlapFilterCallback>();
  143. m_broadphase->getOverlappingPairCache()->setOverlapFilterCallback(m_filterCallback);
  144. m_collisionConfig.init();
  145. m_dispatcher.init(m_collisionConfig.get());
  146. btGImpactCollisionAlgorithm::registerAlgorithm(m_dispatcher.get());
  147. m_solver.init();
  148. m_world.init(m_dispatcher.get(), m_broadphase.get(), m_solver.get(), m_collisionConfig.get());
  149. m_world->setGravity(btVector3(0.0f, -9.8f, 0.0f));
  150. return Error::NONE;
  151. }
  152. void PhysicsWorld::destroyMarkedForDeletion()
  153. {
  154. while(true)
  155. {
  156. PhysicsObject* obj = nullptr;
  157. // Don't delete the instance (call the destructor) while holding the lock to avoid deadlocks
  158. {
  159. LockGuard<Mutex> lock(m_markedMtx);
  160. if(!m_markedForDeletion.isEmpty())
  161. {
  162. obj = m_markedForDeletion.popFront();
  163. if(obj->m_registered)
  164. {
  165. obj->unregisterFromWorld();
  166. obj->m_registered = false;
  167. }
  168. }
  169. }
  170. if(obj == nullptr)
  171. {
  172. break;
  173. }
  174. m_alloc.deleteInstance(obj);
  175. #if ANKI_ENABLE_ASSERTIONS
  176. const I32 count = m_objectsCreatedCount.fetchSub(1) - 1;
  177. ANKI_ASSERT(count >= 0);
  178. #endif
  179. }
  180. }
  181. void PhysicsWorld::update(Second dt)
  182. {
  183. // First destroy
  184. destroyMarkedForDeletion();
  185. // Create new objects
  186. {
  187. LockGuard<Mutex> lock(m_markedMtx);
  188. // Create
  189. while(!m_markedForCreation.isEmpty())
  190. {
  191. PhysicsObject* obj = m_markedForCreation.popFront();
  192. ANKI_ASSERT(!obj->m_registered);
  193. obj->registerToWorld();
  194. obj->m_registered = true;
  195. m_objectLists[obj->getType()].pushBack(obj);
  196. }
  197. }
  198. // Update the player controllers
  199. for(PhysicsObject& obj : m_objectLists[PhysicsObjectType::PLAYER_CONTROLLER])
  200. {
  201. PhysicsPlayerController& playerController = static_cast<PhysicsPlayerController&>(obj);
  202. playerController.moveToPositionForReal();
  203. }
  204. // Update world
  205. m_world->stepSimulation(F32(dt), 1, 1.0f / 60.0f);
  206. // Process trigger contacts
  207. for(PhysicsObject& trigger : m_objectLists[PhysicsObjectType::TRIGGER])
  208. {
  209. static_cast<PhysicsTrigger&>(trigger).processContacts();
  210. }
  211. // Reset the pool
  212. m_tmpAlloc.getMemoryPool().reset();
  213. }
  214. void PhysicsWorld::destroyObject(PhysicsObject* obj)
  215. {
  216. ANKI_ASSERT(obj);
  217. LockGuard<Mutex> lock(m_markedMtx);
  218. if(obj->m_registered)
  219. {
  220. m_objectLists[obj->getType()].erase(obj);
  221. }
  222. else
  223. {
  224. m_markedForCreation.erase(obj);
  225. }
  226. m_markedForDeletion.pushBack(obj);
  227. }
  228. void PhysicsWorld::rayCast(WeakArray<PhysicsWorldRayCastCallback*> rayCasts) const
  229. {
  230. MyRaycastCallback callback;
  231. for(PhysicsWorldRayCastCallback* cb : rayCasts)
  232. {
  233. callback.m_raycast = cb;
  234. m_world->rayTest(toBt(cb->m_from), toBt(cb->m_to), callback);
  235. }
  236. }
  237. PhysicsTriggerFilteredPair* PhysicsWorld::getOrCreatePhysicsTriggerFilteredPair(PhysicsTrigger* trigger,
  238. PhysicsFilteredObject* filtered,
  239. Bool& isNew)
  240. {
  241. ANKI_ASSERT(trigger && filtered);
  242. U32 emptySlot = MAX_U32;
  243. for(U32 i = 0; i < filtered->m_triggerFilteredPairs.getSize(); ++i)
  244. {
  245. PhysicsTriggerFilteredPair* pair = filtered->m_triggerFilteredPairs[i];
  246. if(pair && pair->m_trigger == trigger)
  247. {
  248. // Found it
  249. ANKI_ASSERT(pair->m_filteredObject == filtered);
  250. isNew = false;
  251. return pair;
  252. }
  253. else if(pair == nullptr)
  254. {
  255. // Empty slot, save it for later
  256. emptySlot = i;
  257. }
  258. else if(pair && pair->m_trigger == nullptr)
  259. {
  260. // Pair exists but it's invalid, repurpose it
  261. ANKI_ASSERT(pair->m_filteredObject == filtered);
  262. emptySlot = i;
  263. }
  264. }
  265. if(emptySlot == MAX_U32)
  266. {
  267. ANKI_PHYS_LOGW("Contact ignored. Too many active contacts for the filtered object");
  268. return nullptr;
  269. }
  270. // Not found, create a new one
  271. isNew = true;
  272. PhysicsTriggerFilteredPair* newPair;
  273. if(filtered->m_triggerFilteredPairs[emptySlot] == nullptr)
  274. {
  275. filtered->m_triggerFilteredPairs[emptySlot] = m_alloc.newInstance<PhysicsTriggerFilteredPair>();
  276. }
  277. newPair = filtered->m_triggerFilteredPairs[emptySlot];
  278. newPair->m_filteredObject = filtered;
  279. newPair->m_trigger = trigger;
  280. newPair->m_frame = 0;
  281. return newPair;
  282. }
  283. } // end namespace anki