ShaderProgramBinaryDumpMain.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/ShaderCompiler/ShaderCompiler.h>
  6. #include <AnKi/ShaderCompiler/ShaderDump.h>
  7. #include <AnKi/ShaderCompiler/MaliOfflineCompiler.h>
  8. #include <AnKi/ShaderCompiler/RadeonGpuAnalyzer.h>
  9. #include <AnKi/ShaderCompiler/Dxc.h>
  10. #include <AnKi/Util/ThreadHive.h>
  11. #include <AnKi/Util/System.h>
  12. #include <ThirdParty/SpirvCross/spirv.hpp>
  13. using namespace anki;
  14. static const char* kUsage = R"(Dump the shader binary to stdout
  15. Usage: %s [options] input_shader_program_binary
  16. Options:
  17. -stats : Print performance statistics for all shaders. By default it doesn't
  18. -no-binary : Don't print the binary
  19. -no-glsl : Don't print GLSL
  20. -spirv : Print SPIR-V
  21. -v : Verbose log
  22. )";
  23. static Error parseCommandLineArgs(WeakArray<char*> argv, Bool& dumpStats, Bool& dumpBinary, Bool& glsl, Bool& spirv, String& filename)
  24. {
  25. // Parse config
  26. if(argv.getSize() < 2)
  27. {
  28. return Error::kUserData;
  29. }
  30. dumpStats = false;
  31. dumpBinary = true;
  32. glsl = true;
  33. spirv = false;
  34. filename = argv[argv.getSize() - 1];
  35. for(U32 i = 1; i < argv.getSize() - 1; i++)
  36. {
  37. if(CString(argv[i]) == "-stats")
  38. {
  39. dumpStats = true;
  40. }
  41. else if(CString(argv[i]) == "-no-binary")
  42. {
  43. dumpBinary = false;
  44. dumpStats = true;
  45. }
  46. else if(CString(argv[i]) == "-no-glsl")
  47. {
  48. glsl = false;
  49. }
  50. else if(CString(argv[i]) == "-spirv")
  51. {
  52. spirv = true;
  53. }
  54. else if(CString(argv[i]) == "-v")
  55. {
  56. Logger::getSingleton().enableVerbosity(true);
  57. }
  58. }
  59. return Error::kNone;
  60. }
  61. Error dumpStats(const ShaderBinary& bin)
  62. {
  63. printf("\nOffline compilers stats:\n");
  64. fflush(stdout);
  65. class Stats
  66. {
  67. public:
  68. class
  69. {
  70. public:
  71. F64 m_fma;
  72. F64 m_cvt;
  73. F64 m_sfu;
  74. F64 m_loadStore;
  75. F64 m_varying;
  76. F64 m_texture;
  77. F64 m_workRegisters;
  78. F64 m_fp16ArithmeticPercentage;
  79. F64 m_spillingCount;
  80. } m_arm;
  81. class
  82. {
  83. public:
  84. F64 m_vgprCount;
  85. F64 m_sgprCount;
  86. F64 m_isaSize;
  87. } m_amd;
  88. Stats(F64 v)
  89. {
  90. m_arm.m_fma = m_arm.m_cvt = m_arm.m_sfu = m_arm.m_loadStore = m_arm.m_varying = m_arm.m_texture = m_arm.m_workRegisters =
  91. m_arm.m_fp16ArithmeticPercentage = m_arm.m_spillingCount = v;
  92. m_amd.m_vgprCount = m_amd.m_sgprCount = m_amd.m_isaSize = v;
  93. }
  94. Stats()
  95. : Stats(0.0)
  96. {
  97. }
  98. void op(const Stats& b, void (*func)(F64& a, F64 b))
  99. {
  100. func(m_arm.m_fma, b.m_arm.m_fma);
  101. func(m_arm.m_cvt, b.m_arm.m_cvt);
  102. func(m_arm.m_sfu, b.m_arm.m_sfu);
  103. func(m_arm.m_loadStore, b.m_arm.m_loadStore);
  104. func(m_arm.m_varying, b.m_arm.m_varying);
  105. func(m_arm.m_texture, b.m_arm.m_texture);
  106. func(m_arm.m_workRegisters, b.m_arm.m_workRegisters);
  107. func(m_arm.m_fp16ArithmeticPercentage, b.m_arm.m_fp16ArithmeticPercentage);
  108. func(m_arm.m_spillingCount, b.m_arm.m_spillingCount);
  109. func(m_amd.m_vgprCount, b.m_amd.m_vgprCount);
  110. func(m_amd.m_sgprCount, b.m_amd.m_sgprCount);
  111. func(m_amd.m_isaSize, b.m_amd.m_isaSize);
  112. }
  113. };
  114. class StageStats
  115. {
  116. public:
  117. Stats m_avgStats{0.0};
  118. Stats m_maxStats{-1.0};
  119. Stats m_minStats{kMaxF64};
  120. U32 m_spillingCount = 0;
  121. U32 m_count = 0;
  122. };
  123. class Ctx
  124. {
  125. public:
  126. DynamicArray<Stats> m_spirvStats;
  127. DynamicArray<Atomic<U32>> m_spirvVisited;
  128. Atomic<U32> m_variantCount = {0};
  129. const ShaderBinary* m_bin = nullptr;
  130. Atomic<I32> m_error = {0};
  131. };
  132. Ctx ctx;
  133. ctx.m_bin = &bin;
  134. ctx.m_spirvStats.resize(bin.m_codeBlocks.getSize());
  135. ctx.m_spirvVisited.resize(bin.m_codeBlocks.getSize(), 0);
  136. memset(ctx.m_spirvVisited.getBegin(), 0, ctx.m_spirvVisited.getSizeInBytes());
  137. ThreadHive hive(getCpuCoresCount());
  138. ThreadHiveTaskCallback callback = [](void* userData, [[maybe_unused]] U32 threadId, [[maybe_unused]] ThreadHive& hive,
  139. [[maybe_unused]] ThreadHiveSemaphore* signalSemaphore) {
  140. Ctx& ctx = *static_cast<Ctx*>(userData);
  141. U32 variantIdx;
  142. while((variantIdx = ctx.m_variantCount.fetchAdd(1)) < ctx.m_bin->m_variants.getSize() && ctx.m_error.load() == 0)
  143. {
  144. const ShaderBinaryVariant& variant = ctx.m_bin->m_variants[variantIdx];
  145. for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t)
  146. {
  147. for(ShaderType shaderType : EnumBitsIterable<ShaderType, ShaderTypeBit>(ctx.m_bin->m_techniques[t].m_shaderTypes))
  148. {
  149. const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType];
  150. const Bool visited = ctx.m_spirvVisited[codeblockIdx].fetchAdd(1) != 0;
  151. if(visited)
  152. {
  153. continue;
  154. }
  155. const ShaderBinaryCodeBlock& codeBlock = ctx.m_bin->m_codeBlocks[codeblockIdx];
  156. // Rewrite spir-v because of the decorations we ask DXC to put
  157. Bool bRequiresMeshShaders = false;
  158. DynamicArray<U8> newSpirv;
  159. newSpirv.resize(codeBlock.m_binary.getSize());
  160. memcpy(newSpirv.getBegin(), codeBlock.m_binary.getBegin(), codeBlock.m_binary.getSizeInBytes());
  161. visitSpirv(WeakArray<U32>(reinterpret_cast<U32*>(newSpirv.getBegin()), U32(newSpirv.getSizeInBytes() / sizeof(U32))),
  162. [&](U32 cmd, WeakArray<U32> instructions) {
  163. if(cmd == spv::OpDecorate && instructions[1] == spv::DecorationDescriptorSet
  164. && instructions[2] == kDxcVkBindlessRegisterSpace)
  165. {
  166. // Bindless set, rewrite its set
  167. instructions[2] = kMaxRegisterSpaces;
  168. }
  169. else if(cmd == spv::OpCapability && instructions[0] == spv::CapabilityMeshShadingEXT)
  170. {
  171. bRequiresMeshShaders = true;
  172. }
  173. });
  174. // Arm stats
  175. MaliOfflineCompilerOut maliocOut;
  176. Error err = Error::kNone;
  177. if((shaderType == ShaderType::kVertex || shaderType == ShaderType::kPixel || shaderType == ShaderType::kCompute)
  178. && !bRequiresMeshShaders)
  179. {
  180. err = runMaliOfflineCompiler(newSpirv, shaderType, maliocOut);
  181. if(err)
  182. {
  183. ANKI_LOGE("Mali offline compiler failed");
  184. ctx.m_error.store(1);
  185. break;
  186. }
  187. }
  188. // AMD
  189. RgaOutput rgaOut = {};
  190. #if 1
  191. if((shaderType == ShaderType::kVertex || shaderType == ShaderType::kPixel || shaderType == ShaderType::kCompute)
  192. && !bRequiresMeshShaders)
  193. {
  194. err = runRadeonGpuAnalyzer(newSpirv, shaderType, rgaOut);
  195. if(err)
  196. {
  197. ANKI_LOGE("Radeon GPU Analyzer compiler failed");
  198. ctx.m_error.store(1);
  199. break;
  200. }
  201. }
  202. #endif
  203. // Write stats
  204. Stats& stats = ctx.m_spirvStats[codeblockIdx];
  205. stats.m_arm.m_fma = maliocOut.m_fma;
  206. stats.m_arm.m_cvt = maliocOut.m_cvt;
  207. stats.m_arm.m_sfu = maliocOut.m_sfu;
  208. stats.m_arm.m_loadStore = maliocOut.m_loadStore;
  209. stats.m_arm.m_varying = maliocOut.m_varying;
  210. stats.m_arm.m_texture = maliocOut.m_texture;
  211. stats.m_arm.m_workRegisters = maliocOut.m_workRegisters;
  212. stats.m_arm.m_fp16ArithmeticPercentage = maliocOut.m_fp16ArithmeticPercentage;
  213. stats.m_arm.m_spillingCount = (maliocOut.m_spilling) ? 1.0 : 0.0;
  214. stats.m_amd.m_vgprCount = F64(rgaOut.m_vgprCount);
  215. stats.m_amd.m_sgprCount = F64(rgaOut.m_sgprCount);
  216. stats.m_amd.m_isaSize = F64(rgaOut.m_isaSize);
  217. }
  218. if(variantIdx > 0 && ((variantIdx + 1) % 32) == 0)
  219. {
  220. printf("Processed %u out of %u variants\n", variantIdx + 1, ctx.m_bin->m_variants.getSize());
  221. }
  222. }
  223. } // while
  224. };
  225. for(U32 i = 0; i < hive.getThreadCount(); ++i)
  226. {
  227. hive.submitTask(callback, &ctx);
  228. }
  229. hive.waitAllTasks();
  230. if(ctx.m_error.load() != 0)
  231. {
  232. return Error::kFunctionFailed;
  233. }
  234. // Cather the results
  235. Array<StageStats, U32(ShaderType::kCount)> allStageStats;
  236. for(const ShaderBinaryVariant& variant : bin.m_variants)
  237. {
  238. for(U32 t = 0; t < variant.m_techniqueCodeBlocks.getSize(); ++t)
  239. {
  240. for(ShaderType shaderType : EnumBitsIterable<ShaderType, ShaderTypeBit>(ctx.m_bin->m_techniques[t].m_shaderTypes))
  241. {
  242. const U32 codeblockIdx = variant.m_techniqueCodeBlocks[t].m_codeBlockIndices[shaderType];
  243. const Stats& stats = ctx.m_spirvStats[codeblockIdx];
  244. StageStats& allStats = allStageStats[shaderType];
  245. ++allStats.m_count;
  246. allStats.m_avgStats.op(stats, [](F64& a, F64 b) {
  247. a += b;
  248. });
  249. allStats.m_minStats.op(stats, [](F64& a, F64 b) {
  250. a = min(a, b);
  251. });
  252. allStats.m_maxStats.op(stats, [](F64& a, F64 b) {
  253. a = max(a, b);
  254. });
  255. }
  256. }
  257. }
  258. // Print
  259. for(ShaderType shaderType : EnumIterable<ShaderType>())
  260. {
  261. const StageStats& stage = allStageStats[shaderType];
  262. if(stage.m_count == 0)
  263. {
  264. continue;
  265. }
  266. printf("Stage %u\n", U32(shaderType));
  267. printf(" Arm shaders spilling regs %u\n", stage.m_spillingCount);
  268. const F64 countf = F64(stage.m_count);
  269. const Stats& avg = stage.m_avgStats;
  270. printf(" Average:\n");
  271. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", avg.m_arm.m_workRegisters / countf, avg.m_arm.m_fma / countf,
  272. avg.m_arm.m_cvt / countf, avg.m_arm.m_sfu / countf, avg.m_arm.m_loadStore / countf, avg.m_arm.m_varying / countf,
  273. avg.m_arm.m_texture / countf, avg.m_arm.m_fp16ArithmeticPercentage / countf);
  274. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", avg.m_amd.m_vgprCount / countf, avg.m_amd.m_sgprCount / countf,
  275. avg.m_amd.m_isaSize / countf);
  276. const Stats& maxs = stage.m_maxStats;
  277. printf(" Max:\n");
  278. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", maxs.m_arm.m_workRegisters, maxs.m_arm.m_fma,
  279. maxs.m_arm.m_cvt, maxs.m_arm.m_sfu, maxs.m_arm.m_loadStore, maxs.m_arm.m_varying, maxs.m_arm.m_texture,
  280. maxs.m_arm.m_fp16ArithmeticPercentage);
  281. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", maxs.m_amd.m_vgprCount, maxs.m_amd.m_sgprCount, maxs.m_amd.m_isaSize);
  282. }
  283. return Error::kNone;
  284. }
  285. Error dump(CString fname, Bool bDumpStats, Bool dumpBinary, Bool glsl, Bool spirv)
  286. {
  287. ShaderBinary* binary;
  288. ANKI_CHECK(deserializeShaderBinaryFromFile(fname, binary, ShaderCompilerMemoryPool::getSingleton()));
  289. class Dummy
  290. {
  291. public:
  292. ShaderBinary* m_binary;
  293. ~Dummy()
  294. {
  295. ShaderCompilerMemoryPool::getSingleton().free(m_binary);
  296. }
  297. } dummy{binary};
  298. if(dumpBinary)
  299. {
  300. ShaderDumpOptions options;
  301. options.m_writeGlsl = glsl;
  302. options.m_writeSpirv = spirv;
  303. ShaderCompilerString txt;
  304. dumpShaderBinary(options, *binary, txt);
  305. printf("%s\n", txt.cstr());
  306. }
  307. if(bDumpStats)
  308. {
  309. ANKI_CHECK(dumpStats(*binary));
  310. }
  311. return Error::kNone;
  312. }
  313. ANKI_MAIN_FUNCTION(myMain)
  314. int myMain(int argc, char** argv)
  315. {
  316. class Dummy
  317. {
  318. public:
  319. ~Dummy()
  320. {
  321. DefaultMemoryPool::freeSingleton();
  322. ShaderCompilerMemoryPool::freeSingleton();
  323. }
  324. } dummy;
  325. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr);
  326. ShaderCompilerMemoryPool::allocateSingleton(allocAligned, nullptr);
  327. String filename;
  328. Bool dumpStats;
  329. Bool dumpBinary;
  330. Bool glsl;
  331. Bool spirv;
  332. if(parseCommandLineArgs(WeakArray<char*>(argv, argc), dumpStats, dumpBinary, glsl, spirv, filename))
  333. {
  334. ANKI_LOGE(kUsage, argv[0]);
  335. return 1;
  336. }
  337. const Error err = dump(filename, dumpStats, dumpBinary, glsl, spirv);
  338. if(err)
  339. {
  340. ANKI_LOGE("Can't dump due to an error. Bye");
  341. return 1;
  342. }
  343. return 0;
  344. }