Gr.cpp 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669
  1. // Copyright (C) 2009-2021, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <AnKi/Gr.h>
  7. #include <AnKi/Core/NativeWindow.h>
  8. #include <AnKi/Input/Input.h>
  9. #include <AnKi/Core/ConfigSet.h>
  10. #include <AnKi/Util/HighRezTimer.h>
  11. #include <AnKi/Core/StagingGpuMemoryManager.h>
  12. #include <AnKi/Resource/TransferGpuAllocator.h>
  13. #include <AnKi/ShaderCompiler/Glslang.h>
  14. #include <AnKi/ShaderCompiler/ShaderProgramParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <ctime>
  17. namespace anki {
  18. const U WIDTH = 1024;
  19. const U HEIGHT = 768;
  20. static const char* VERT_SRC = R"(
  21. out gl_PerVertex
  22. {
  23. vec4 gl_Position;
  24. };
  25. void main()
  26. {
  27. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  28. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  29. })";
  30. static const char* VERT_QUAD_STRIP_SRC = R"(
  31. out gl_PerVertex
  32. {
  33. vec4 gl_Position;
  34. };
  35. layout(location = 0) out Vec2 out_uv;
  36. void main()
  37. {
  38. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  39. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  40. out_uv = gl_Position.xy / 2.0 + 0.5;
  41. })";
  42. static const char* VERT_UBO_SRC = R"(
  43. out gl_PerVertex
  44. {
  45. vec4 gl_Position;
  46. };
  47. layout(set = 0, binding = 0) uniform u0_
  48. {
  49. vec4 u_color[3];
  50. };
  51. layout(set = 0, binding = 1) uniform u1_
  52. {
  53. vec4 u_rotation2d;
  54. };
  55. layout(location = 0) out vec3 out_color;
  56. void main()
  57. {
  58. out_color = u_color[gl_VertexID].rgb;
  59. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  60. mat2 rot = mat2(
  61. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  62. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  63. gl_Position = vec4(pos, 0.0, 1.0);
  64. })";
  65. static const char* VERT_INP_SRC = R"(
  66. layout(location = 0) in vec3 in_position;
  67. layout(location = 1) in vec3 in_color0;
  68. layout(location = 2) in vec3 in_color1;
  69. out gl_PerVertex
  70. {
  71. vec4 gl_Position;
  72. };
  73. layout(location = 0) out vec3 out_color0;
  74. layout(location = 1) out vec3 out_color1;
  75. void main()
  76. {
  77. gl_Position = vec4(in_position, 1.0);
  78. out_color0 = in_color0;
  79. out_color1 = in_color1;
  80. })";
  81. static const char* VERT_QUAD_SRC = R"(
  82. out gl_PerVertex
  83. {
  84. vec4 gl_Position;
  85. };
  86. layout(location = 0) out vec2 out_uv;
  87. void main()
  88. {
  89. const vec2 POSITIONS[6] =
  90. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  91. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  92. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  93. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  94. })";
  95. static const char* VERT_MRT_SRC = R"(
  96. out gl_PerVertex
  97. {
  98. vec4 gl_Position;
  99. };
  100. layout(location = 0) in vec3 in_pos;
  101. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  102. {
  103. mat4 u_mvp;
  104. };
  105. void main()
  106. {
  107. gl_Position = u_mvp * vec4(in_pos, 1.0);
  108. })";
  109. static const char* FRAG_SRC = R"(layout (location = 0) out vec4 out_color;
  110. void main()
  111. {
  112. out_color = vec4(0.5);
  113. })";
  114. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  115. layout(location = 0) in vec3 in_color;
  116. void main()
  117. {
  118. out_color = vec4(in_color, 1.0);
  119. })";
  120. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  121. layout(location = 0) in vec3 in_color0;
  122. layout(location = 1) in vec3 in_color1;
  123. void main()
  124. {
  125. out_color = vec4(in_color0 + in_color1, 1.0);
  126. })";
  127. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  128. layout(location = 0) in vec2 in_uv;
  129. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  130. void main()
  131. {
  132. out_color = texture(u_tex0, in_uv);
  133. })";
  134. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  135. layout(set = 0, binding = 0) uniform u0_
  136. {
  137. vec4 u_uv;
  138. };
  139. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  140. void main()
  141. {
  142. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  143. })";
  144. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  145. layout (location = 1) out vec4 out_color1;
  146. layout(set = 0, binding = 1, std140) uniform u1_
  147. {
  148. vec4 u_color0;
  149. vec4 u_color1;
  150. };
  151. void main()
  152. {
  153. out_color0 = u_color0;
  154. out_color1 = u_color1;
  155. })";
  156. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  157. layout(location = 0) in vec2 in_uv;
  158. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  159. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  160. void main()
  161. {
  162. vec2 uv = in_uv;
  163. #ifdef ANKI_VK
  164. uv.y = 1.0 - uv.y;
  165. #endif
  166. float factor = uv.x;
  167. vec3 col0 = texture(u_tex0, uv).rgb;
  168. vec3 col1 = texture(u_tex1, uv).rgb;
  169. out_color = vec4(col1 + col0, 1.0);
  170. })";
  171. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  172. layout (location = 0) out vec4 out_color;
  173. layout(location = 0) in vec2 in_uv;
  174. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  175. void main()
  176. {
  177. out_color = textureLod(u_tex0, in_uv, 1.0);
  178. })";
  179. static const char* COMP_WRITE_IMAGE_SRC = R"(
  180. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  181. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  182. layout(set = 1, binding = 0) buffer ss1_
  183. {
  184. vec4 u_color;
  185. };
  186. void main()
  187. {
  188. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  189. })";
  190. static NativeWindow* win = nullptr;
  191. static GrManager* gr = nullptr;
  192. static StagingGpuMemoryManager* stagingMem = nullptr;
  193. static Input* input = nullptr;
  194. #define COMMON_BEGIN() \
  195. stagingMem = new StagingGpuMemoryManager(); \
  196. ConfigSet cfg = DefaultConfigSet::get(); \
  197. cfg.set("width", WIDTH); \
  198. cfg.set("height", HEIGHT); \
  199. cfg.set("gr_validation", true); \
  200. cfg.set("gr_vsync", false); \
  201. cfg.set("gr_rayTracing", true); \
  202. cfg.set("gr_debugMarkers", true); \
  203. win = createWindow(cfg); \
  204. ANKI_TEST_EXPECT_NO_ERR(Input::newInstance(allocAligned, nullptr, win, input)); \
  205. gr = createGrManager(cfg, win); \
  206. ANKI_TEST_EXPECT_NO_ERR(stagingMem->init(gr, cfg)); \
  207. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  208. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB, gr, gr->getAllocator())); \
  209. while(true) \
  210. {
  211. #define COMMON_END() \
  212. break; \
  213. } \
  214. gr->finish(); \
  215. delete transfAlloc; \
  216. delete stagingMem; \
  217. GrManager::deleteInstance(gr); \
  218. Input::deleteInstance(input); \
  219. NativeWindow::deleteInstance(win); \
  220. win = nullptr; \
  221. gr = nullptr; \
  222. stagingMem = nullptr;
  223. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  224. {
  225. StagingGpuMemoryToken token;
  226. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::UNIFORM, token);
  227. cmdb->bindUniformBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  228. return ptr;
  229. }
  230. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  231. {
  232. StagingGpuMemoryToken token;
  233. void* ptr = stagingMem->allocateFrame(size, StagingGpuMemoryType::STORAGE, token);
  234. cmdb->bindStorageBuffer(set, binding, token.m_buffer, token.m_offset, token.m_range);
  235. return ptr;
  236. }
  237. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  238. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  239. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  240. do \
  241. { \
  242. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  243. void* f = handle_.getMappedMemory(); \
  244. memcpy(f, ptr_, size_); \
  245. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, surf_)); \
  246. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  247. } while(0)
  248. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  249. do \
  250. { \
  251. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  252. void* f = handle_.getMappedMemory(); \
  253. memcpy(f, ptr_, size_); \
  254. TextureViewPtr view = gr->newTextureView(TextureViewInitInfo(tex_, vol_)); \
  255. cmdb_->copyBufferToTextureView(handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view); \
  256. } while(0)
  257. const Format DS_FORMAT = Format::D24_UNORM_S8_UINT;
  258. static ShaderPtr createShader(CString src, ShaderType type, GrManager& gr,
  259. ConstWeakArray<ShaderSpecializationConstValue> specVals = {})
  260. {
  261. HeapAllocator<U8> alloc(allocAligned, nullptr);
  262. StringAuto header(alloc);
  263. ShaderCompilerOptions compilerOptions;
  264. compilerOptions.m_bindlessLimits = gr.getBindlessLimits();
  265. ShaderProgramParser::generateAnkiShaderHeader(type, compilerOptions, header);
  266. header.append(src);
  267. DynamicArrayAuto<U8> spirv(alloc);
  268. ANKI_TEST_EXPECT_NO_ERR(compilerGlslToSpirv(header, type, alloc, spirv));
  269. ShaderInitInfo initInf(type, spirv);
  270. initInf.m_constValues = specVals;
  271. return gr.newShader(initInf);
  272. }
  273. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  274. {
  275. ShaderPtr vert = createShader(vertSrc, ShaderType::VERTEX, gr);
  276. ShaderPtr frag = createShader(fragSrc, ShaderType::FRAGMENT, gr);
  277. ShaderProgramInitInfo inf;
  278. inf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  279. inf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  280. return gr.newShaderProgram(inf);
  281. }
  282. static FramebufferPtr createColorFb(GrManager& gr, TexturePtr tex)
  283. {
  284. TextureViewInitInfo init;
  285. init.m_texture = tex;
  286. TextureViewPtr view = gr.newTextureView(init);
  287. FramebufferInitInfo fbinit;
  288. fbinit.m_colorAttachmentCount = 1;
  289. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{1.0, 0.0, 1.0, 1.0}};
  290. fbinit.m_colorAttachments[0].m_textureView = view;
  291. return gr.newFramebuffer(fbinit);
  292. }
  293. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  294. {
  295. static const Array<F32, 8 * 3> pos = {
  296. {1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  297. static const Array<U16, 6 * 2 * 3> idx = {
  298. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  299. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  300. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::WRITE);
  301. memcpy(mapped, &pos[0], sizeof(pos));
  302. verts->unmap();
  303. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::INDEX, BufferMapAccessBit::WRITE));
  304. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::WRITE);
  305. memcpy(mapped, &idx[0], sizeof(idx));
  306. indices->unmap();
  307. }
  308. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  309. {
  310. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  311. TextureSubresourceInfo());
  312. }
  313. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  314. {
  315. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  316. TextureSubresourceInfo());
  317. }
  318. ANKI_TEST(Gr, GrManager){COMMON_BEGIN() COMMON_END()}
  319. ANKI_TEST(Gr, Shader)
  320. {
  321. COMMON_BEGIN()
  322. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::FRAGMENT, *gr);
  323. COMMON_END()
  324. }
  325. ANKI_TEST(Gr, ShaderProgram)
  326. {
  327. COMMON_BEGIN()
  328. ShaderProgramPtr ppline = createProgram(VERT_SRC, FRAG_SRC, *gr);
  329. COMMON_END()
  330. }
  331. ANKI_TEST(Gr, ClearScreen)
  332. {
  333. COMMON_BEGIN()
  334. ANKI_TEST_LOGI("Expect to see a magenta background");
  335. U iterations = 100;
  336. while(iterations--)
  337. {
  338. HighRezTimer timer;
  339. timer.start();
  340. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  341. FramebufferPtr fb = createColorFb(*gr, presentTex);
  342. CommandBufferInitInfo cinit;
  343. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  344. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  345. presentBarrierA(cmdb, presentTex);
  346. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  347. cmdb->endRenderPass();
  348. presentBarrierB(cmdb, presentTex);
  349. cmdb->flush();
  350. gr->swapBuffers();
  351. timer.stop();
  352. const F32 TICK = 1.0f / 30.0f;
  353. if(timer.getElapsedTime() < TICK)
  354. {
  355. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  356. }
  357. }
  358. COMMON_END()
  359. }
  360. ANKI_TEST(Gr, SimpleDrawcall)
  361. {
  362. COMMON_BEGIN()
  363. ANKI_TEST_LOGI("Expect to see a grey triangle");
  364. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  365. const U ITERATIONS = 200;
  366. for(U i = 0; i < ITERATIONS; ++i)
  367. {
  368. HighRezTimer timer;
  369. timer.start();
  370. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  371. FramebufferPtr fb = createColorFb(*gr, presentTex);
  372. CommandBufferInitInfo cinit;
  373. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  374. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  375. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  376. cmdb->bindShaderProgram(prog);
  377. presentBarrierA(cmdb, presentTex);
  378. cmdb->beginRenderPass(fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  379. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  380. cmdb->endRenderPass();
  381. presentBarrierB(cmdb, presentTex);
  382. cmdb->flush();
  383. gr->swapBuffers();
  384. timer.stop();
  385. const F32 TICK = 1.0f / 30.0f;
  386. if(timer.getElapsedTime() < TICK)
  387. {
  388. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  389. }
  390. }
  391. COMMON_END()
  392. }
  393. ANKI_TEST(Gr, ViewportAndScissor)
  394. {
  395. #if 0
  396. COMMON_BEGIN()
  397. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  398. "the area around the quad");
  399. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  400. srand(time(nullptr));
  401. Array<FramebufferPtr, 4> fb;
  402. for(FramebufferPtr& f : fb)
  403. {
  404. FramebufferInitInfo fbinit;
  405. fbinit.m_colorAttachmentCount = 1;
  406. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  407. f = gr->newFramebuffer(fbinit);
  408. }
  409. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  410. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  411. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  412. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  413. const U ITERATIONS = 400;
  414. const U SCISSOR_MARGIN = 20;
  415. const U RENDER_AREA_MARGIN = 10;
  416. for(U i = 0; i < ITERATIONS; ++i)
  417. {
  418. HighRezTimer timer;
  419. timer.start();
  420. gr->beginFrame();
  421. CommandBufferInitInfo cinit;
  422. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  423. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  424. U idx = (i / 30) % 4;
  425. auto vp = VIEWPORTS[idx];
  426. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  427. cmdb->setScissor(
  428. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  429. cmdb->bindShaderProgram(prog);
  430. cmdb->beginRenderPass(fb[i % 4],
  431. {},
  432. {},
  433. vp[0] + RENDER_AREA_MARGIN,
  434. vp[1] + RENDER_AREA_MARGIN,
  435. vp[2] - RENDER_AREA_MARGIN * 2,
  436. vp[3] - RENDER_AREA_MARGIN * 2);
  437. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  438. cmdb->endRenderPass();
  439. cmdb->flush();
  440. gr->swapBuffers();
  441. timer.stop();
  442. const F32 TICK = 1.0f / 30.0f;
  443. if(timer.getElapsedTime() < TICK)
  444. {
  445. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  446. }
  447. }
  448. COMMON_END()
  449. #endif
  450. }
  451. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  452. {
  453. srand(U32(time(nullptr)));
  454. COMMON_BEGIN()
  455. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  456. "Around that quad is a border that changes color. "
  457. "The quads appear counter-clockwise");
  458. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  459. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *gr);
  460. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  461. const U RT_WIDTH = 32;
  462. const U RT_HEIGHT = 16;
  463. TextureInitInfo init;
  464. init.m_depth = 1;
  465. init.m_format = COL_FORMAT;
  466. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  467. init.m_height = RT_HEIGHT;
  468. init.m_width = RT_WIDTH;
  469. init.m_mipmapCount = 1;
  470. init.m_depth = 1;
  471. init.m_layerCount = 1;
  472. init.m_samples = 1;
  473. init.m_type = TextureType::_2D;
  474. TexturePtr rt = gr->newTexture(init);
  475. TextureViewInitInfo viewInit(rt);
  476. TextureViewPtr texView = gr->newTextureView(viewInit);
  477. Array<FramebufferPtr, 4> fb;
  478. for(FramebufferPtr& f : fb)
  479. {
  480. TextureViewInitInfo viewInf(rt);
  481. TextureViewPtr view = gr->newTextureView(viewInf);
  482. FramebufferInitInfo fbinit;
  483. fbinit.m_colorAttachmentCount = 1;
  484. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  485. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  486. fbinit.m_colorAttachments[0].m_textureView = view;
  487. f = gr->newFramebuffer(fbinit);
  488. }
  489. SamplerInitInfo samplerInit;
  490. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  491. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  492. SamplerPtr sampler = gr->newSampler(samplerInit);
  493. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  494. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  495. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  496. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  497. const U32 ITERATIONS = 400;
  498. const U32 SCISSOR_MARGIN = 2;
  499. const U32 RENDER_AREA_MARGIN = 1;
  500. for(U32 i = 0; i < ITERATIONS; ++i)
  501. {
  502. HighRezTimer timer;
  503. timer.start();
  504. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  505. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  506. if(i == 0)
  507. {
  508. CommandBufferInitInfo cinit;
  509. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  510. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  511. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  512. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  513. TextureSurfaceInfo(0, 0, 0, 0));
  514. cmdb->beginRenderPass(fb[0], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {});
  515. cmdb->endRenderPass();
  516. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  517. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  518. cmdb->flush();
  519. }
  520. CommandBufferInitInfo cinit;
  521. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  522. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  523. // Draw offscreen
  524. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::SAMPLED_FRAGMENT,
  525. TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureSurfaceInfo(0, 0, 0, 0));
  526. auto vp = VIEWPORTS[(i / 30) % 4];
  527. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  528. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2,
  529. vp[3] - SCISSOR_MARGIN * 2);
  530. cmdb->bindShaderProgram(prog);
  531. cmdb->beginRenderPass(fb[i % 4], {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}}, {},
  532. vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN, vp[2] - RENDER_AREA_MARGIN * 2,
  533. vp[3] - RENDER_AREA_MARGIN * 2);
  534. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  535. cmdb->endRenderPass();
  536. // Draw onscreen
  537. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  538. cmdb->setScissor(0, 0, win->getWidth(), win->getHeight());
  539. cmdb->bindShaderProgram(blitProg);
  540. cmdb->setTextureSurfaceBarrier(rt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  541. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  542. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  543. presentBarrierA(cmdb, presentTex);
  544. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  545. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  546. cmdb->endRenderPass();
  547. presentBarrierB(cmdb, presentTex);
  548. cmdb->flush();
  549. gr->swapBuffers();
  550. timer.stop();
  551. const F32 TICK = 1.0f / 30.0f;
  552. if(timer.getElapsedTime() < TICK)
  553. {
  554. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  555. }
  556. }
  557. COMMON_END()
  558. }
  559. ANKI_TEST(Gr, Buffer)
  560. {
  561. COMMON_BEGIN()
  562. BufferInitInfo buffInit("a");
  563. buffInit.m_size = 512;
  564. buffInit.m_usage = BufferUsageBit::ALL_UNIFORM;
  565. buffInit.m_mapAccess = BufferMapAccessBit::NONE;
  566. BufferPtr a = gr->newBuffer(buffInit);
  567. buffInit.setName("b");
  568. buffInit.m_size = 64;
  569. buffInit.m_usage = BufferUsageBit::ALL_STORAGE;
  570. buffInit.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  571. BufferPtr b = gr->newBuffer(buffInit);
  572. void* ptr = b->map(0, 64, BufferMapAccessBit::WRITE);
  573. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  574. U8 ptr2[64];
  575. memset(ptr, 0xCC, 64);
  576. memset(ptr2, 0xCC, 64);
  577. b->unmap();
  578. ptr = b->map(0, 64, BufferMapAccessBit::READ);
  579. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  580. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  581. b->unmap();
  582. COMMON_END()
  583. }
  584. ANKI_TEST(Gr, DrawWithUniforms)
  585. {
  586. COMMON_BEGIN()
  587. // A non-uploaded buffer
  588. BufferPtr b =
  589. gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::ALL_UNIFORM, BufferMapAccessBit::WRITE));
  590. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::WRITE));
  591. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  592. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  593. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  594. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  595. b->unmap();
  596. // Progm
  597. ShaderProgramPtr prog = createProgram(VERT_UBO_SRC, FRAG_UBO_SRC, *gr);
  598. const U ITERATION_COUNT = 100;
  599. U iterations = ITERATION_COUNT;
  600. while(iterations--)
  601. {
  602. HighRezTimer timer;
  603. timer.start();
  604. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  605. FramebufferPtr fb = createColorFb(*gr, presentTex);
  606. CommandBufferInitInfo cinit;
  607. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  608. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  609. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  610. cmdb->bindShaderProgram(prog);
  611. presentBarrierA(cmdb, presentTex);
  612. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  613. cmdb->bindUniformBuffer(0, 0, b, 0, MAX_PTR_SIZE);
  614. // Uploaded buffer
  615. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  616. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  617. (*rotMat)[0] = cos(angle);
  618. (*rotMat)[1] = -sin(angle);
  619. (*rotMat)[2] = sin(angle);
  620. (*rotMat)[3] = cos(angle);
  621. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  622. cmdb->endRenderPass();
  623. presentBarrierB(cmdb, presentTex);
  624. cmdb->flush();
  625. gr->swapBuffers();
  626. timer.stop();
  627. const F32 TICK = 1.0f / 30.0f;
  628. if(timer.getElapsedTime() < TICK)
  629. {
  630. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  631. }
  632. }
  633. COMMON_END()
  634. }
  635. ANKI_TEST(Gr, DrawWithVertex)
  636. {
  637. COMMON_BEGIN()
  638. // The buffers
  639. struct Vert
  640. {
  641. Vec3 m_pos;
  642. Array<U8, 4> m_color;
  643. };
  644. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  645. BufferPtr b = gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  646. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::WRITE));
  647. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  648. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  649. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  650. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  651. ptr[0].m_color = {{255, 0, 0}};
  652. ptr[1].m_color = {{0, 255, 0}};
  653. ptr[2].m_color = {{0, 0, 255}};
  654. b->unmap();
  655. BufferPtr c = gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::VERTEX, BufferMapAccessBit::WRITE));
  656. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::WRITE));
  657. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  658. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  659. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  660. c->unmap();
  661. // Prog
  662. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *gr);
  663. U iterations = 100;
  664. while(iterations--)
  665. {
  666. HighRezTimer timer;
  667. timer.start();
  668. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  669. FramebufferPtr fb = createColorFb(*gr, presentTex);
  670. CommandBufferInitInfo cinit;
  671. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  672. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  673. cmdb->bindVertexBuffer(0, b, 0, sizeof(Vert));
  674. cmdb->bindVertexBuffer(1, c, 0, sizeof(Vec3));
  675. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  676. cmdb->setVertexAttribute(1, 0, Format::R8G8B8_UNORM, sizeof(Vec3));
  677. cmdb->setVertexAttribute(2, 1, Format::R32G32B32_SFLOAT, 0);
  678. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  679. cmdb->setPolygonOffset(0.0, 0.0);
  680. cmdb->bindShaderProgram(prog);
  681. presentBarrierA(cmdb, presentTex);
  682. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  683. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  684. cmdb->endRenderPass();
  685. presentBarrierB(cmdb, presentTex);
  686. cmdb->flush();
  687. gr->swapBuffers();
  688. timer.stop();
  689. const F32 TICK = 1.0f / 30.0f;
  690. if(timer.getElapsedTime() < TICK)
  691. {
  692. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  693. }
  694. }
  695. COMMON_END()
  696. }
  697. ANKI_TEST(Gr, Sampler)
  698. {
  699. COMMON_BEGIN()
  700. SamplerInitInfo init;
  701. SamplerPtr b = gr->newSampler(init);
  702. COMMON_END()
  703. }
  704. ANKI_TEST(Gr, Texture)
  705. {
  706. COMMON_BEGIN()
  707. TextureInitInfo init;
  708. init.m_depth = 1;
  709. init.m_format = Format::R8G8B8_UNORM;
  710. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT;
  711. init.m_height = 4;
  712. init.m_width = 4;
  713. init.m_mipmapCount = 2;
  714. init.m_depth = 1;
  715. init.m_layerCount = 1;
  716. init.m_samples = 1;
  717. init.m_type = TextureType::_2D;
  718. TexturePtr b = gr->newTexture(init);
  719. TextureViewInitInfo view(b);
  720. TextureViewPtr v = gr->newTextureView(view);
  721. COMMON_END()
  722. }
  723. ANKI_TEST(Gr, DrawWithTexture)
  724. {
  725. COMMON_BEGIN()
  726. //
  727. // Create sampler
  728. //
  729. SamplerInitInfo samplerInit;
  730. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  731. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  732. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  733. SamplerPtr sampler = gr->newSampler(samplerInit);
  734. //
  735. // Create texture A
  736. //
  737. TextureInitInfo init;
  738. init.m_depth = 1;
  739. init.m_format = Format::R8G8B8_UNORM;
  740. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  741. init.m_initialUsage = TextureUsageBit::SAMPLED_FRAGMENT;
  742. init.m_height = 2;
  743. init.m_width = 2;
  744. init.m_mipmapCount = 2;
  745. init.m_samples = 1;
  746. init.m_depth = 1;
  747. init.m_layerCount = 1;
  748. init.m_type = TextureType::_2D;
  749. TexturePtr a = gr->newTexture(init);
  750. TextureViewPtr aView = gr->newTextureView(TextureViewInitInfo(a));
  751. //
  752. // Create texture B
  753. //
  754. init.m_width = 4;
  755. init.m_height = 4;
  756. init.m_mipmapCount = 3;
  757. init.m_usage =
  758. TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::GENERATE_MIPMAPS;
  759. init.m_initialUsage = TextureUsageBit::NONE;
  760. TexturePtr b = gr->newTexture(init);
  761. TextureViewPtr bView = gr->newTextureView(TextureViewInitInfo(b));
  762. //
  763. // Upload all textures
  764. //
  765. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  766. Array<U8, 3> mip1 = {{128, 128, 128}};
  767. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0,
  768. 255, 255, 255, 255, 255, 128, 0, 0, 0, 128, 0, 0, 0, 128, 128, 128,
  769. 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  770. CommandBufferInitInfo cmdbinit;
  771. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  772. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  773. // Set barriers
  774. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  775. TextureSurfaceInfo(0, 0, 0, 0));
  776. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::SAMPLED_FRAGMENT, TextureUsageBit::TRANSFER_DESTINATION,
  777. TextureSurfaceInfo(1, 0, 0, 0));
  778. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  779. TextureSurfaceInfo(0, 0, 0, 0));
  780. TransferGpuAllocatorHandle handle0, handle1, handle2;
  781. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  782. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  783. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  784. // Gen mips
  785. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::GENERATE_MIPMAPS,
  786. TextureSurfaceInfo(0, 0, 0, 0));
  787. cmdb->generateMipmaps2d(gr->newTextureView(TextureViewInitInfo(b)));
  788. // Set barriers
  789. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  790. TextureSurfaceInfo(0, 0, 0, 0));
  791. cmdb->setTextureSurfaceBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  792. TextureSurfaceInfo(1, 0, 0, 0));
  793. for(U32 i = 0; i < 3; ++i)
  794. {
  795. cmdb->setTextureSurfaceBarrier(b, TextureUsageBit::GENERATE_MIPMAPS, TextureUsageBit::SAMPLED_FRAGMENT,
  796. TextureSurfaceInfo(i, 0, 0, 0));
  797. }
  798. FencePtr fence;
  799. cmdb->flush({}, &fence);
  800. transfAlloc->release(handle0, fence);
  801. transfAlloc->release(handle1, fence);
  802. transfAlloc->release(handle2, fence);
  803. //
  804. // Create prog
  805. //
  806. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  807. layout(location = 0) in vec2 in_uv;
  808. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  809. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  810. layout(push_constant) uniform b_pc
  811. {
  812. Vec4 u_viewport;
  813. };
  814. void main()
  815. {
  816. if(gl_FragCoord.x < u_viewport.x / 2.0)
  817. {
  818. if(gl_FragCoord.y < u_viewport.y / 2.0)
  819. {
  820. vec2 uv = in_uv * 2.0;
  821. out_color = textureLod(u_tex0, uv, 0.0);
  822. }
  823. else
  824. {
  825. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  826. out_color = textureLod(u_tex0, uv, 1.0);
  827. }
  828. }
  829. else
  830. {
  831. if(gl_FragCoord.y < u_viewport.y / 2.0)
  832. {
  833. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  834. out_color = textureLod(u_tex1, uv, 0.0);
  835. }
  836. else
  837. {
  838. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  839. out_color = textureLod(u_tex1, uv, 1.0);
  840. }
  841. }
  842. })";
  843. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *gr);
  844. //
  845. // Draw
  846. //
  847. const U ITERATION_COUNT = 200;
  848. U iterations = ITERATION_COUNT;
  849. while(iterations--)
  850. {
  851. HighRezTimer timer;
  852. timer.start();
  853. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  854. FramebufferPtr fb = createColorFb(*gr, presentTex);
  855. CommandBufferInitInfo cinit;
  856. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  857. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  858. cmdb->setViewport(0, 0, win->getWidth(), win->getHeight());
  859. cmdb->bindShaderProgram(prog);
  860. presentBarrierA(cmdb, presentTex);
  861. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  862. Vec4 pc(F32(win->getWidth()), F32(win->getHeight()), 0.0f, 0.0f);
  863. cmdb->setPushConstants(&pc, sizeof(pc));
  864. cmdb->bindTextureAndSampler(0, 0, aView, sampler);
  865. cmdb->bindTextureAndSampler(0, 1, bView, sampler);
  866. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  867. cmdb->endRenderPass();
  868. presentBarrierB(cmdb, presentTex);
  869. cmdb->flush();
  870. gr->swapBuffers();
  871. timer.stop();
  872. const F32 TICK = 1.0f / 30.0f;
  873. if(timer.getElapsedTime() < TICK)
  874. {
  875. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  876. }
  877. }
  878. COMMON_END()
  879. }
  880. static void drawOffscreenDrawcalls(GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  881. BufferPtr indexBuff, BufferPtr vertBuff)
  882. {
  883. static F32 ang = -2.5f;
  884. ang += toRad(2.5f);
  885. Mat4 viewMat(Vec4(0.0, 0.0, 5.0, 1.0), Mat3::getIdentity(), 1.0f);
  886. viewMat.invert();
  887. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  888. Mat4 modelMat(Vec4(-0.5, -0.5, 0.0, 1.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), 1.0f);
  889. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  890. *mvp = projMat * viewMat * modelMat;
  891. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  892. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  893. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  894. cmdb->bindVertexBuffer(0, vertBuff, 0, sizeof(Vec3));
  895. cmdb->setVertexAttribute(0, 0, Format::R32G32B32_SFLOAT, 0);
  896. cmdb->bindShaderProgram(prog);
  897. cmdb->bindIndexBuffer(indexBuff, 0, IndexType::U16);
  898. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  899. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  900. // 2nd draw
  901. modelMat = Mat4(Vec4(0.5, 0.5, 0.0, 1.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), 1.0f);
  902. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  903. *mvp = projMat * viewMat * modelMat;
  904. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  905. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  906. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  907. cmdb->drawElements(PrimitiveTopology::TRIANGLES, 6 * 2 * 3);
  908. }
  909. static void drawOffscreen(GrManager& gr, Bool useSecondLevel)
  910. {
  911. //
  912. // Create textures
  913. //
  914. SamplerInitInfo samplerInit;
  915. samplerInit.m_minMagFilter = SamplingFilter::LINEAR;
  916. samplerInit.m_mipmapFilter = SamplingFilter::LINEAR;
  917. SamplerPtr sampler = gr.newSampler(samplerInit);
  918. const Format COL_FORMAT = Format::R8G8B8A8_UNORM;
  919. const U TEX_SIZE = 256;
  920. TextureInitInfo init;
  921. init.m_format = COL_FORMAT;
  922. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT;
  923. init.m_height = TEX_SIZE;
  924. init.m_width = TEX_SIZE;
  925. init.m_type = TextureType::_2D;
  926. TexturePtr col0 = gr.newTexture(init);
  927. TexturePtr col1 = gr.newTexture(init);
  928. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0));
  929. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1));
  930. init.m_format = DS_FORMAT;
  931. TexturePtr dp = gr.newTexture(init);
  932. //
  933. // Create FB
  934. //
  935. FramebufferInitInfo fbinit;
  936. fbinit.m_colorAttachmentCount = 2;
  937. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0));
  938. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  939. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1));
  940. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  941. TextureViewInitInfo viewInit(dp);
  942. viewInit.m_depthStencilAspect = DepthStencilAspectBit::DEPTH;
  943. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  944. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  945. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  946. //
  947. // Create buffs
  948. //
  949. BufferPtr verts, indices;
  950. createCube(gr, verts, indices);
  951. //
  952. // Create progs
  953. //
  954. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  955. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  956. //
  957. // Draw
  958. //
  959. const U ITERATION_COUNT = 200;
  960. U iterations = ITERATION_COUNT;
  961. while(iterations--)
  962. {
  963. HighRezTimer timer;
  964. timer.start();
  965. CommandBufferInitInfo cinit;
  966. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  967. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  968. cmdb->setPolygonOffset(0.0, 0.0);
  969. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  970. TextureSurfaceInfo(0, 0, 0, 0));
  971. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  972. TextureSurfaceInfo(0, 0, 0, 0));
  973. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::NONE, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  974. TextureSurfaceInfo(0, 0, 0, 0));
  975. cmdb->beginRenderPass(
  976. fb, {{TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}},
  977. TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT);
  978. if(!useSecondLevel)
  979. {
  980. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  981. }
  982. else
  983. {
  984. CommandBufferInitInfo cinit;
  985. cinit.m_flags = CommandBufferFlag::SECOND_LEVEL | CommandBufferFlag::GENERAL_WORK;
  986. cinit.m_framebuffer = fb;
  987. CommandBufferPtr cmdb2 = gr.newCommandBuffer(cinit);
  988. drawOffscreenDrawcalls(gr, prog, cmdb2, TEX_SIZE, indices, verts);
  989. cmdb2->flush();
  990. cmdb->pushSecondLevelCommandBuffer(cmdb2);
  991. }
  992. cmdb->endRenderPass();
  993. cmdb->setTextureSurfaceBarrier(col0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  994. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  995. cmdb->setTextureSurfaceBarrier(col1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  996. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  997. cmdb->setTextureSurfaceBarrier(dp, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT,
  998. TextureUsageBit::SAMPLED_FRAGMENT, TextureSurfaceInfo(0, 0, 0, 0));
  999. // Draw quad
  1000. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  1001. FramebufferPtr dfb = createColorFb(gr, presentTex);
  1002. presentBarrierA(cmdb, presentTex);
  1003. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1004. cmdb->bindShaderProgram(resolveProg);
  1005. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1006. cmdb->bindTextureAndSampler(0, 0, col0View, sampler);
  1007. cmdb->bindTextureAndSampler(0, 2, col1View, sampler);
  1008. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1009. cmdb->endRenderPass();
  1010. presentBarrierB(cmdb, presentTex);
  1011. cmdb->flush();
  1012. // End
  1013. gr.swapBuffers();
  1014. timer.stop();
  1015. const F32 TICK = 1.0f / 30.0f;
  1016. if(timer.getElapsedTime() < TICK)
  1017. {
  1018. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1019. }
  1020. }
  1021. }
  1022. ANKI_TEST(Gr, DrawOffscreen)
  1023. {
  1024. COMMON_BEGIN()
  1025. drawOffscreen(*gr, false);
  1026. COMMON_END()
  1027. }
  1028. ANKI_TEST(Gr, DrawWithSecondLevel)
  1029. {
  1030. COMMON_BEGIN()
  1031. drawOffscreen(*gr, true);
  1032. COMMON_END()
  1033. }
  1034. ANKI_TEST(Gr, ImageLoadStore)
  1035. {
  1036. COMMON_BEGIN()
  1037. SamplerInitInfo samplerInit;
  1038. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1039. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1040. SamplerPtr sampler = gr->newSampler(samplerInit);
  1041. TextureInitInfo init;
  1042. init.m_width = init.m_height = 4;
  1043. init.m_mipmapCount = 2;
  1044. init.m_usage =
  1045. TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED | TextureUsageBit::IMAGE_COMPUTE_WRITE;
  1046. init.m_type = TextureType::_2D;
  1047. init.m_format = Format::R8G8B8A8_UNORM;
  1048. TexturePtr tex = gr->newTexture(init);
  1049. TextureViewInitInfo viewInit(tex);
  1050. viewInit.m_firstMipmap = 1;
  1051. viewInit.m_mipmapCount = 1;
  1052. TextureViewPtr view = gr->newTextureView(viewInit);
  1053. // Prog
  1054. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *gr);
  1055. // Create shader & compute prog
  1056. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::COMPUTE, *gr);
  1057. ShaderProgramInitInfo sprogInit;
  1058. sprogInit.m_computeShader = shader;
  1059. ShaderProgramPtr compProg = gr->newShaderProgram(sprogInit);
  1060. // Write texture data
  1061. CommandBufferInitInfo cmdbinit;
  1062. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1063. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1064. TextureSurfaceInfo(0, 0, 0, 0));
  1065. ClearValue clear;
  1066. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1067. TextureViewInitInfo viewInit2(tex, TextureSurfaceInfo(0, 0, 0, 0));
  1068. cmdb->clearTextureView(gr->newTextureView(viewInit2), clear);
  1069. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1070. TextureSurfaceInfo(0, 0, 0, 0));
  1071. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1072. TextureSurfaceInfo(1, 0, 0, 0));
  1073. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1074. TextureViewInitInfo viewInit3(tex, TextureSurfaceInfo(1, 0, 0, 0));
  1075. cmdb->clearTextureView(gr->newTextureView(viewInit3), clear);
  1076. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1077. TextureSurfaceInfo(1, 0, 0, 0));
  1078. cmdb->flush();
  1079. const U ITERATION_COUNT = 100;
  1080. U iterations = ITERATION_COUNT;
  1081. while(iterations--)
  1082. {
  1083. HighRezTimer timer;
  1084. timer.start();
  1085. CommandBufferInitInfo cinit;
  1086. cinit.m_flags =
  1087. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1088. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1089. // Write image
  1090. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1091. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1092. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  1093. TextureSurfaceInfo(1, 0, 0, 0));
  1094. cmdb->bindShaderProgram(compProg);
  1095. cmdb->bindImage(0, 0, view);
  1096. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1097. cmdb->setTextureSurfaceBarrier(tex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::SAMPLED_FRAGMENT,
  1098. TextureSurfaceInfo(1, 0, 0, 0));
  1099. // Present image
  1100. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1101. cmdb->bindShaderProgram(prog);
  1102. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1103. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1104. presentBarrierA(cmdb, presentTex);
  1105. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1106. cmdb->bindTextureAndSampler(0, 0, gr->newTextureView(TextureViewInitInfo(tex)), sampler);
  1107. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1108. cmdb->endRenderPass();
  1109. presentBarrierB(cmdb, presentTex);
  1110. cmdb->flush();
  1111. // End
  1112. gr->swapBuffers();
  1113. timer.stop();
  1114. const F32 TICK = 1.0f / 30.0f;
  1115. if(timer.getElapsedTime() < TICK)
  1116. {
  1117. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1118. }
  1119. }
  1120. COMMON_END()
  1121. }
  1122. ANKI_TEST(Gr, 3DTextures)
  1123. {
  1124. COMMON_BEGIN()
  1125. SamplerInitInfo samplerInit;
  1126. samplerInit.m_minMagFilter = SamplingFilter::NEAREST;
  1127. samplerInit.m_mipmapFilter = SamplingFilter::BASE;
  1128. samplerInit.m_addressing = SamplingAddressing::CLAMP;
  1129. SamplerPtr sampler = gr->newSampler(samplerInit);
  1130. //
  1131. // Create texture A
  1132. //
  1133. TextureInitInfo init;
  1134. init.m_depth = 1;
  1135. init.m_format = Format::R8G8B8A8_UNORM;
  1136. init.m_usage = TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::TRANSFER_DESTINATION;
  1137. init.m_initialUsage = TextureUsageBit::TRANSFER_DESTINATION;
  1138. init.m_height = 2;
  1139. init.m_width = 2;
  1140. init.m_mipmapCount = 2;
  1141. init.m_samples = 1;
  1142. init.m_depth = 2;
  1143. init.m_layerCount = 1;
  1144. init.m_type = TextureType::_3D;
  1145. TexturePtr a = gr->newTexture(init);
  1146. //
  1147. // Upload all textures
  1148. //
  1149. Array<U8, 2 * 2 * 2 * 4> mip0 = {{255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0,
  1150. 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1151. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1152. CommandBufferInitInfo cmdbinit;
  1153. cmdbinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1154. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbinit);
  1155. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1156. TextureVolumeInfo(0));
  1157. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1158. TextureVolumeInfo(1));
  1159. TransferGpuAllocatorHandle handle0, handle1;
  1160. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1161. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1162. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1163. TextureVolumeInfo(0));
  1164. cmdb->setTextureVolumeBarrier(a, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_FRAGMENT,
  1165. TextureVolumeInfo(1));
  1166. FencePtr fence;
  1167. cmdb->flush({}, &fence);
  1168. transfAlloc->release(handle0, fence);
  1169. transfAlloc->release(handle1, fence);
  1170. //
  1171. // Rest
  1172. //
  1173. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *gr);
  1174. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0),
  1175. Vec4(0, 0, 1, 0), Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0),
  1176. Vec4(0, 0, 0, 1)}};
  1177. const U ITERATION_COUNT = 100;
  1178. U iterations = ITERATION_COUNT;
  1179. while(iterations--)
  1180. {
  1181. HighRezTimer timer;
  1182. timer.start();
  1183. CommandBufferInitInfo cinit;
  1184. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1185. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1186. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1187. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1188. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1189. presentBarrierA(cmdb, presentTex);
  1190. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1191. cmdb->bindShaderProgram(prog);
  1192. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1193. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1194. *uv = TEX_COORDS_LOD[idx];
  1195. cmdb->bindTextureAndSampler(0, 1, gr->newTextureView(TextureViewInitInfo(a)), sampler);
  1196. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 6);
  1197. cmdb->endRenderPass();
  1198. presentBarrierB(cmdb, presentTex);
  1199. cmdb->flush();
  1200. // End
  1201. gr->swapBuffers();
  1202. timer.stop();
  1203. const F32 TICK = 1.0f / 15.0f;
  1204. if(timer.getElapsedTime() < TICK)
  1205. {
  1206. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1207. }
  1208. }
  1209. COMMON_END()
  1210. }
  1211. static RenderTargetDescription newRTDescr(CString name)
  1212. {
  1213. RenderTargetDescription texInf(name);
  1214. texInf.m_width = texInf.m_height = 16;
  1215. texInf.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1216. texInf.m_format = Format::R8G8B8A8_UNORM;
  1217. texInf.bake();
  1218. return texInf;
  1219. }
  1220. ANKI_TEST(Gr, RenderGraph)
  1221. {
  1222. COMMON_BEGIN()
  1223. StackAllocator<U8> alloc(allocAligned, nullptr, 2_MB);
  1224. RenderGraphDescription descr(alloc);
  1225. RenderGraphPtr rgraph = gr->newRenderGraph();
  1226. const U GI_MIP_COUNT = 4;
  1227. TextureInitInfo texI("dummy");
  1228. texI.m_width = texI.m_height = 16;
  1229. texI.m_usage = TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE | TextureUsageBit::SAMPLED_FRAGMENT;
  1230. texI.m_format = Format::R8G8B8A8_UNORM;
  1231. TexturePtr dummyTex = gr->newTexture(texI);
  1232. // SM
  1233. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1234. {
  1235. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1236. pass.newDependency({smScratchRt, TextureUsageBit::ALL_FRAMEBUFFER_ATTACHMENT});
  1237. }
  1238. // SM to exponential SM
  1239. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1240. {
  1241. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1242. pass.newDependency({smScratchRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1243. pass.newDependency({smExpRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1244. }
  1245. // GI gbuff
  1246. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1247. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1248. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1249. {
  1250. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1251. pass.newDependency({giGbuffNormRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1252. pass.newDependency({giGbuffDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1253. pass.newDependency({giGbuffDiffRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1254. }
  1255. // GI light
  1256. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1257. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1258. {
  1259. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, 0, faceIdx, 0));
  1260. GraphicsRenderPassDescription& pass =
  1261. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI lp%u", faceIdx).toCString());
  1262. pass.newDependency({giGiLightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, subresource});
  1263. pass.newDependency({giGbuffNormRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1264. pass.newDependency({giGbuffDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1265. pass.newDependency({giGbuffDiffRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1266. }
  1267. // GI light mips
  1268. {
  1269. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1270. {
  1271. GraphicsRenderPassDescription& pass =
  1272. descr.newGraphicsRenderPass(StringAuto(alloc).sprintf("GI mip%u", faceIdx).toCString());
  1273. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1274. {
  1275. TextureSurfaceInfo surf(mip, 0, faceIdx, 0);
  1276. pass.newDependency({giGiLightRt, TextureUsageBit::GENERATE_MIPMAPS, surf});
  1277. }
  1278. }
  1279. }
  1280. // Gbuffer
  1281. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1282. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1283. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1284. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1285. {
  1286. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1287. pass.newDependency({gbuffRt0, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1288. pass.newDependency({gbuffRt1, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1289. pass.newDependency({gbuffRt2, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1290. pass.newDependency({gbuffDepth, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1291. }
  1292. // Half depth
  1293. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1294. {
  1295. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1296. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1297. pass.newDependency({halfDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1298. }
  1299. // Quarter depth
  1300. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1301. {
  1302. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1303. pass.newDependency({quarterDepthRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1304. pass.newDependency({halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1305. }
  1306. // SSAO
  1307. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1308. {
  1309. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1310. pass.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1311. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1312. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1313. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1314. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1315. pass2.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1316. pass2.newDependency({ssaoVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1317. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1318. pass3.newDependency({ssaoRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1319. pass3.newDependency({ssaoVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1320. }
  1321. // Volumetric
  1322. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1323. {
  1324. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1325. pass.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1326. pass.newDependency({quarterDepthRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1327. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1328. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1329. pass2.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1330. pass2.newDependency({volVBlurRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1331. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1332. pass3.newDependency({volRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1333. pass3.newDependency({volVBlurRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1334. }
  1335. // Forward shading
  1336. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1337. {
  1338. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1339. pass.newDependency({fsRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1340. pass.newDependency(
  1341. {halfDepthRt, TextureUsageBit::SAMPLED_FRAGMENT | TextureUsageBit::FRAMEBUFFER_ATTACHMENT_READ});
  1342. pass.newDependency({volRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1343. }
  1344. // Light shading
  1345. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1346. {
  1347. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1348. pass.newDependency({lightRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1349. pass.newDependency({gbuffRt0, TextureUsageBit::SAMPLED_FRAGMENT});
  1350. pass.newDependency({gbuffRt1, TextureUsageBit::SAMPLED_FRAGMENT});
  1351. pass.newDependency({gbuffRt2, TextureUsageBit::SAMPLED_FRAGMENT});
  1352. pass.newDependency({gbuffDepth, TextureUsageBit::SAMPLED_FRAGMENT});
  1353. pass.newDependency({smExpRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1354. pass.newDependency({giGiLightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1355. pass.newDependency({ssaoRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1356. pass.newDependency({fsRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1357. }
  1358. // TAA
  1359. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex, TextureUsageBit::SAMPLED_FRAGMENT);
  1360. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex, TextureUsageBit::NONE);
  1361. {
  1362. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1363. pass.newDependency({lightRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1364. pass.newDependency({taaRt, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE});
  1365. pass.newDependency({taaHistoryRt, TextureUsageBit::SAMPLED_FRAGMENT});
  1366. }
  1367. rgraph->compileNewGraph(descr, alloc);
  1368. COMMON_END()
  1369. }
  1370. /// Test workarounds for some unsupported formats
  1371. ANKI_TEST(Gr, VkWorkarounds)
  1372. {
  1373. COMMON_BEGIN()
  1374. // Create program
  1375. static const char* COMP_SRC = R"(
  1376. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1377. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1378. layout(set = 0, binding = 1) buffer s_
  1379. {
  1380. uvec4 u_result;
  1381. };
  1382. shared uint g_wrong;
  1383. void main()
  1384. {
  1385. g_wrong = 0;
  1386. memoryBarrierShared();
  1387. barrier();
  1388. int lod = -1;
  1389. uint idx;
  1390. if(gl_LocalInvocationID.z == 0)
  1391. {
  1392. // First mip
  1393. lod = 0;
  1394. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1395. }
  1396. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1397. {
  1398. lod = 1;
  1399. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1400. }
  1401. if(lod != -1)
  1402. {
  1403. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1404. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1405. {
  1406. atomicAdd(g_wrong, 1);
  1407. }
  1408. }
  1409. memoryBarrierShared();
  1410. barrier();
  1411. if(g_wrong != 0)
  1412. {
  1413. u_result = uvec4(1);
  1414. }
  1415. else
  1416. {
  1417. u_result = uvec4(2);
  1418. }
  1419. })";
  1420. ShaderPtr comp = createShader(COMP_SRC, ShaderType::COMPUTE, *gr);
  1421. ShaderProgramInitInfo sinf;
  1422. sinf.m_computeShader = comp;
  1423. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1424. // Create the texture
  1425. TextureInitInfo texInit;
  1426. texInit.m_width = texInit.m_height = 8;
  1427. texInit.m_format = Format::R8G8B8_UINT;
  1428. texInit.m_type = TextureType::_2D;
  1429. texInit.m_usage = TextureUsageBit::TRANSFER_DESTINATION | TextureUsageBit::ALL_SAMPLED;
  1430. texInit.m_mipmapCount = 2;
  1431. TexturePtr tex = gr->newTexture(texInit);
  1432. TextureViewPtr texView = gr->newTextureView(TextureViewInitInfo(tex));
  1433. SamplerInitInfo samplerInit;
  1434. SamplerPtr sampler = gr->newSampler(samplerInit);
  1435. // Create the buffer to copy to the texture
  1436. BufferPtr uploadBuff = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3,
  1437. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1438. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::WRITE));
  1439. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1440. {
  1441. data[0] = U8(i);
  1442. data[1] = U8(i + 1);
  1443. data[2] = U8(i + 2);
  1444. data += 3;
  1445. }
  1446. uploadBuff->unmap();
  1447. BufferPtr uploadBuff2 = gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3,
  1448. BufferUsageBit::ALL_TRANSFER, BufferMapAccessBit::WRITE));
  1449. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::WRITE));
  1450. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1451. {
  1452. data[0] = U8(i);
  1453. data[1] = U8(i + 1);
  1454. data[2] = U8(i + 2);
  1455. data += 3;
  1456. }
  1457. uploadBuff2->unmap();
  1458. // Create the result buffer
  1459. BufferPtr resultBuff =
  1460. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1461. // Upload data and test them
  1462. CommandBufferInitInfo cmdbInit;
  1463. cmdbInit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  1464. CommandBufferPtr cmdb = gr->newCommandBuffer(cmdbInit);
  1465. TextureSubresourceInfo subresource;
  1466. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1467. cmdb->setTextureBarrier(tex, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION, subresource);
  1468. cmdb->copyBufferToTextureView(uploadBuff, 0, uploadBuff->getSize(),
  1469. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(0, 0, 0, 0))));
  1470. cmdb->copyBufferToTextureView(uploadBuff2, 0, uploadBuff2->getSize(),
  1471. gr->newTextureView(TextureViewInitInfo(tex, TextureSurfaceInfo(1, 0, 0, 0))));
  1472. cmdb->setTextureBarrier(tex, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE, subresource);
  1473. cmdb->bindShaderProgram(prog);
  1474. cmdb->bindTextureAndSampler(0, 0, texView, sampler);
  1475. cmdb->bindStorageBuffer(0, 1, resultBuff, 0, resultBuff->getSize());
  1476. cmdb->dispatchCompute(1, 1, 1);
  1477. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferUsageBit::STORAGE_COMPUTE_WRITE, 0,
  1478. resultBuff->getSize());
  1479. cmdb->flush();
  1480. gr->finish();
  1481. // Get the result
  1482. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1483. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1484. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1485. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1486. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1487. resultBuff->unmap();
  1488. COMMON_END()
  1489. }
  1490. ANKI_TEST(Gr, SpecConsts)
  1491. {
  1492. COMMON_BEGIN()
  1493. static const char* VERT_SRC = R"(
  1494. layout(constant_id = 0) const int const0 = 0;
  1495. layout(constant_id = 2) const float const1 = 0.0;
  1496. out gl_PerVertex
  1497. {
  1498. vec4 gl_Position;
  1499. };
  1500. layout(location = 0) flat out int out_const0;
  1501. layout(location = 1) flat out float out_const1;
  1502. void main()
  1503. {
  1504. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1505. vec2 pos = uv * 2.0 - 1.0;
  1506. gl_Position = vec4(pos, 0.0, 1.0);
  1507. out_const0 = const0;
  1508. out_const1 = const1;
  1509. }
  1510. )";
  1511. static const char* FRAG_SRC = R"(
  1512. layout(constant_id = 0) const int const0 = 0;
  1513. layout(constant_id = 1) const float const1 = 0.0;
  1514. layout(location = 0) flat in int in_const0;
  1515. layout(location = 1) flat in float in_const1;
  1516. layout(location = 0) out vec4 out_color;
  1517. layout(set = 0, binding = 0) buffer s_
  1518. {
  1519. uvec4 u_result;
  1520. };
  1521. void main()
  1522. {
  1523. out_color = vec4(1.0);
  1524. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1525. {
  1526. if(in_const0 != 2147483647 || in_const1 != 1234.5678 || const0 != -2147483647 || const1 != -1.0)
  1527. {
  1528. u_result = uvec4(1u);
  1529. }
  1530. else
  1531. {
  1532. u_result = uvec4(2u);
  1533. }
  1534. }
  1535. }
  1536. )";
  1537. ShaderPtr vert =
  1538. createShader(VERT_SRC, ShaderType::VERTEX, *gr,
  1539. Array<ShaderSpecializationConstValue, 3>{{ShaderSpecializationConstValue(2147483647),
  1540. ShaderSpecializationConstValue(-1.0f),
  1541. ShaderSpecializationConstValue(1234.5678f)}});
  1542. ShaderPtr frag = createShader(FRAG_SRC, ShaderType::FRAGMENT, *gr,
  1543. Array<ShaderSpecializationConstValue, 2>{{ShaderSpecializationConstValue(-2147483647),
  1544. ShaderSpecializationConstValue(-1.0f)}});
  1545. ShaderProgramInitInfo sinf;
  1546. sinf.m_graphicsShaders[ShaderType::VERTEX] = vert;
  1547. sinf.m_graphicsShaders[ShaderType::FRAGMENT] = frag;
  1548. ShaderProgramPtr prog = gr->newShaderProgram(sinf);
  1549. // Create the result buffer
  1550. BufferPtr resultBuff =
  1551. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::STORAGE_COMPUTE_WRITE, BufferMapAccessBit::READ));
  1552. // Draw
  1553. CommandBufferInitInfo cinit;
  1554. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1555. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1556. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1557. cmdb->bindShaderProgram(prog);
  1558. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1559. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1560. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1561. presentBarrierA(cmdb, presentTex);
  1562. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1563. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1564. cmdb->endRenderPass();
  1565. presentBarrierB(cmdb, presentTex);
  1566. cmdb->flush();
  1567. gr->swapBuffers();
  1568. gr->finish();
  1569. // Get the result
  1570. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1571. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1572. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1573. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1574. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1575. resultBuff->unmap();
  1576. COMMON_END()
  1577. }
  1578. ANKI_TEST(Gr, PushConsts)
  1579. {
  1580. COMMON_BEGIN()
  1581. static const char* VERT_SRC = R"(
  1582. struct PC
  1583. {
  1584. vec4 color;
  1585. ivec4 icolor;
  1586. vec4 arr[2];
  1587. mat4 mat;
  1588. };
  1589. layout(push_constant, std140) uniform pc_
  1590. {
  1591. PC regs;
  1592. };
  1593. out gl_PerVertex
  1594. {
  1595. vec4 gl_Position;
  1596. };
  1597. layout(location = 0) out vec4 out_color;
  1598. void main()
  1599. {
  1600. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1601. vec2 pos = uv * 2.0 - 1.0;
  1602. gl_Position = vec4(pos, 0.0, 1.0);
  1603. out_color = regs.color;
  1604. }
  1605. )";
  1606. static const char* FRAG_SRC = R"(
  1607. struct PC
  1608. {
  1609. vec4 color;
  1610. ivec4 icolor;
  1611. vec4 arr[2];
  1612. mat4 mat;
  1613. };
  1614. layout(push_constant, std140) uniform pc_
  1615. {
  1616. PC regs;
  1617. };
  1618. layout(location = 0) in vec4 in_color;
  1619. layout(location = 0) out vec4 out_color;
  1620. layout(set = 0, binding = 0) buffer s_
  1621. {
  1622. uvec4 u_result;
  1623. };
  1624. void main()
  1625. {
  1626. out_color = vec4(1.0);
  1627. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1628. {
  1629. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1630. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1631. || regs.mat[1][0] != 0.5)
  1632. {
  1633. u_result = uvec4(1u);
  1634. }
  1635. else
  1636. {
  1637. u_result = uvec4(2u);
  1638. }
  1639. }
  1640. }
  1641. )";
  1642. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *gr);
  1643. // Create the result buffer
  1644. BufferPtr resultBuff = gr->newBuffer(BufferInitInfo(
  1645. sizeof(UVec4), BufferUsageBit::ALL_STORAGE | BufferUsageBit::TRANSFER_DESTINATION, BufferMapAccessBit::READ));
  1646. // Draw
  1647. CommandBufferInitInfo cinit;
  1648. cinit.m_flags = CommandBufferFlag::GENERAL_WORK;
  1649. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1650. cmdb->fillBuffer(resultBuff, 0, resultBuff->getSize(), 0);
  1651. cmdb->setBufferBarrier(resultBuff, BufferUsageBit::TRANSFER_DESTINATION, BufferUsageBit::STORAGE_FRAGMENT_WRITE, 0,
  1652. resultBuff->getSize());
  1653. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1654. cmdb->bindShaderProgram(prog);
  1655. struct PushConstants
  1656. {
  1657. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1658. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1659. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1660. Mat4 m_mat = Mat4(0.0f);
  1661. } pc;
  1662. pc.m_mat(0, 1) = 0.5f;
  1663. cmdb->setPushConstants(&pc, sizeof(pc));
  1664. cmdb->bindStorageBuffer(0, 0, resultBuff, 0, resultBuff->getSize());
  1665. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  1666. FramebufferPtr dfb = createColorFb(*gr, presentTex);
  1667. presentBarrierA(cmdb, presentTex);
  1668. cmdb->beginRenderPass(dfb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  1669. cmdb->drawArrays(PrimitiveTopology::TRIANGLES, 3);
  1670. cmdb->endRenderPass();
  1671. presentBarrierB(cmdb, presentTex);
  1672. cmdb->flush();
  1673. gr->swapBuffers();
  1674. gr->finish();
  1675. // Get the result
  1676. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::READ));
  1677. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1678. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1679. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1680. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1681. resultBuff->unmap();
  1682. COMMON_END()
  1683. }
  1684. ANKI_TEST(Gr, BindingWithArray)
  1685. {
  1686. COMMON_BEGIN()
  1687. // Create result buffer
  1688. BufferPtr resBuff =
  1689. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1690. Array<BufferPtr, 4> uniformBuffers;
  1691. F32 count = 1.0f;
  1692. for(BufferPtr& ptr : uniformBuffers)
  1693. {
  1694. ptr = gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::WRITE));
  1695. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::WRITE));
  1696. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1697. count += 4.0f;
  1698. ptr->unmap();
  1699. }
  1700. // Create program
  1701. static const char* PROG_SRC = R"(
  1702. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1703. layout(set = 0, binding = 0) uniform u_
  1704. {
  1705. vec4 m_vec;
  1706. } u_ubos[4];
  1707. layout(set = 0, binding = 1) writeonly buffer ss_
  1708. {
  1709. vec4 u_result;
  1710. };
  1711. void main()
  1712. {
  1713. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1714. })";
  1715. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1716. ShaderProgramInitInfo sprogInit;
  1717. sprogInit.m_computeShader = shader;
  1718. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1719. // Run
  1720. CommandBufferInitInfo cinit;
  1721. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1722. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1723. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1724. {
  1725. cmdb->bindUniformBuffer(0, 0, uniformBuffers[i], 0, MAX_PTR_SIZE, i);
  1726. }
  1727. cmdb->bindStorageBuffer(0, 1, resBuff, 0, MAX_PTR_SIZE);
  1728. cmdb->bindShaderProgram(prog);
  1729. cmdb->dispatchCompute(1, 1, 1);
  1730. cmdb->flush();
  1731. gr->finish();
  1732. // Check result
  1733. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::READ));
  1734. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1735. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1736. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1737. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1738. resBuff->unmap();
  1739. COMMON_END();
  1740. }
  1741. ANKI_TEST(Gr, Bindless)
  1742. {
  1743. COMMON_BEGIN()
  1744. // Create texture A
  1745. TextureInitInfo texInit;
  1746. texInit.m_width = 1;
  1747. texInit.m_height = 1;
  1748. texInit.m_format = Format::R32G32B32A32_UINT;
  1749. texInit.m_usage = TextureUsageBit::ALL_IMAGE | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::ALL_SAMPLED;
  1750. texInit.m_mipmapCount = 1;
  1751. TexturePtr texA = gr->newTexture(texInit);
  1752. // Create texture B
  1753. TexturePtr texB = gr->newTexture(texInit);
  1754. // Create texture C
  1755. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1756. TexturePtr texC = gr->newTexture(texInit);
  1757. // Create sampler
  1758. SamplerInitInfo samplerInit;
  1759. SamplerPtr sampler = gr->newSampler(samplerInit);
  1760. // Create views
  1761. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1762. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1763. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1764. // Create result buffer
  1765. BufferPtr resBuff =
  1766. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1767. // Create program A
  1768. static const char* PROG_SRC = R"(
  1769. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1770. ANKI_BINDLESS_SET(0u);
  1771. layout(set = 1, binding = 0) writeonly buffer ss_
  1772. {
  1773. uvec4 u_result;
  1774. };
  1775. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1776. layout(push_constant) uniform pc_
  1777. {
  1778. uvec4 u_texIndices;
  1779. };
  1780. void main()
  1781. {
  1782. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1783. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1784. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1785. u_result = val0 + val1 + uvec4(val2);
  1786. })";
  1787. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1788. ShaderProgramInitInfo sprogInit;
  1789. sprogInit.m_computeShader = shader;
  1790. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1791. // Run
  1792. CommandBufferInitInfo cinit;
  1793. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1794. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1795. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1796. TextureSurfaceInfo());
  1797. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1798. TextureSurfaceInfo());
  1799. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::NONE, TextureUsageBit::TRANSFER_DESTINATION,
  1800. TextureSurfaceInfo());
  1801. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1802. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1803. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1804. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1805. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1806. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1807. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1808. cmdb->setTextureSurfaceBarrier(texA, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::IMAGE_COMPUTE_READ,
  1809. TextureSurfaceInfo());
  1810. cmdb->setTextureSurfaceBarrier(texB, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1811. TextureSurfaceInfo());
  1812. cmdb->setTextureSurfaceBarrier(texC, TextureUsageBit::TRANSFER_DESTINATION, TextureUsageBit::SAMPLED_COMPUTE,
  1813. TextureSurfaceInfo());
  1814. cmdb->bindStorageBuffer(1, 0, resBuff, 0, MAX_PTR_SIZE);
  1815. cmdb->bindSampler(1, 1, sampler);
  1816. cmdb->bindShaderProgram(prog);
  1817. cmdb->addReference(viewA);
  1818. cmdb->addReference(viewB);
  1819. cmdb->addReference(viewC);
  1820. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1821. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1822. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1823. UVec4 pc(idx0, idx1, idx2, 0);
  1824. cmdb->setPushConstants(&pc, sizeof(pc));
  1825. cmdb->bindAllBindless(0);
  1826. cmdb->dispatchCompute(1, 1, 1);
  1827. // Read result
  1828. FencePtr fence;
  1829. cmdb->flush({}, &fence);
  1830. transfAlloc->release(handle0, fence);
  1831. transfAlloc->release(handle1, fence);
  1832. transfAlloc->release(handle2, fence);
  1833. gr->finish();
  1834. // Check result
  1835. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::READ));
  1836. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1837. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1838. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1839. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1840. resBuff->unmap();
  1841. COMMON_END()
  1842. }
  1843. ANKI_TEST(Gr, BufferAddress)
  1844. {
  1845. COMMON_BEGIN()
  1846. // Create program
  1847. static const char* PROG_SRC = R"(
  1848. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1849. ANKI_DEFINE_LOAD_STORE(Vec4, 4)
  1850. layout(push_constant) uniform u_
  1851. {
  1852. U64 u_bufferAddressRead;
  1853. U64 u_bufferAddressWrite;
  1854. };
  1855. void main()
  1856. {
  1857. Vec4 a;
  1858. load(u_bufferAddressRead, a);
  1859. Vec4 b;
  1860. load(u_bufferAddressRead + 16ul, b);
  1861. store(u_bufferAddressWrite, a + b);
  1862. })";
  1863. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  1864. ShaderProgramInitInfo sprogInit;
  1865. sprogInit.m_computeShader = shader;
  1866. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1867. // Create buffers
  1868. BufferInitInfo info;
  1869. info.m_size = sizeof(Vec4) * 2;
  1870. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  1871. info.m_mapAccess = BufferMapAccessBit::WRITE;
  1872. BufferPtr ptrBuff = gr->newBuffer(info);
  1873. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE));
  1874. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1875. *mapped = VEC;
  1876. ++mapped;
  1877. *mapped = VEC * 10.0f;
  1878. ptrBuff->unmap();
  1879. BufferPtr resBuff =
  1880. gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::ALL_COMPUTE, BufferMapAccessBit::READ));
  1881. // Run
  1882. CommandBufferInitInfo cinit;
  1883. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  1884. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1885. cmdb->bindShaderProgram(prog);
  1886. struct Address
  1887. {
  1888. PtrSize m_addressRead;
  1889. PtrSize m_addressWrite;
  1890. } address;
  1891. address.m_addressRead = ptrBuff->getGpuAddress();
  1892. address.m_addressWrite = resBuff->getGpuAddress();
  1893. cmdb->setPushConstants(&address, sizeof(address));
  1894. cmdb->dispatchCompute(1, 1, 1);
  1895. cmdb->flush();
  1896. gr->finish();
  1897. // Check
  1898. mapped = static_cast<Vec4*>(resBuff->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ));
  1899. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1900. resBuff->unmap();
  1901. COMMON_END();
  1902. }
  1903. ANKI_TEST(Gr, RayQuery)
  1904. {
  1905. COMMON_BEGIN();
  1906. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  1907. if(!useRayTracing)
  1908. {
  1909. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1910. }
  1911. // Index buffer
  1912. BufferPtr idxBuffer;
  1913. if(useRayTracing)
  1914. {
  1915. Array<U16, 3> indices = {0, 1, 2};
  1916. BufferInitInfo init;
  1917. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1918. init.m_usage = BufferUsageBit::INDEX;
  1919. init.m_size = sizeof(indices);
  1920. idxBuffer = gr->newBuffer(init);
  1921. void* addr = idxBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1922. memcpy(addr, &indices[0], sizeof(indices));
  1923. idxBuffer->unmap();
  1924. }
  1925. // Position buffer (add some padding to complicate things a bit)
  1926. BufferPtr vertBuffer;
  1927. if(useRayTracing)
  1928. {
  1929. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1930. BufferInitInfo init;
  1931. init.m_mapAccess = BufferMapAccessBit::WRITE;
  1932. init.m_usage = BufferUsageBit::VERTEX;
  1933. init.m_size = sizeof(verts);
  1934. vertBuffer = gr->newBuffer(init);
  1935. void* addr = vertBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::WRITE);
  1936. memcpy(addr, &verts[0], sizeof(verts));
  1937. vertBuffer->unmap();
  1938. }
  1939. // BLAS
  1940. AccelerationStructurePtr blas;
  1941. if(useRayTracing)
  1942. {
  1943. AccelerationStructureInitInfo init;
  1944. init.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  1945. init.m_bottomLevel.m_indexBuffer = idxBuffer;
  1946. init.m_bottomLevel.m_indexCount = 3;
  1947. init.m_bottomLevel.m_indexType = IndexType::U16;
  1948. init.m_bottomLevel.m_positionBuffer = vertBuffer;
  1949. init.m_bottomLevel.m_positionCount = 3;
  1950. init.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  1951. init.m_bottomLevel.m_positionStride = 4 * 4;
  1952. blas = gr->newAccelerationStructure(init);
  1953. }
  1954. // TLAS
  1955. AccelerationStructurePtr tlas;
  1956. if(useRayTracing)
  1957. {
  1958. AccelerationStructureInitInfo init;
  1959. init.m_type = AccelerationStructureType::TOP_LEVEL;
  1960. Array<AccelerationStructureInstance, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1961. init.m_topLevel.m_instances = instances;
  1962. tlas = gr->newAccelerationStructure(init);
  1963. }
  1964. // Program
  1965. ShaderProgramPtr prog;
  1966. {
  1967. CString src = R"(
  1968. #if USE_RAY_TRACING
  1969. #extension GL_EXT_ray_query : enable
  1970. #endif
  1971. layout(push_constant, std140, row_major) uniform b_pc
  1972. {
  1973. Mat4 u_vp;
  1974. Vec3 u_cameraPos;
  1975. F32 u_padding0;
  1976. };
  1977. #if USE_RAY_TRACING
  1978. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1979. #endif
  1980. layout(location = 0) in Vec2 in_uv;
  1981. layout(location = 0) out Vec3 out_color;
  1982. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1983. {
  1984. const Vec3 v0v1 = v1 - v0;
  1985. const Vec3 v0v2 = v2 - v0;
  1986. const Vec3 pvec = cross(dir, v0v2);
  1987. const F32 det = dot(v0v1, pvec);
  1988. if(det < 0.00001)
  1989. {
  1990. return false;
  1991. }
  1992. const F32 invDet = 1.0 / det;
  1993. const Vec3 tvec = orig - v0;
  1994. u = dot(tvec, pvec) * invDet;
  1995. if(u < 0.0 || u > 1.0)
  1996. {
  1997. return false;
  1998. }
  1999. const Vec3 qvec = cross(tvec, v0v1);
  2000. v = dot(dir, qvec) * invDet;
  2001. if(v < 0.0 || u + v > 1.0)
  2002. {
  2003. return false;
  2004. }
  2005. t = dot(v0v2, qvec) * invDet;
  2006. return true;
  2007. }
  2008. void main()
  2009. {
  2010. // Unproject
  2011. const Vec2 ndc = in_uv * 2.0 - 1.0;
  2012. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  2013. const Vec3 p3 = p4.xyz / p4.w;
  2014. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  2015. const Vec3 rayOrigin = u_cameraPos;
  2016. #if USE_RAY_TRACING
  2017. Bool hit = false;
  2018. F32 u = 0.0;
  2019. F32 v = 0.0;
  2020. rayQueryEXT rayQuery;
  2021. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2022. 0.01, rayDir, 1000.0);
  2023. rayQueryProceedEXT(rayQuery);
  2024. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2025. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2026. {
  2027. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2028. u = bary.x;
  2029. v = bary.y;
  2030. hit = true;
  2031. }
  2032. #else
  2033. // Manual trace
  2034. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2035. F32 t;
  2036. F32 u;
  2037. F32 v;
  2038. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2039. #endif
  2040. if(hit)
  2041. {
  2042. out_color = Vec3(u, v, 1.0 - (u + v));
  2043. }
  2044. else
  2045. {
  2046. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2047. }
  2048. }
  2049. )";
  2050. StringAuto fragSrc(HeapAllocator<U8>(allocAligned, nullptr));
  2051. if(useRayTracing)
  2052. {
  2053. fragSrc.append("#define USE_RAY_TRACING 1\n");
  2054. }
  2055. else
  2056. {
  2057. fragSrc.append("#define USE_RAY_TRACING 0\n");
  2058. }
  2059. fragSrc.append(src);
  2060. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *gr);
  2061. }
  2062. // Build AS
  2063. if(useRayTracing)
  2064. {
  2065. CommandBufferInitInfo cinit;
  2066. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2067. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2068. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::NONE,
  2069. AccelerationStructureUsageBit::BUILD);
  2070. cmdb->buildAccelerationStructure(blas);
  2071. cmdb->setAccelerationStructureBarrier(blas, AccelerationStructureUsageBit::BUILD,
  2072. AccelerationStructureUsageBit::ATTACH);
  2073. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2074. AccelerationStructureUsageBit::BUILD);
  2075. cmdb->buildAccelerationStructure(tlas);
  2076. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2077. AccelerationStructureUsageBit::FRAGMENT_READ);
  2078. cmdb->flush();
  2079. }
  2080. // Draw
  2081. constexpr U32 ITERATIONS = 200;
  2082. for(U i = 0; i < ITERATIONS; ++i)
  2083. {
  2084. HighRezTimer timer;
  2085. timer.start();
  2086. const Vec4 cameraPos = {0.0f, 0.0f, 3.0f, 0.0f};
  2087. const Mat4 viewMat = Mat4{Transform{cameraPos, Mat3x4::getIdentity(), 1.0f}}.getInverse();
  2088. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2089. CommandBufferInitInfo cinit;
  2090. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2091. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2092. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2093. cmdb->bindShaderProgram(prog);
  2094. struct PC
  2095. {
  2096. Mat4 m_vp;
  2097. Vec4 m_cameraPos;
  2098. } pc;
  2099. pc.m_vp = projMat * viewMat;
  2100. pc.m_cameraPos = cameraPos;
  2101. cmdb->setPushConstants(&pc, sizeof(pc));
  2102. if(useRayTracing)
  2103. {
  2104. cmdb->bindAccelerationStructure(0, 0, tlas);
  2105. }
  2106. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2107. FramebufferPtr fb = createColorFb(*gr, presentTex);
  2108. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE,
  2109. TextureSubresourceInfo{});
  2110. cmdb->beginRenderPass(fb, {TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE}, {});
  2111. cmdb->drawArrays(PrimitiveTopology::TRIANGLE_STRIP, 4);
  2112. cmdb->endRenderPass();
  2113. cmdb->setTextureBarrier(presentTex, TextureUsageBit::FRAMEBUFFER_ATTACHMENT_WRITE, TextureUsageBit::PRESENT,
  2114. TextureSubresourceInfo{});
  2115. cmdb->flush();
  2116. gr->swapBuffers();
  2117. timer.stop();
  2118. const F32 TICK = 1.0f / 30.0f;
  2119. if(timer.getElapsedTime() < TICK)
  2120. {
  2121. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2122. }
  2123. }
  2124. COMMON_END();
  2125. }
  2126. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer,
  2127. Bool turnInsideOut = false)
  2128. {
  2129. BufferInitInfo inf;
  2130. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2131. inf.m_usage = BufferUsageBit::INDEX | BufferUsageBit::VERTEX | BufferUsageBit::STORAGE_TRACE_RAYS_READ;
  2132. inf.m_size = sizeof(Vec3) * 8;
  2133. vertBuffer = gr.newBuffer(inf);
  2134. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::WRITE);
  2135. // 7------6
  2136. // /| /|
  2137. // 3------2 |
  2138. // | | | |
  2139. // | 4 ---|-5
  2140. // |/ |/
  2141. // 0------1
  2142. positions[0] = Vec3(min.x(), min.y(), max.z());
  2143. positions[1] = Vec3(max.x(), min.y(), max.z());
  2144. positions[2] = Vec3(max.x(), max.y(), max.z());
  2145. positions[3] = Vec3(min.x(), max.y(), max.z());
  2146. positions[4] = Vec3(min.x(), min.y(), min.z());
  2147. positions[5] = Vec3(max.x(), min.y(), min.z());
  2148. positions[6] = Vec3(max.x(), max.y(), min.z());
  2149. positions[7] = Vec3(min.x(), max.y(), min.z());
  2150. vertBuffer->unmap();
  2151. inf.m_size = sizeof(U16) * 36;
  2152. indexBuffer = gr.newBuffer(inf);
  2153. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::WRITE);
  2154. U32 t = 0;
  2155. // Top
  2156. indices[t++] = 3;
  2157. indices[t++] = 2;
  2158. indices[t++] = 7;
  2159. indices[t++] = 2;
  2160. indices[t++] = 6;
  2161. indices[t++] = 7;
  2162. // Bottom
  2163. indices[t++] = 1;
  2164. indices[t++] = 0;
  2165. indices[t++] = 4;
  2166. indices[t++] = 1;
  2167. indices[t++] = 4;
  2168. indices[t++] = 5;
  2169. // Left
  2170. indices[t++] = 0;
  2171. indices[t++] = 3;
  2172. indices[t++] = 4;
  2173. indices[t++] = 3;
  2174. indices[t++] = 7;
  2175. indices[t++] = 4;
  2176. // Right
  2177. indices[t++] = 1;
  2178. indices[t++] = 5;
  2179. indices[t++] = 2;
  2180. indices[t++] = 2;
  2181. indices[t++] = 5;
  2182. indices[t++] = 6;
  2183. // Front
  2184. indices[t++] = 0;
  2185. indices[t++] = 1;
  2186. indices[t++] = 3;
  2187. indices[t++] = 3;
  2188. indices[t++] = 1;
  2189. indices[t++] = 2;
  2190. // Back
  2191. indices[t++] = 4;
  2192. indices[t++] = 7;
  2193. indices[t++] = 6;
  2194. indices[t++] = 5;
  2195. indices[t++] = 4;
  2196. indices[t++] = 6;
  2197. ANKI_ASSERT(t == indices.getSize());
  2198. if(turnInsideOut)
  2199. {
  2200. for(U32 i = 0; i < t; i += 3)
  2201. {
  2202. std::swap(indices[i + 1], indices[i + 2]);
  2203. }
  2204. }
  2205. indexBuffer->unmap();
  2206. }
  2207. enum class GeomWhat
  2208. {
  2209. SMALL_BOX,
  2210. BIG_BOX,
  2211. ROOM,
  2212. LIGHT,
  2213. COUNT,
  2214. FIRST = 0
  2215. };
  2216. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2217. ANKI_TEST(Gr, RayGen)
  2218. {
  2219. COMMON_BEGIN();
  2220. const Bool useRayTracing = gr->getDeviceCapabilities().m_rayTracingEnabled;
  2221. if(!useRayTracing)
  2222. {
  2223. ANKI_TEST_LOGW("Ray tracing not supported");
  2224. break;
  2225. }
  2226. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2227. #define MAGIC_MACRO(x) x
  2228. #include <Tests/Gr/RtTypes.h>
  2229. #undef MAGIC_MACRO
  2230. HeapAllocator<U8> alloc(allocAligned, nullptr);
  2231. // Create the offscreen RTs
  2232. Array<TexturePtr, 2> offscreenRts;
  2233. {
  2234. TextureInitInfo inf("T_offscreen#1");
  2235. inf.m_width = WIDTH;
  2236. inf.m_height = HEIGHT;
  2237. inf.m_format = Format::R8G8B8A8_UNORM;
  2238. inf.m_usage = TextureUsageBit::IMAGE_TRACE_RAYS_READ | TextureUsageBit::IMAGE_TRACE_RAYS_WRITE
  2239. | TextureUsageBit::IMAGE_COMPUTE_READ;
  2240. inf.m_initialUsage = TextureUsageBit::IMAGE_COMPUTE_READ;
  2241. offscreenRts[0] = gr->newTexture(inf);
  2242. inf.setName("T_offscreen#2");
  2243. offscreenRts[1] = gr->newTexture(inf);
  2244. }
  2245. // Copy to present program
  2246. ShaderProgramPtr copyToPresentProg;
  2247. {
  2248. const CString src = R"(
  2249. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2250. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2251. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2252. void main()
  2253. {
  2254. const UVec2 size = UVec2(imageSize(u_inImg));
  2255. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2256. {
  2257. return;
  2258. }
  2259. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2260. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2261. })";
  2262. ShaderPtr shader = createShader(src, ShaderType::COMPUTE, *gr);
  2263. ShaderProgramInitInfo sprogInit;
  2264. sprogInit.m_computeShader = shader;
  2265. copyToPresentProg = gr->newShaderProgram(sprogInit);
  2266. }
  2267. // Create the gometries
  2268. struct Geom
  2269. {
  2270. BufferPtr m_vertexBuffer;
  2271. BufferPtr m_indexBuffer;
  2272. Aabb m_aabb;
  2273. Mat3x4 m_worldTransform;
  2274. Mat3 m_worldRotation;
  2275. Bool m_insideOut = false;
  2276. U8 m_asMask = 0b10;
  2277. AccelerationStructurePtr m_blas;
  2278. U32 m_indexCount = 36;
  2279. Vec3 m_diffuseColor = Vec3(0.0f);
  2280. Vec3 m_emissiveColor = Vec3(0.0f);
  2281. };
  2282. Array<Geom, U(GeomWhat::COUNT)> geometries;
  2283. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2284. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2285. geometries[GeomWhat::SMALL_BOX].m_worldTransform = Mat3x4(
  2286. Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz()
  2287. / 2.0f),
  2288. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2289. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2290. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2291. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2292. geometries[GeomWhat::BIG_BOX].m_worldTransform = Mat3x4(
  2293. Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz()
  2294. / 2.0f),
  2295. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2296. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2297. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2298. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2299. geometries[GeomWhat::ROOM].m_worldTransform = Mat3x4(
  2300. Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2301. geometries[GeomWhat::ROOM].m_worldRotation);
  2302. geometries[GeomWhat::ROOM].m_insideOut = true;
  2303. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2304. geometries[GeomWhat::LIGHT].m_aabb =
  2305. Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2306. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2307. geometries[GeomWhat::LIGHT].m_worldTransform = Mat3x4(
  2308. Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2309. geometries[GeomWhat::LIGHT].m_worldRotation);
  2310. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2311. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2312. // Create Buffers
  2313. for(Geom& g : geometries)
  2314. {
  2315. createCubeBuffers(*gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2316. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer,
  2317. g.m_insideOut);
  2318. }
  2319. // Create AS
  2320. AccelerationStructurePtr tlas;
  2321. {
  2322. for(Geom& g : geometries)
  2323. {
  2324. AccelerationStructureInitInfo inf;
  2325. inf.m_type = AccelerationStructureType::BOTTOM_LEVEL;
  2326. inf.m_bottomLevel.m_indexBuffer = g.m_indexBuffer;
  2327. inf.m_bottomLevel.m_indexType = IndexType::U16;
  2328. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2329. inf.m_bottomLevel.m_positionBuffer = g.m_vertexBuffer;
  2330. inf.m_bottomLevel.m_positionCount = 8;
  2331. inf.m_bottomLevel.m_positionsFormat = Format::R32G32B32_SFLOAT;
  2332. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2333. g.m_blas = gr->newAccelerationStructure(inf);
  2334. }
  2335. // TLAS
  2336. Array<AccelerationStructureInstance, U32(GeomWhat::COUNT)> instances;
  2337. U32 count = 0;
  2338. for(Geom& g : geometries)
  2339. {
  2340. instances[count].m_bottomLevel = g.m_blas;
  2341. instances[count].m_transform = g.m_worldTransform;
  2342. instances[count].m_hitgroupSbtRecordIndex = count;
  2343. instances[count].m_mask = g.m_asMask;
  2344. ++count;
  2345. }
  2346. AccelerationStructureInitInfo inf;
  2347. inf.m_type = AccelerationStructureType::TOP_LEVEL;
  2348. inf.m_topLevel.m_instances = instances;
  2349. tlas = gr->newAccelerationStructure(inf);
  2350. }
  2351. // Create model info
  2352. BufferPtr modelBuffer;
  2353. {
  2354. BufferInitInfo inf;
  2355. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2356. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2357. inf.m_size = sizeof(Model) * U32(GeomWhat::COUNT);
  2358. modelBuffer = gr->newBuffer(inf);
  2359. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::COUNT), BufferMapAccessBit::WRITE);
  2360. memset(&models[0], 0, inf.m_size);
  2361. for(GeomWhat i : EnumIterable<GeomWhat>())
  2362. {
  2363. const Geom& g = geometries[i];
  2364. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2365. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2366. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2367. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2368. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2369. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2370. }
  2371. modelBuffer->unmap();
  2372. }
  2373. // Create the ppline
  2374. ShaderProgramPtr rtProg;
  2375. constexpr U32 rayGenGroupIdx = 1;
  2376. constexpr U32 missGroupIdx = 2;
  2377. constexpr U32 shadowMissGroupIdx = 3;
  2378. constexpr U32 lambertianChitGroupIdx = 4;
  2379. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2380. constexpr U32 emissiveChitGroupIdx = 6;
  2381. constexpr U32 shadowAhitGroupIdx = 7;
  2382. constexpr U32 hitgroupCount = 7;
  2383. {
  2384. const CString commonSrcPart = R"(
  2385. #define Mat3x4Scalar Mat3x4
  2386. %s
  2387. const F32 PI = 3.14159265358979323846;
  2388. struct PayLoad
  2389. {
  2390. Vec3 m_total;
  2391. Vec3 m_weight;
  2392. Vec3 m_scatteredDir;
  2393. F32 m_hitT;
  2394. };
  2395. struct ShadowPayLoad
  2396. {
  2397. F32 m_shadow;
  2398. };
  2399. layout(set = 0, binding = 0, scalar) buffer b_00
  2400. {
  2401. Model u_models[];
  2402. };
  2403. layout(set = 0, binding = 1, scalar) buffer b_01
  2404. {
  2405. Light u_lights[];
  2406. };
  2407. layout(push_constant, scalar) uniform b_pc
  2408. {
  2409. PushConstants u_regs;
  2410. };
  2411. #define PAYLOAD_LOCATION 0
  2412. #define SHADOW_PAYLOAD_LOCATION 1
  2413. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2414. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2415. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2416. {
  2417. const Mesh mesh = model.m_mesh;
  2418. const U32 offset = primitiveId * 6;
  2419. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2420. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2421. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2422. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2423. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2424. return model.m_worldRotation * normal;
  2425. }
  2426. UVec3 rand3DPCG16(UVec3 v)
  2427. {
  2428. v = v * 1664525u + 1013904223u;
  2429. v.x += v.y * v.z;
  2430. v.y += v.z * v.x;
  2431. v.z += v.x * v.y;
  2432. v.x += v.y * v.z;
  2433. v.y += v.z * v.x;
  2434. v.z += v.x * v.y;
  2435. return v >> 16u;
  2436. }
  2437. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2438. {
  2439. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2440. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2441. return Vec2(e1, e2);
  2442. }
  2443. Vec3 hemisphereSampleUniform(Vec2 uv)
  2444. {
  2445. const F32 phi = uv.y * 2.0 * PI;
  2446. const F32 cosTheta = 1.0 - uv.x;
  2447. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2448. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2449. }
  2450. Mat3 rotationFromDirection(Vec3 zAxis)
  2451. {
  2452. Vec3 z = zAxis;
  2453. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2454. F32 a = -1.0 / (sign + z.z);
  2455. F32 b = z.x * z.y * a;
  2456. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2457. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2458. return Mat3(x, y, z);
  2459. }
  2460. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2461. {
  2462. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2463. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2464. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2465. }
  2466. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2467. {
  2468. scatterDir = randomDirectionInHemisphere(normal);
  2469. pdf = dot(normal, scatterDir) / PI;
  2470. }
  2471. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2472. {
  2473. F32 cosine = dot(normal, scatteredDir);
  2474. return max(cosine / PI, 0.0);
  2475. })";
  2476. #define MAGIC_MACRO ANKI_STRINGIZE
  2477. const CString rtTypesStr =
  2478. #include <Tests/Gr/RtTypes.h>
  2479. ;
  2480. #undef MAGIC_MACRO
  2481. StringAuto commonSrc(alloc);
  2482. commonSrc.sprintf(commonSrcPart, rtTypesStr.cstr());
  2483. const CString lambertianSrc = R"(
  2484. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2485. hitAttributeEXT vec2 g_attribs;
  2486. void main()
  2487. {
  2488. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2489. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2490. Vec3 scatteredDir;
  2491. F32 pdf;
  2492. scatterLambertian(normal, scatteredDir, pdf);
  2493. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2494. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2495. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2496. s_payLoad.m_scatteredDir = scatteredDir;
  2497. s_payLoad.m_hitT = gl_HitTEXT;
  2498. })";
  2499. const CString lambertianRoomSrc = R"(
  2500. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2501. void main()
  2502. {
  2503. Vec3 col;
  2504. U32 quad = gl_PrimitiveID / 2;
  2505. if(quad == 2)
  2506. {
  2507. col = Vec3(0.65, 0.05, 0.05);
  2508. }
  2509. else if(quad == 3)
  2510. {
  2511. col = Vec3(0.12, 0.45, 0.15);
  2512. }
  2513. else
  2514. {
  2515. col = Vec3(0.73f);
  2516. }
  2517. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2518. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2519. Vec3 scatteredDir;
  2520. F32 pdf;
  2521. scatterLambertian(normal, scatteredDir, pdf);
  2522. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2523. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2524. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2525. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2526. s_payLoad.m_scatteredDir = scatteredDir;
  2527. s_payLoad.m_hitT = gl_HitTEXT;
  2528. })";
  2529. const CString emissiveSrc = R"(
  2530. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2531. void main()
  2532. {
  2533. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2534. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2535. s_payLoad.m_weight = Vec3(0.0);
  2536. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2537. s_payLoad.m_hitT = -1.0;
  2538. })";
  2539. const CString missSrc = R"(
  2540. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2541. void main()
  2542. {
  2543. //s_payLoad.m_color =
  2544. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2545. //Vec3(0.0);
  2546. s_payLoad.m_weight = Vec3(0.0);
  2547. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2548. s_payLoad.m_hitT = -1.0;
  2549. })";
  2550. const CString shadowAhitSrc = R"(
  2551. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2552. void main()
  2553. {
  2554. s_payLoad.m_shadow += 0.25;
  2555. //terminateRayEXT();
  2556. })";
  2557. const CString shadowChitSrc = R"(
  2558. void main()
  2559. {
  2560. })";
  2561. const CString shadowMissSrc = R"(
  2562. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2563. void main()
  2564. {
  2565. s_payLoad.m_shadow = 1.0;
  2566. })";
  2567. const CString rayGenSrc = R"(
  2568. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2569. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2570. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2571. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2572. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2573. void main()
  2574. {
  2575. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2576. uv.y = 1.0 - uv.y;
  2577. const Vec2 ndc = uv * 2.0 - 1.0;
  2578. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2579. const Vec3 p3 = p4.xyz / p4.w;
  2580. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2581. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2582. Vec3 outColor = Vec3(0.0);
  2583. const U32 sampleCount = 8;
  2584. const U32 maxRecursionDepth = 2;
  2585. for(U32 s = 0; s < sampleCount; ++s)
  2586. {
  2587. Vec3 rayOrigin = u_regs.m_cameraPos;
  2588. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2589. s_payLoad.m_total = Vec3(0.0);
  2590. s_payLoad.m_weight = Vec3(1.0);
  2591. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2592. {
  2593. const U32 cullMask = 0xFF;
  2594. const U32 sbtRecordOffset = 0;
  2595. const U32 sbtRecordStride = 0;
  2596. const U32 missIndex = 0;
  2597. const F32 tMin = 0.1;
  2598. const F32 tMax = 10000.0;
  2599. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2600. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2601. if(s_payLoad.m_hitT > 0.0)
  2602. {
  2603. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2604. rayDir = s_payLoad.m_scatteredDir;
  2605. }
  2606. else
  2607. {
  2608. break;
  2609. }
  2610. }
  2611. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2612. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2613. }
  2614. outColor /= F32(sampleCount);
  2615. #if 0
  2616. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2617. const Vec3 normal = s_payLoad.m_normal;
  2618. if(s_payLoad.m_hitT > 0.0)
  2619. {
  2620. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2621. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2622. {
  2623. s_shadowPayLoad.m_shadow = 0.0;
  2624. const Light light = u_lights[i];
  2625. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2626. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2627. const U32 cullMask = 0x2;
  2628. const U32 sbtRecordOffset = 1;
  2629. const U32 sbtRecordStride = 0;
  2630. const U32 missIndex = 1;
  2631. const F32 tMin = 0.1;
  2632. const F32 tMax = length(randomPointInLight - rayOrigin);
  2633. const U32 flags = gl_RayFlagsOpaqueEXT;
  2634. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2635. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2636. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2637. outColor += normal * light.m_intensity * shadow;
  2638. }
  2639. }
  2640. else
  2641. {
  2642. outColor = diffuseColor;
  2643. }
  2644. #endif
  2645. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2646. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2647. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2648. })";
  2649. ShaderPtr lambertianShader = createShader(
  2650. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2651. ShaderPtr lambertianRoomShader =
  2652. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()),
  2653. ShaderType::CLOSEST_HIT, *gr);
  2654. ShaderPtr emissiveShader = createShader(
  2655. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2656. ShaderPtr shadowAhitShader = createShader(
  2657. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::ANY_HIT, *gr);
  2658. ShaderPtr shadowChitShader = createShader(
  2659. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::CLOSEST_HIT, *gr);
  2660. ShaderPtr missShader =
  2661. createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::MISS, *gr);
  2662. ShaderPtr shadowMissShader = createShader(
  2663. StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::MISS, *gr);
  2664. ShaderPtr rayGenShader = createShader(StringAuto(alloc).sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()),
  2665. ShaderType::RAY_GEN, *gr);
  2666. Array<RayTracingHitGroup, 4> hitGroups;
  2667. hitGroups[0].m_closestHitShader = lambertianShader;
  2668. hitGroups[1].m_closestHitShader = lambertianRoomShader;
  2669. hitGroups[2].m_closestHitShader = emissiveShader;
  2670. hitGroups[3].m_closestHitShader = shadowChitShader;
  2671. hitGroups[3].m_anyHitShader = shadowAhitShader;
  2672. Array<ShaderPtr, 2> missShaders = {missShader, shadowMissShader};
  2673. // Add the same 2 times to test multiple ray gen shaders
  2674. Array<ShaderPtr, 2> rayGenShaders = {rayGenShader, rayGenShader};
  2675. ShaderProgramInitInfo inf;
  2676. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2677. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2678. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2679. rtProg = gr->newShaderProgram(inf);
  2680. }
  2681. // Create the SBT
  2682. BufferPtr sbt;
  2683. {
  2684. const U32 recordCount = 1 + 2 + U32(GeomWhat::COUNT) * 2;
  2685. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2686. BufferInitInfo inf;
  2687. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2688. inf.m_usage = BufferUsageBit::SBT;
  2689. inf.m_size = sbtRecordSize * recordCount;
  2690. sbt = gr->newBuffer(inf);
  2691. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::WRITE);
  2692. memset(&mapped[0], 0, inf.m_size);
  2693. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2694. ANKI_TEST_EXPECT_EQ(handles.getSize(),
  2695. gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2696. // Ray gen
  2697. U32 record = 0;
  2698. memcpy(&mapped[sbtRecordSize * record++],
  2699. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2700. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2701. // 2xMiss
  2702. memcpy(&mapped[sbtRecordSize * record++],
  2703. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2704. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2705. memcpy(&mapped[sbtRecordSize * record++],
  2706. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2707. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2708. // Small box
  2709. memcpy(&mapped[sbtRecordSize * record++],
  2710. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2711. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2712. memcpy(&mapped[sbtRecordSize * record++],
  2713. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2714. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2715. // Big box
  2716. memcpy(&mapped[sbtRecordSize * record++],
  2717. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2718. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2719. memcpy(&mapped[sbtRecordSize * record++],
  2720. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2721. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2722. // Room
  2723. memcpy(&mapped[sbtRecordSize * record++],
  2724. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2725. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2726. memcpy(&mapped[sbtRecordSize * record++],
  2727. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2728. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2729. // Light
  2730. memcpy(&mapped[sbtRecordSize * record++],
  2731. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2732. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2733. memcpy(&mapped[sbtRecordSize * record++],
  2734. &handles[gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2735. gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2736. sbt->unmap();
  2737. }
  2738. // Create lights
  2739. BufferPtr lightBuffer;
  2740. constexpr U32 lightCount = 1;
  2741. {
  2742. BufferInitInfo inf;
  2743. inf.m_mapAccess = BufferMapAccessBit::WRITE;
  2744. inf.m_usage = BufferUsageBit::ALL_STORAGE;
  2745. inf.m_size = sizeof(Light) * lightCount;
  2746. lightBuffer = gr->newBuffer(inf);
  2747. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::WRITE);
  2748. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2749. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2750. lights[0].m_intensity = Vec3(1.0f);
  2751. lightBuffer->unmap();
  2752. }
  2753. // Draw
  2754. constexpr U32 ITERATIONS = 100 * 8;
  2755. for(U32 i = 0; i < ITERATIONS; ++i)
  2756. {
  2757. HighRezTimer timer;
  2758. timer.start();
  2759. const Mat4 viewMat =
  2760. Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f))
  2761. .getInverse();
  2762. const Mat4 projMat =
  2763. Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2764. CommandBufferInitInfo cinit;
  2765. cinit.m_flags =
  2766. CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2767. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  2768. if(i == 0)
  2769. {
  2770. for(const Geom& g : geometries)
  2771. {
  2772. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::NONE,
  2773. AccelerationStructureUsageBit::BUILD);
  2774. }
  2775. for(const Geom& g : geometries)
  2776. {
  2777. cmdb->buildAccelerationStructure(g.m_blas);
  2778. }
  2779. for(const Geom& g : geometries)
  2780. {
  2781. cmdb->setAccelerationStructureBarrier(g.m_blas, AccelerationStructureUsageBit::BUILD,
  2782. AccelerationStructureUsageBit::ATTACH);
  2783. }
  2784. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::NONE,
  2785. AccelerationStructureUsageBit::BUILD);
  2786. cmdb->buildAccelerationStructure(tlas);
  2787. cmdb->setAccelerationStructureBarrier(tlas, AccelerationStructureUsageBit::BUILD,
  2788. AccelerationStructureUsageBit::TRACE_RAYS_READ);
  2789. }
  2790. TexturePtr presentTex = gr->acquireNextPresentableTexture();
  2791. TextureViewPtr presentView;
  2792. {
  2793. TextureViewInitInfo inf;
  2794. inf.m_texture = presentTex;
  2795. presentView = gr->newTextureView(inf);
  2796. }
  2797. TextureViewPtr offscreenView, offscreenHistoryView;
  2798. {
  2799. TextureViewInitInfo inf;
  2800. inf.m_texture = offscreenRts[i & 1];
  2801. offscreenView = gr->newTextureView(inf);
  2802. inf.m_texture = offscreenRts[(i + 1) & 1];
  2803. offscreenHistoryView = gr->newTextureView(inf);
  2804. }
  2805. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::NONE, TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2806. TextureSubresourceInfo());
  2807. cmdb->setTextureBarrier(offscreenRts[(i + 1) & 1], TextureUsageBit::IMAGE_COMPUTE_READ,
  2808. TextureUsageBit::IMAGE_TRACE_RAYS_READ, TextureSubresourceInfo());
  2809. cmdb->bindStorageBuffer(0, 0, modelBuffer, 0, MAX_PTR_SIZE);
  2810. cmdb->bindStorageBuffer(0, 1, lightBuffer, 0, MAX_PTR_SIZE);
  2811. cmdb->bindAccelerationStructure(1, 0, tlas);
  2812. cmdb->bindImage(1, 1, offscreenHistoryView);
  2813. cmdb->bindImage(1, 2, offscreenView);
  2814. cmdb->bindShaderProgram(rtProg);
  2815. PushConstants pc;
  2816. pc.m_vp = projMat * viewMat;
  2817. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2818. pc.m_lightCount = lightCount;
  2819. pc.m_frame = i;
  2820. cmdb->setPushConstants(&pc, sizeof(pc));
  2821. const U32 sbtRecordSize = gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2822. cmdb->traceRays(sbt, 0, sbtRecordSize, U32(GeomWhat::COUNT) * 2, 2, WIDTH, HEIGHT, 1);
  2823. // Copy to present
  2824. cmdb->setTextureBarrier(offscreenRts[i & 1], TextureUsageBit::IMAGE_TRACE_RAYS_WRITE,
  2825. TextureUsageBit::IMAGE_COMPUTE_READ, TextureSubresourceInfo());
  2826. cmdb->setTextureBarrier(presentTex, TextureUsageBit::NONE, TextureUsageBit::IMAGE_COMPUTE_WRITE,
  2827. TextureSubresourceInfo());
  2828. cmdb->bindImage(0, 0, offscreenView);
  2829. cmdb->bindImage(0, 1, presentView);
  2830. cmdb->bindShaderProgram(copyToPresentProg);
  2831. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2832. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2833. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2834. cmdb->setTextureBarrier(presentTex, TextureUsageBit::IMAGE_COMPUTE_WRITE, TextureUsageBit::PRESENT,
  2835. TextureSubresourceInfo());
  2836. cmdb->flush();
  2837. gr->swapBuffers();
  2838. timer.stop();
  2839. const F32 TICK = 1.0f / 60.0f;
  2840. if(timer.getElapsedTime() < TICK)
  2841. {
  2842. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2843. }
  2844. }
  2845. COMMON_END();
  2846. }
  2847. ANKI_TEST(Gr, AsyncCompute)
  2848. {
  2849. COMMON_BEGIN()
  2850. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2851. // Create the counting program
  2852. static const char* PROG_SRC = R"(
  2853. layout(local_size_x = 8) in;
  2854. layout(binding = 0, std430) buffer b_buff
  2855. {
  2856. U32 u_counters[];
  2857. };
  2858. void main()
  2859. {
  2860. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2861. {
  2862. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2863. }
  2864. })";
  2865. ShaderPtr shader = createShader(PROG_SRC, ShaderType::COMPUTE, *gr);
  2866. ShaderProgramInitInfo sprogInit;
  2867. sprogInit.m_computeShader = shader;
  2868. ShaderProgramPtr incrementProg = gr->newShaderProgram(sprogInit);
  2869. // Create the check program
  2870. static const char* CHECK_SRC = R"(
  2871. layout(local_size_x = 8) in;
  2872. layout(binding = 0, std430) buffer b_buff
  2873. {
  2874. U32 u_counters[];
  2875. };
  2876. void main()
  2877. {
  2878. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2879. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2880. U32 expectedVal = 0u;
  2881. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2882. {
  2883. expectedVal += i + 1u;
  2884. }
  2885. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2886. })";
  2887. shader = createShader(CHECK_SRC, ShaderType::COMPUTE, *gr);
  2888. sprogInit.m_computeShader = shader;
  2889. ShaderProgramPtr checkProg = gr->newShaderProgram(sprogInit);
  2890. // Create buffers
  2891. BufferInitInfo info;
  2892. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2893. info.m_usage = BufferUsageBit::ALL_COMPUTE;
  2894. info.m_mapAccess = BufferMapAccessBit::WRITE | BufferMapAccessBit::READ;
  2895. BufferPtr atomicsBuffer = gr->newBuffer(info);
  2896. U32* values =
  2897. static_cast<U32*>(atomicsBuffer->map(0, MAX_PTR_SIZE, BufferMapAccessBit::READ | BufferMapAccessBit::WRITE));
  2898. memset(values, 0, info.m_size);
  2899. // Pre-create some CPU result buffers
  2900. DynamicArrayAuto<U32> atomicsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2901. atomicsBufferCpu.create(ARRAY_SIZE);
  2902. DynamicArrayAuto<U32> expectedResultsBufferCpu(HeapAllocator<U8>(allocAligned, nullptr));
  2903. expectedResultsBufferCpu.create(ARRAY_SIZE);
  2904. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2905. {
  2906. const U32 localInvocation = i % 8;
  2907. U32 expectedVal = 4;
  2908. for(U32 j = 0; j < localInvocation * 20; ++j)
  2909. {
  2910. expectedVal += j + 1;
  2911. }
  2912. expectedResultsBufferCpu[i] = expectedVal;
  2913. }
  2914. // Create the 1st command buffer
  2915. CommandBufferInitInfo cinit;
  2916. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2917. CommandBufferPtr incrementCmdb = gr->newCommandBuffer(cinit);
  2918. incrementCmdb->bindShaderProgram(incrementProg);
  2919. incrementCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2920. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2921. // Create the 2nd command buffer
  2922. cinit.m_flags = CommandBufferFlag::GENERAL_WORK | CommandBufferFlag::SMALL_BATCH;
  2923. CommandBufferPtr checkCmdb = gr->newCommandBuffer(cinit);
  2924. checkCmdb->bindShaderProgram(checkProg);
  2925. checkCmdb->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2926. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2927. // Create the 3rd command buffer
  2928. cinit.m_flags = CommandBufferFlag::COMPUTE_WORK | CommandBufferFlag::SMALL_BATCH;
  2929. CommandBufferPtr incrementCmdb2 = gr->newCommandBuffer(cinit);
  2930. incrementCmdb2->bindShaderProgram(incrementProg);
  2931. incrementCmdb2->bindStorageBuffer(0, 0, atomicsBuffer, 0, MAX_PTR_SIZE);
  2932. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2933. // Submit
  2934. #if 1
  2935. FencePtr fence;
  2936. incrementCmdb->flush({}, &fence);
  2937. checkCmdb->flush(Array<FencePtr, 1>{fence}, &fence);
  2938. incrementCmdb2->flush(Array<FencePtr, 1>{fence}, &fence);
  2939. fence->clientWait(MAX_SECOND);
  2940. #else
  2941. incrementCmdb->flush();
  2942. gr->finish();
  2943. checkCmdb->flush();
  2944. gr->finish();
  2945. incrementCmdb2->flush();
  2946. gr->finish();
  2947. #endif
  2948. // Verify
  2949. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2950. Bool correct = true;
  2951. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2952. {
  2953. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2954. if(!correct)
  2955. {
  2956. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2957. break;
  2958. }
  2959. }
  2960. atomicsBuffer->unmap();
  2961. ANKI_TEST_EXPECT_EQ(correct, true);
  2962. COMMON_END()
  2963. }
  2964. } // end namespace anki