IndirectDiffuseProbes.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  8. #include <AnKi/Renderer/Sky.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Scene/SceneGraph.h>
  11. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  12. #include <AnKi/Scene/Components/LightComponent.h>
  13. #include <AnKi/Core/CVarSet.h>
  14. #include <AnKi/Core/StatsSet.h>
  15. #include <AnKi/Util/Tracer.h>
  16. #include <AnKi/Collision/Aabb.h>
  17. #include <AnKi/Collision/Functions.h>
  18. #include <AnKi/Resource/AsyncLoader.h>
  19. namespace anki {
  20. static NumericCVar<U32> g_indirectDiffuseProbeTileResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeTileResolution",
  21. (ANKI_PLATFORM_MOBILE) ? 16 : 32, 8, 32, "GI tile resolution");
  22. static NumericCVar<U32> g_indirectDiffuseProbeShadowMapResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeShadowMapResolution", 128, 4,
  23. 2048, "GI shadowmap resolution");
  24. static StatCounter g_giProbeRenderCountStatVar(StatCategory::kRenderer, "GI probes rendered", StatFlag::kMainThreadUpdates);
  25. static StatCounter g_giProbeCellsRenderCountStatVar(StatCategory::kRenderer, "GI probes cells rendered", StatFlag::kMainThreadUpdates);
  26. static Vec3 computeCellCenter(U32 cellIdx, const GlobalIlluminationProbeComponent& probe)
  27. {
  28. const Vec3 halfAabbSize = probe.getBoxVolumeSize() / 2.0f;
  29. const Vec3 aabbMin = -halfAabbSize + probe.getWorldPosition();
  30. U32 x, y, z;
  31. unflatten3dArrayIndex(probe.getCellCountsPerDimension().x(), probe.getCellCountsPerDimension().y(), probe.getCellCountsPerDimension().z(),
  32. cellIdx, x, y, z);
  33. const Vec3 cellSize = probe.getBoxVolumeSize() / Vec3(probe.getCellCountsPerDimension());
  34. const Vec3 halfCellSize = cellSize / 2.0f;
  35. const Vec3 cellCenter = aabbMin + halfCellSize + cellSize * Vec3(UVec3(x, y, z));
  36. return cellCenter;
  37. }
  38. Error IndirectDiffuseProbes::init()
  39. {
  40. const Error err = initInternal();
  41. if(err)
  42. {
  43. ANKI_R_LOGE("Failed to initialize global illumination");
  44. }
  45. return err;
  46. }
  47. Error IndirectDiffuseProbes::initInternal()
  48. {
  49. m_tileSize = g_indirectDiffuseProbeTileResolutionCVar.get();
  50. ANKI_CHECK(initGBuffer());
  51. ANKI_CHECK(initLightShading());
  52. ANKI_CHECK(initShadowMapping());
  53. ANKI_CHECK(initIrradiance());
  54. return Error::kNone;
  55. }
  56. Error IndirectDiffuseProbes::initGBuffer()
  57. {
  58. // Create RT descriptions
  59. {
  60. RenderTargetDesc texinit =
  61. getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  62. texinit.m_type = TextureType::kCube;
  63. // Create color RT descriptions
  64. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  65. {
  66. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  67. m_gbuffer.m_colorRtDescrs[i] = texinit;
  68. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  69. m_gbuffer.m_colorRtDescrs[i].bake();
  70. }
  71. // Create depth RT
  72. texinit.m_type = TextureType::k2D;
  73. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  74. texinit.setName("GI GBuff Depth");
  75. m_gbuffer.m_depthRtDescr = texinit;
  76. m_gbuffer.m_depthRtDescr.bake();
  77. }
  78. return Error::kNone;
  79. }
  80. Error IndirectDiffuseProbes::initShadowMapping()
  81. {
  82. const U32 resolution = g_indirectDiffuseProbeShadowMapResolutionCVar.get();
  83. ANKI_ASSERT(resolution > 8);
  84. // RT descr
  85. m_shadowMapping.m_rtDescr =
  86. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  87. m_shadowMapping.m_rtDescr.bake();
  88. return Error::kNone;
  89. }
  90. Error IndirectDiffuseProbes::initLightShading()
  91. {
  92. // Init RT descr
  93. {
  94. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  95. m_lightShading.m_rtDescr.m_type = TextureType::kCube;
  96. m_lightShading.m_rtDescr.bake();
  97. }
  98. // Init deferred
  99. ANKI_CHECK(m_lightShading.m_deferred.init());
  100. return Error::kNone;
  101. }
  102. Error IndirectDiffuseProbes::initIrradiance()
  103. {
  104. ANKI_CHECK(loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  105. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_tileSize)}, {"STORE_LOCATION", 0}, {"SECOND_BOUNCE", 1}},
  106. m_irradiance.m_prog, m_irradiance.m_grProg));
  107. return Error::kNone;
  108. }
  109. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  110. {
  111. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuse);
  112. // Iterate the visible probes to find a candidate for update
  113. WeakArray<GlobalIlluminationProbeComponent*> visibleProbes =
  114. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_globalIlluminationProbes;
  115. GlobalIlluminationProbeComponent* bestCandidateProbe = nullptr;
  116. GlobalIlluminationProbeComponent* secondBestCandidateProbe = nullptr;
  117. for(GlobalIlluminationProbeComponent* probe : visibleProbes)
  118. {
  119. if(probe->getCellsNeedsRefresh())
  120. {
  121. if(probe->getNextCellForRefresh() != 0)
  122. {
  123. bestCandidateProbe = probe;
  124. break;
  125. }
  126. else
  127. {
  128. secondBestCandidateProbe = probe;
  129. }
  130. }
  131. }
  132. GlobalIlluminationProbeComponent* probeToRefresh = (bestCandidateProbe) ? bestCandidateProbe : secondBestCandidateProbe;
  133. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  134. {
  135. // Nothing to update or can't update right now, early exit
  136. m_runCtx = {};
  137. return;
  138. }
  139. const Bool probeTouchedFirstTime = probeToRefresh->getNextCellForRefresh() == 0;
  140. if(probeTouchedFirstTime)
  141. {
  142. g_giProbeRenderCountStatVar.increment(1);
  143. }
  144. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  145. // Create some common resources to save on memory
  146. Array<RenderTargetHandle, kMaxColorRenderTargets> gbufferColorRts;
  147. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  148. {
  149. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  150. }
  151. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  152. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  153. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  154. const RenderTargetHandle shadowsRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  155. const RenderTargetHandle lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  156. const RenderTargetHandle irradianceVolume = rgraph.importRenderTarget(&probeToRefresh->getVolumeTexture(), TextureUsageBit::kNone);
  157. m_runCtx.m_probeVolumeHandle = irradianceVolume;
  158. const U32 beginCellIdx = probeToRefresh->getNextCellForRefresh();
  159. for(U32 cellIdx = beginCellIdx; cellIdx < min(beginCellIdx + kProbeCellRefreshesPerFrame, probeToRefresh->getCellCount()); ++cellIdx)
  160. {
  161. const Vec3 cellCenter = computeCellCenter(cellIdx, *probeToRefresh);
  162. // For each face do everything up to light shading
  163. for(U8 f = 0; f < 6; ++f)
  164. {
  165. // GBuffer visibility
  166. GpuVisibilityOutput visOut;
  167. Frustum frustum;
  168. {
  169. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  170. frustum.setWorldTransform(
  171. Transform(cellCenter.xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  172. frustum.update();
  173. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  174. FrustumGpuVisibilityInput visIn;
  175. visIn.m_passesName = generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f);
  176. visIn.m_technique = RenderingTechnique::kGBuffer;
  177. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  178. visIn.m_lodReferencePoint = cellCenter;
  179. visIn.m_lodDistances = lodDistances;
  180. visIn.m_rgraph = &rgraph;
  181. visIn.m_viewportSize = UVec2(m_tileSize);
  182. visIn.m_limitMemory = true;
  183. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  184. }
  185. // GBuffer
  186. {
  187. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f));
  188. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  189. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  190. {
  191. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  192. colorRtis[j].m_subresource.m_face = f;
  193. colorRtis[j].m_handle = gbufferColorRts[j];
  194. }
  195. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  196. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  197. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  198. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  199. pass.setRenderpassInfo(colorRtis, &depthRti);
  200. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  201. {
  202. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  203. }
  204. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllRtvDsv,
  205. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  206. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  207. pass.setWork([this, visOut, viewProjMat = frustum.getViewProjectionMatrix(),
  208. viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  209. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  210. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  211. cmdb.setViewport(0, 0, m_tileSize, m_tileSize);
  212. RenderableDrawerArguments args;
  213. args.m_viewMatrix = viewMat;
  214. args.m_cameraTransform = args.m_viewMatrix.getInverseTransformation();
  215. args.m_viewProjectionMatrix = viewProjMat;
  216. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  217. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  218. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  219. args.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  220. args.fill(visOut);
  221. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  222. // It's secondary, no need to restore any state
  223. });
  224. }
  225. // Shadow visibility. Optional
  226. GpuVisibilityOutput shadowVisOut;
  227. Mat4 cascadeProjMat;
  228. Mat3x4 cascadeViewMat;
  229. Mat4 cascadeViewProjMat;
  230. if(doShadows)
  231. {
  232. constexpr U32 kCascadeCount = 1;
  233. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  234. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  235. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  236. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  237. FrustumGpuVisibilityInput visIn;
  238. visIn.m_passesName = generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f);
  239. visIn.m_technique = RenderingTechnique::kDepth;
  240. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  241. visIn.m_lodReferencePoint = cellCenter;
  242. visIn.m_lodDistances = lodDistances;
  243. visIn.m_rgraph = &rgraph;
  244. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  245. visIn.m_limitMemory = true;
  246. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  247. }
  248. // Shadow pass. Optional
  249. if(doShadows)
  250. {
  251. // Create the pass
  252. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f));
  253. GraphicsRenderPassTargetDesc depthRti(shadowsRt);
  254. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  255. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  256. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  257. pass.setRenderpassInfo({}, &depthRti);
  258. pass.newTextureDependency(shadowsRt, TextureUsageBit::kAllRtvDsv,
  259. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  260. pass.newBufferDependency(shadowVisOut.m_dependency, BufferUsageBit::kIndirectDraw);
  261. pass.setWork([this, shadowVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  262. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  263. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  264. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  265. const U32 rez = m_shadowMapping.m_rtDescr.m_width;
  266. cmdb.setViewport(0, 0, rez, rez);
  267. RenderableDrawerArguments args;
  268. args.m_viewMatrix = cascadeViewMat;
  269. args.m_cameraTransform = cascadeViewMat.getInverseTransformation();
  270. args.m_viewProjectionMatrix = cascadeViewProjMat;
  271. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  272. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  273. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  274. args.m_viewport = UVec4(0, 0, rez, rez);
  275. args.fill(shadowVisOut);
  276. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  277. // It's secondary, no need to restore the state
  278. });
  279. }
  280. // Light visibility
  281. GpuVisibilityNonRenderablesOutput lightVis;
  282. {
  283. GpuVisibilityNonRenderablesInput in;
  284. in.m_passesName = generateTempPassName("GI: Light visibility cell:%u face:%u", cellIdx, f);
  285. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  286. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  287. in.m_rgraph = &rgraph;
  288. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  289. }
  290. // Light shading pass
  291. {
  292. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Light shading cell:%u face:%u", cellIdx, f));
  293. GraphicsRenderPassTargetDesc colorRti(lightShadingRt);
  294. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  295. colorRti.m_subresource.m_face = f;
  296. pass.setRenderpassInfo({colorRti});
  297. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kSrvPixel);
  298. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  299. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  300. {
  301. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvPixel, TextureSubresourceDesc::surface(0, f, 0));
  302. }
  303. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSrvPixel,
  304. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  305. if(shadowsRt.isValid())
  306. {
  307. pass.newTextureDependency(shadowsRt, TextureUsageBit::kSrvPixel);
  308. }
  309. if(getRenderer().getSky().isEnabled())
  310. {
  311. pass.newTextureDependency(getRenderer().getSky().getSkyLutRt(), TextureUsageBit::kSrvPixel);
  312. }
  313. pass.setWork([this, visibleLightsBuffer = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(), cellCenter,
  314. gbufferColorRts, gbufferDepthRt, probeToRefresh, cascadeViewProjMat, shadowsRt, faceIdx = f,
  315. &rctx](RenderPassWorkContext& rgraphCtx) {
  316. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  317. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  318. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  319. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  320. const U32 rez = m_tileSize;
  321. cmdb.setViewport(0, 0, rez, rez);
  322. // Draw light shading
  323. TraditionalDeferredLightShadingDrawInfo dsInfo;
  324. dsInfo.m_viewProjectionMatrix = viewProjMat;
  325. dsInfo.m_invViewProjectionMatrix = viewProjMat.getInverse();
  326. dsInfo.m_cameraPosWSpace = cellCenter.xyz1();
  327. dsInfo.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  328. dsInfo.m_effectiveShadowDistance = (doShadows) ? probeToRefresh->getShadowsRenderRadius() : -1.0f;
  329. if(doShadows)
  330. {
  331. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  332. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  333. }
  334. else
  335. {
  336. dsInfo.m_dirLightMatrix = Mat4::getIdentity();
  337. }
  338. dsInfo.m_visibleLightsBuffer = visibleLightsBuffer;
  339. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  340. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  341. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  342. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  343. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  344. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  345. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  346. dsInfo.m_directionalLightShadowmapRenderTarget = shadowsRt;
  347. dsInfo.m_skyLutRenderTarget = (getRenderer().getSky().isEnabled()) ? getRenderer().getSky().getSkyLutRt() : RenderTargetHandle();
  348. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingConstantsBuffer;
  349. dsInfo.m_renderpassContext = &rgraphCtx;
  350. m_lightShading.m_deferred.drawLights(dsInfo);
  351. });
  352. }
  353. } // For all faces
  354. // Irradiance pass. First & 2nd bounce
  355. {
  356. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass(generateTempPassName("GI: Irradiance cell:%u", cellIdx));
  357. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kSrvCompute);
  358. pass.newTextureDependency(irradianceVolume, TextureUsageBit::kUavCompute);
  359. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  360. {
  361. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvCompute);
  362. }
  363. pass.setWork([this, lightShadingRt, gbufferColorRts, irradianceVolume, cellIdx, probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  364. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  365. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  366. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  367. // Bind resources
  368. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  369. rgraphCtx.bindSrv(0, 0, lightShadingRt);
  370. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  371. {
  372. rgraphCtx.bindSrv(i + 1, 0, gbufferColorRts[i]);
  373. }
  374. rgraphCtx.bindUav(0, 0, irradianceVolume);
  375. class
  376. {
  377. public:
  378. IVec3 m_volumeTexel;
  379. I32 m_nextTexelOffsetInU;
  380. } consts;
  381. U32 x, y, z;
  382. unflatten3dArrayIndex(probeToRefresh->getCellCountsPerDimension().x(), probeToRefresh->getCellCountsPerDimension().y(),
  383. probeToRefresh->getCellCountsPerDimension().z(), cellIdx, x, y, z);
  384. consts.m_volumeTexel = IVec3(x, probeToRefresh->getCellCountsPerDimension().y() - y - 1, z);
  385. consts.m_nextTexelOffsetInU = probeToRefresh->getCellCountsPerDimension().x();
  386. cmdb.setFastConstants(&consts, sizeof(consts));
  387. // Dispatch
  388. cmdb.dispatchCompute(1, 1, 1);
  389. });
  390. }
  391. probeToRefresh->incrementRefreshedCells(1);
  392. g_giProbeCellsRenderCountStatVar.increment(1);
  393. }
  394. }
  395. } // end namespace anki