MeshResource.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Resource/MeshResource.h>
  6. #include <AnKi/Resource/ResourceManager.h>
  7. #include <AnKi/Resource/MeshBinaryLoader.h>
  8. #include <AnKi/Resource/AsyncLoader.h>
  9. #include <AnKi/Util/Functions.h>
  10. #include <AnKi/Util/Filesystem.h>
  11. namespace anki {
  12. class MeshResource::LoadContext
  13. {
  14. public:
  15. MeshResourcePtr m_mesh;
  16. MeshBinaryLoader m_loader;
  17. LoadContext(const MeshResourcePtr& mesh, GenericMemoryPoolAllocator<U8> alloc)
  18. : m_mesh(mesh)
  19. , m_loader(&mesh->getManager(), alloc)
  20. {
  21. }
  22. };
  23. /// Mesh upload async task.
  24. class MeshResource::LoadTask : public AsyncLoaderTask
  25. {
  26. public:
  27. MeshResource::LoadContext m_ctx;
  28. LoadTask(const MeshResourcePtr& mesh)
  29. : m_ctx(mesh, mesh->getManager().getAsyncLoader().getAllocator())
  30. {
  31. }
  32. Error operator()(AsyncLoaderTaskContext& ctx) final
  33. {
  34. return m_ctx.m_mesh->loadAsync(m_ctx.m_loader);
  35. }
  36. GenericMemoryPoolAllocator<U8> getAllocator() const
  37. {
  38. return m_ctx.m_mesh->getManager().getAsyncLoader().getAllocator();
  39. }
  40. };
  41. MeshResource::MeshResource(ResourceManager* manager)
  42. : ResourceObject(manager)
  43. {
  44. memset(&m_meshGpuDescriptor, 0, sizeof(m_meshGpuDescriptor));
  45. }
  46. MeshResource::~MeshResource()
  47. {
  48. m_subMeshes.destroy(getAllocator());
  49. m_vertexBufferInfos.destroy(getAllocator());
  50. }
  51. Bool MeshResource::isCompatible(const MeshResource& other) const
  52. {
  53. return hasBoneWeights() == other.hasBoneWeights() && getSubMeshCount() == other.getSubMeshCount();
  54. }
  55. Error MeshResource::load(const ResourceFilename& filename, Bool async)
  56. {
  57. UniquePtr<LoadTask> task;
  58. LoadContext* ctx;
  59. LoadContext localCtx(MeshResourcePtr(this), getTempAllocator());
  60. StringAuto basename(getTempAllocator());
  61. getFilepathFilename(filename, basename);
  62. const Bool rayTracingEnabled = getManager().getGrManager().getDeviceCapabilities().m_rayTracingEnabled;
  63. if(async)
  64. {
  65. task.reset(getManager().getAsyncLoader().newTask<LoadTask>(MeshResourcePtr(this)));
  66. ctx = &task->m_ctx;
  67. }
  68. else
  69. {
  70. task.reset(nullptr);
  71. ctx = &localCtx;
  72. }
  73. // Open file
  74. MeshBinaryLoader& loader = ctx->m_loader;
  75. ANKI_CHECK(loader.load(filename));
  76. const MeshBinaryHeader& header = loader.getHeader();
  77. // Get submeshes
  78. m_subMeshes.create(getAllocator(), header.m_subMeshCount);
  79. for(U32 i = 0; i < m_subMeshes.getSize(); ++i)
  80. {
  81. m_subMeshes[i].m_firstIndex = loader.getSubMeshes()[i].m_firstIndex;
  82. m_subMeshes[i].m_indexCount = loader.getSubMeshes()[i].m_indexCount;
  83. m_subMeshes[i].m_aabb.setMin(loader.getSubMeshes()[i].m_aabbMin);
  84. m_subMeshes[i].m_aabb.setMax(loader.getSubMeshes()[i].m_aabbMax);
  85. }
  86. // Index stuff
  87. m_indexCount = header.m_totalIndexCount;
  88. ANKI_ASSERT((m_indexCount % 3) == 0 && "Expecting triangles");
  89. m_indexType = header.m_indexType;
  90. const PtrSize indexBuffSize = PtrSize(m_indexCount) * ((m_indexType == IndexType::U32) ? 4 : 2);
  91. BufferUsageBit indexBufferUsage = BufferUsageBit::INDEX | BufferUsageBit::TRANSFER_DESTINATION;
  92. if(rayTracingEnabled)
  93. {
  94. indexBufferUsage |= BufferUsageBit::ACCELERATION_STRUCTURE_BUILD;
  95. }
  96. m_indexBuffer = getManager().getGrManager().newBuffer(
  97. BufferInitInfo(indexBuffSize, indexBufferUsage, BufferMapAccessBit::NONE,
  98. StringAuto(getTempAllocator()).sprintf("%s_%s", "Idx", basename.cstr())));
  99. // Vertex stuff
  100. m_vertexCount = header.m_totalVertexCount;
  101. m_vertexBufferInfos.create(getAllocator(), header.m_vertexBufferCount);
  102. U32 totalVertexBuffSize = 0;
  103. for(U32 i = 0; i < header.m_vertexBufferCount; ++i)
  104. {
  105. alignRoundUp(MESH_BINARY_BUFFER_ALIGNMENT, totalVertexBuffSize);
  106. m_vertexBufferInfos[i].m_offset = totalVertexBuffSize;
  107. m_vertexBufferInfos[i].m_stride = header.m_vertexBuffers[i].m_vertexStride;
  108. totalVertexBuffSize += m_vertexCount * m_vertexBufferInfos[i].m_stride;
  109. }
  110. BufferUsageBit vertexBufferUsage = BufferUsageBit::VERTEX | BufferUsageBit::TRANSFER_DESTINATION;
  111. if(rayTracingEnabled)
  112. {
  113. vertexBufferUsage |= BufferUsageBit::ACCELERATION_STRUCTURE_BUILD;
  114. }
  115. m_vertexBuffer = getManager().getGrManager().newBuffer(
  116. BufferInitInfo(totalVertexBuffSize, vertexBufferUsage, BufferMapAccessBit::NONE,
  117. StringAuto(getTempAllocator()).sprintf("%s_%s", "Vert", basename.cstr())));
  118. for(VertexAttributeId attrib = VertexAttributeId::FIRST; attrib < VertexAttributeId::COUNT; ++attrib)
  119. {
  120. AttribInfo& out = m_attributes[attrib];
  121. const MeshBinaryVertexAttribute& in = header.m_vertexAttributes[attrib];
  122. if(!!in.m_format)
  123. {
  124. out.m_format = in.m_format;
  125. out.m_relativeOffset = in.m_relativeOffset;
  126. out.m_buffIdx = U8(in.m_bufferBinding);
  127. ANKI_ASSERT(in.m_scale == 1.0f && "Not supported ATM");
  128. }
  129. }
  130. // Other
  131. m_aabb.setMin(header.m_aabbMin);
  132. m_aabb.setMax(header.m_aabbMax);
  133. // Clear the buffers
  134. if(async)
  135. {
  136. CommandBufferInitInfo cmdbinit;
  137. cmdbinit.m_flags = CommandBufferFlag::SMALL_BATCH | CommandBufferFlag::GENERAL_WORK;
  138. CommandBufferPtr cmdb = getManager().getGrManager().newCommandBuffer(cmdbinit);
  139. cmdb->fillBuffer(m_vertexBuffer, 0, MAX_PTR_SIZE, 0);
  140. cmdb->fillBuffer(m_indexBuffer, 0, MAX_PTR_SIZE, 0);
  141. cmdb->setBufferBarrier(m_vertexBuffer, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::VERTEX, 0,
  142. MAX_PTR_SIZE);
  143. cmdb->setBufferBarrier(m_indexBuffer, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::INDEX, 0,
  144. MAX_PTR_SIZE);
  145. cmdb->flush();
  146. }
  147. // Create the BLAS
  148. if(rayTracingEnabled)
  149. {
  150. AccelerationStructureInitInfo inf(StringAuto(getTempAllocator()).sprintf("%s_%s", "Blas", basename.cstr()));
  151. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  152. inf.m_bottomLevel.m_indexBuffer = m_indexBuffer;
  153. inf.m_bottomLevel.m_indexBufferOffset = 0;
  154. inf.m_bottomLevel.m_indexCount = m_indexCount;
  155. inf.m_bottomLevel.m_indexType = m_indexType;
  156. U32 bufferIdx;
  157. Format format;
  158. U32 relativeOffset;
  159. getVertexAttributeInfo(VertexAttributeId::POSITION, bufferIdx, format, relativeOffset);
  160. BufferPtr buffer;
  161. PtrSize offset;
  162. PtrSize stride;
  163. getVertexBufferInfo(bufferIdx, buffer, offset, stride);
  164. inf.m_bottomLevel.m_positionBuffer = buffer;
  165. inf.m_bottomLevel.m_positionBufferOffset = offset;
  166. inf.m_bottomLevel.m_positionStride = U32(stride);
  167. inf.m_bottomLevel.m_positionsFormat = format;
  168. inf.m_bottomLevel.m_positionCount = m_vertexCount;
  169. m_blas = getManager().getGrManager().newAccelerationStructure(inf);
  170. }
  171. // Fill the GPU descriptor
  172. if(rayTracingEnabled)
  173. {
  174. U32 bufferIdx;
  175. Format format;
  176. U32 relativeOffset;
  177. getVertexAttributeInfo(VertexAttributeId::POSITION, bufferIdx, format, relativeOffset);
  178. BufferPtr buffer;
  179. PtrSize offset;
  180. PtrSize stride;
  181. getVertexBufferInfo(bufferIdx, buffer, offset, stride);
  182. m_meshGpuDescriptor.m_indexBufferPtr = m_indexBuffer->getGpuAddress();
  183. m_meshGpuDescriptor.m_vertexBufferPtrs[VertexAttributeBufferId::POSITION] = buffer->getGpuAddress();
  184. getVertexAttributeInfo(VertexAttributeId::NORMAL, bufferIdx, format, relativeOffset);
  185. getVertexBufferInfo(bufferIdx, buffer, offset, stride);
  186. m_meshGpuDescriptor.m_vertexBufferPtrs[VertexAttributeBufferId::NORMAL_TANGENT_UV0] = buffer->getGpuAddress();
  187. if(hasBoneWeights())
  188. {
  189. getVertexAttributeInfo(VertexAttributeId::BONE_WEIGHTS, bufferIdx, format, relativeOffset);
  190. getVertexBufferInfo(bufferIdx, buffer, offset, stride);
  191. m_meshGpuDescriptor.m_vertexBufferPtrs[VertexAttributeBufferId::BONE] = buffer->getGpuAddress();
  192. }
  193. m_meshGpuDescriptor.m_indexCount = m_indexCount;
  194. m_meshGpuDescriptor.m_vertexCount = m_vertexCount;
  195. m_meshGpuDescriptor.m_aabbMin = header.m_aabbMin;
  196. m_meshGpuDescriptor.m_aabbMax = header.m_aabbMax;
  197. }
  198. // Submit the loading task
  199. if(async)
  200. {
  201. getManager().getAsyncLoader().submitTask(task.get());
  202. LoadTask* pTask;
  203. task.moveAndReset(pTask);
  204. }
  205. else
  206. {
  207. ANKI_CHECK(loadAsync(loader));
  208. }
  209. return Error::NONE;
  210. }
  211. Error MeshResource::loadAsync(MeshBinaryLoader& loader) const
  212. {
  213. GrManager& gr = getManager().getGrManager();
  214. TransferGpuAllocator& transferAlloc = getManager().getTransferGpuAllocator();
  215. Array<TransferGpuAllocatorHandle, 2> handles;
  216. CommandBufferInitInfo cmdbinit;
  217. cmdbinit.m_flags = CommandBufferFlag::SMALL_BATCH | CommandBufferFlag::GENERAL_WORK;
  218. CommandBufferPtr cmdb = gr.newCommandBuffer(cmdbinit);
  219. // Set barriers
  220. cmdb->setBufferBarrier(m_vertexBuffer, BufferUsageBit::VERTEX, BufferUsageBit::TRANSFER_DESTINATION, 0,
  221. MAX_PTR_SIZE);
  222. cmdb->setBufferBarrier(m_indexBuffer, BufferUsageBit::INDEX, BufferUsageBit::TRANSFER_DESTINATION, 0, MAX_PTR_SIZE);
  223. // Write index buffer
  224. {
  225. ANKI_CHECK(transferAlloc.allocate(m_indexBuffer->getSize(), handles[1]));
  226. void* data = handles[1].getMappedMemory();
  227. ANKI_ASSERT(data);
  228. ANKI_CHECK(loader.storeIndexBuffer(data, m_indexBuffer->getSize()));
  229. cmdb->copyBufferToBuffer(handles[1].getBuffer(), handles[1].getOffset(), m_indexBuffer, 0,
  230. handles[1].getRange());
  231. }
  232. // Write vert buff
  233. {
  234. ANKI_CHECK(transferAlloc.allocate(m_vertexBuffer->getSize(), handles[0]));
  235. U8* data = static_cast<U8*>(handles[0].getMappedMemory());
  236. ANKI_ASSERT(data);
  237. // Load to staging
  238. PtrSize offset = 0;
  239. for(U32 i = 0; i < m_vertexBufferInfos.getSize(); ++i)
  240. {
  241. alignRoundUp(MESH_BINARY_BUFFER_ALIGNMENT, offset);
  242. ANKI_CHECK(
  243. loader.storeVertexBuffer(i, data + offset, PtrSize(m_vertexBufferInfos[i].m_stride) * m_vertexCount));
  244. offset += PtrSize(m_vertexBufferInfos[i].m_stride) * m_vertexCount;
  245. }
  246. ANKI_ASSERT(offset == m_vertexBuffer->getSize());
  247. // Copy
  248. cmdb->copyBufferToBuffer(handles[0].getBuffer(), handles[0].getOffset(), m_vertexBuffer, 0,
  249. handles[0].getRange());
  250. }
  251. // Build the BLAS
  252. if(gr.getDeviceCapabilities().m_rayTracingEnabled)
  253. {
  254. cmdb->setBufferBarrier(m_vertexBuffer, BufferUsageBit::TRANSFER_DESTINATION,
  255. BufferUsageBit::ACCELERATION_STRUCTURE_BUILD | BufferUsageBit::VERTEX, 0, MAX_PTR_SIZE);
  256. cmdb->setBufferBarrier(m_indexBuffer, BufferUsageBit::TRANSFER_DESTINATION,
  257. BufferUsageBit::ACCELERATION_STRUCTURE_BUILD | BufferUsageBit::INDEX, 0, MAX_PTR_SIZE);
  258. cmdb->setAccelerationStructureBarrier(m_blas, AccelerationStructureUsageBit::NONE,
  259. AccelerationStructureUsageBit::BUILD);
  260. cmdb->buildAccelerationStructure(m_blas);
  261. cmdb->setAccelerationStructureBarrier(m_blas, AccelerationStructureUsageBit::BUILD,
  262. AccelerationStructureUsageBit::ALL_READ);
  263. }
  264. else
  265. {
  266. cmdb->setBufferBarrier(m_vertexBuffer, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::VERTEX, 0,
  267. MAX_PTR_SIZE);
  268. cmdb->setBufferBarrier(m_indexBuffer, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::INDEX, 0,
  269. MAX_PTR_SIZE);
  270. }
  271. // Finalize
  272. FencePtr fence;
  273. cmdb->flush({}, &fence);
  274. transferAlloc.release(handles[0], fence);
  275. transferAlloc.release(handles[1], fence);
  276. return Error::NONE;
  277. }
  278. } // end namespace anki