transformation_composite_construct.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. // Copyright (c) 2019 Google LLC
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include "source/fuzz/transformation_composite_construct.h"
  15. #include "source/fuzz/data_descriptor.h"
  16. #include "source/fuzz/fuzzer_util.h"
  17. #include "source/fuzz/instruction_descriptor.h"
  18. #include "source/opt/instruction.h"
  19. namespace spvtools {
  20. namespace fuzz {
  21. TransformationCompositeConstruct::TransformationCompositeConstruct(
  22. const protobufs::TransformationCompositeConstruct& message)
  23. : message_(message) {}
  24. TransformationCompositeConstruct::TransformationCompositeConstruct(
  25. uint32_t composite_type_id, std::vector<uint32_t> component,
  26. const protobufs::InstructionDescriptor& instruction_to_insert_before,
  27. uint32_t fresh_id) {
  28. message_.set_composite_type_id(composite_type_id);
  29. for (auto a_component : component) {
  30. message_.add_component(a_component);
  31. }
  32. *message_.mutable_instruction_to_insert_before() =
  33. instruction_to_insert_before;
  34. message_.set_fresh_id(fresh_id);
  35. }
  36. bool TransformationCompositeConstruct::IsApplicable(
  37. opt::IRContext* ir_context, const TransformationContext& /*unused*/) const {
  38. if (!fuzzerutil::IsFreshId(ir_context, message_.fresh_id())) {
  39. // We require the id for the composite constructor to be unused.
  40. return false;
  41. }
  42. auto insert_before =
  43. FindInstruction(message_.instruction_to_insert_before(), ir_context);
  44. if (!insert_before) {
  45. // The instruction before which the composite should be inserted was not
  46. // found.
  47. return false;
  48. }
  49. auto composite_type =
  50. ir_context->get_type_mgr()->GetType(message_.composite_type_id());
  51. if (!fuzzerutil::IsCompositeType(composite_type)) {
  52. // The type must actually be a composite.
  53. return false;
  54. }
  55. // If the type is an array, matrix, struct or vector, the components need to
  56. // be suitable for constructing something of that type.
  57. if (composite_type->AsArray() &&
  58. !ComponentsForArrayConstructionAreOK(ir_context,
  59. *composite_type->AsArray())) {
  60. return false;
  61. }
  62. if (composite_type->AsMatrix() &&
  63. !ComponentsForMatrixConstructionAreOK(ir_context,
  64. *composite_type->AsMatrix())) {
  65. return false;
  66. }
  67. if (composite_type->AsStruct() &&
  68. !ComponentsForStructConstructionAreOK(ir_context,
  69. *composite_type->AsStruct())) {
  70. return false;
  71. }
  72. if (composite_type->AsVector() &&
  73. !ComponentsForVectorConstructionAreOK(ir_context,
  74. *composite_type->AsVector())) {
  75. return false;
  76. }
  77. // Now check whether every component being used to initialize the composite is
  78. // available at the desired program point.
  79. for (auto component : message_.component()) {
  80. auto* inst = ir_context->get_def_use_mgr()->GetDef(component);
  81. if (!inst) {
  82. return false;
  83. }
  84. if (!fuzzerutil::IdIsAvailableBeforeInstruction(ir_context, insert_before,
  85. component)) {
  86. return false;
  87. }
  88. }
  89. return true;
  90. }
  91. void TransformationCompositeConstruct::Apply(
  92. opt::IRContext* ir_context,
  93. TransformationContext* transformation_context) const {
  94. // Use the base and offset information from the transformation to determine
  95. // where in the module a new instruction should be inserted.
  96. auto insert_before_inst =
  97. FindInstruction(message_.instruction_to_insert_before(), ir_context);
  98. auto destination_block = ir_context->get_instr_block(insert_before_inst);
  99. auto insert_before = fuzzerutil::GetIteratorForInstruction(
  100. destination_block, insert_before_inst);
  101. // Prepare the input operands for an OpCompositeConstruct instruction.
  102. opt::Instruction::OperandList in_operands;
  103. for (auto& component_id : message_.component()) {
  104. in_operands.push_back({SPV_OPERAND_TYPE_ID, {component_id}});
  105. }
  106. // Insert an OpCompositeConstruct instruction.
  107. insert_before.InsertBefore(MakeUnique<opt::Instruction>(
  108. ir_context, SpvOpCompositeConstruct, message_.composite_type_id(),
  109. message_.fresh_id(), in_operands));
  110. fuzzerutil::UpdateModuleIdBound(ir_context, message_.fresh_id());
  111. ir_context->InvalidateAnalysesExceptFor(opt::IRContext::kAnalysisNone);
  112. AddDataSynonymFacts(ir_context, transformation_context);
  113. }
  114. bool TransformationCompositeConstruct::ComponentsForArrayConstructionAreOK(
  115. opt::IRContext* ir_context, const opt::analysis::Array& array_type) const {
  116. if (array_type.length_info().words[0] !=
  117. opt::analysis::Array::LengthInfo::kConstant) {
  118. // We only handle constant-sized arrays.
  119. return false;
  120. }
  121. if (array_type.length_info().words.size() != 2) {
  122. // We only handle the case where the array size can be captured in a single
  123. // word.
  124. return false;
  125. }
  126. // Get the array size.
  127. auto array_size = array_type.length_info().words[1];
  128. if (static_cast<uint32_t>(message_.component().size()) != array_size) {
  129. // The number of components must match the array size.
  130. return false;
  131. }
  132. // Check that each component is the result id of an instruction whose type is
  133. // the array's element type.
  134. for (auto component_id : message_.component()) {
  135. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  136. if (inst == nullptr || !inst->type_id()) {
  137. // The component does not correspond to an instruction with a result
  138. // type.
  139. return false;
  140. }
  141. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  142. assert(component_type);
  143. if (component_type != array_type.element_type()) {
  144. // The component's type does not match the array's element type.
  145. return false;
  146. }
  147. }
  148. return true;
  149. }
  150. bool TransformationCompositeConstruct::ComponentsForMatrixConstructionAreOK(
  151. opt::IRContext* ir_context,
  152. const opt::analysis::Matrix& matrix_type) const {
  153. if (static_cast<uint32_t>(message_.component().size()) !=
  154. matrix_type.element_count()) {
  155. // The number of components must match the number of columns of the matrix.
  156. return false;
  157. }
  158. // Check that each component is the result id of an instruction whose type is
  159. // the matrix's column type.
  160. for (auto component_id : message_.component()) {
  161. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  162. if (inst == nullptr || !inst->type_id()) {
  163. // The component does not correspond to an instruction with a result
  164. // type.
  165. return false;
  166. }
  167. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  168. assert(component_type);
  169. if (component_type != matrix_type.element_type()) {
  170. // The component's type does not match the matrix's column type.
  171. return false;
  172. }
  173. }
  174. return true;
  175. }
  176. bool TransformationCompositeConstruct::ComponentsForStructConstructionAreOK(
  177. opt::IRContext* ir_context,
  178. const opt::analysis::Struct& struct_type) const {
  179. if (static_cast<uint32_t>(message_.component().size()) !=
  180. struct_type.element_types().size()) {
  181. // The number of components must match the number of fields of the struct.
  182. return false;
  183. }
  184. // Check that each component is the result id of an instruction those type
  185. // matches the associated field type.
  186. for (uint32_t field_index = 0;
  187. field_index < struct_type.element_types().size(); field_index++) {
  188. auto inst = ir_context->get_def_use_mgr()->GetDef(
  189. message_.component()[field_index]);
  190. if (inst == nullptr || !inst->type_id()) {
  191. // The component does not correspond to an instruction with a result
  192. // type.
  193. return false;
  194. }
  195. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  196. assert(component_type);
  197. if (component_type != struct_type.element_types()[field_index]) {
  198. // The component's type does not match the corresponding field type.
  199. return false;
  200. }
  201. }
  202. return true;
  203. }
  204. bool TransformationCompositeConstruct::ComponentsForVectorConstructionAreOK(
  205. opt::IRContext* ir_context,
  206. const opt::analysis::Vector& vector_type) const {
  207. uint32_t base_element_count = 0;
  208. auto element_type = vector_type.element_type();
  209. for (auto& component_id : message_.component()) {
  210. auto inst = ir_context->get_def_use_mgr()->GetDef(component_id);
  211. if (inst == nullptr || !inst->type_id()) {
  212. // The component does not correspond to an instruction with a result
  213. // type.
  214. return false;
  215. }
  216. auto component_type = ir_context->get_type_mgr()->GetType(inst->type_id());
  217. assert(component_type);
  218. if (component_type == element_type) {
  219. base_element_count++;
  220. } else if (component_type->AsVector() &&
  221. component_type->AsVector()->element_type() == element_type) {
  222. base_element_count += component_type->AsVector()->element_count();
  223. } else {
  224. // The component was not appropriate; e.g. no type corresponding to the
  225. // given id was found, or the type that was found was not compatible
  226. // with the vector being constructed.
  227. return false;
  228. }
  229. }
  230. // The number of components provided (when vector components are flattened
  231. // out) needs to match the length of the vector being constructed.
  232. return base_element_count == vector_type.element_count();
  233. }
  234. protobufs::Transformation TransformationCompositeConstruct::ToMessage() const {
  235. protobufs::Transformation result;
  236. *result.mutable_composite_construct() = message_;
  237. return result;
  238. }
  239. std::unordered_set<uint32_t> TransformationCompositeConstruct::GetFreshIds()
  240. const {
  241. return {message_.fresh_id()};
  242. }
  243. void TransformationCompositeConstruct::AddDataSynonymFacts(
  244. opt::IRContext* ir_context,
  245. TransformationContext* transformation_context) const {
  246. // If the result id of the composite we are constructing is irrelevant (e.g.
  247. // because it is in a dead block) then we do not make any synonyms.
  248. if (transformation_context->GetFactManager()->IdIsIrrelevant(
  249. message_.fresh_id())) {
  250. return;
  251. }
  252. // Inform the fact manager that we now have new synonyms: every component of
  253. // the composite is synonymous with the id used to construct that component
  254. // (so long as it is legitimate to create a synonym from that id), except in
  255. // the case of a vector where a single vector id can span multiple components.
  256. auto composite_type =
  257. ir_context->get_type_mgr()->GetType(message_.composite_type_id());
  258. uint32_t index = 0;
  259. for (auto component : message_.component()) {
  260. auto component_type = ir_context->get_type_mgr()->GetType(
  261. ir_context->get_def_use_mgr()->GetDef(component)->type_id());
  262. // Whether the component is a vector being packed into a vector determines
  263. // how we should keep track of the indices associated with components.
  264. const bool packing_vector_into_vector =
  265. composite_type->AsVector() && component_type->AsVector();
  266. if (!fuzzerutil::CanMakeSynonymOf(
  267. ir_context, *transformation_context,
  268. ir_context->get_def_use_mgr()->GetDef(component))) {
  269. // We can't make a synonym of this component, so we skip on to the next
  270. // component. In the case where we're packing a vector into a vector we
  271. // have to skip as many components of the resulting vectors as there are
  272. // elements of the component vector.
  273. index += packing_vector_into_vector
  274. ? component_type->AsVector()->element_count()
  275. : 1;
  276. continue;
  277. }
  278. if (packing_vector_into_vector) {
  279. // The case where the composite being constructed is a vector and the
  280. // component provided for construction is also a vector is special. It
  281. // requires adding a synonym fact relating each element of the sub-vector
  282. // to the corresponding element of the composite being constructed.
  283. assert(component_type->AsVector()->element_type() ==
  284. composite_type->AsVector()->element_type());
  285. assert(component_type->AsVector()->element_count() <
  286. composite_type->AsVector()->element_count());
  287. for (uint32_t subvector_index = 0;
  288. subvector_index < component_type->AsVector()->element_count();
  289. subvector_index++) {
  290. transformation_context->GetFactManager()->AddFactDataSynonym(
  291. MakeDataDescriptor(component, {subvector_index}),
  292. MakeDataDescriptor(message_.fresh_id(), {index}));
  293. index++;
  294. }
  295. } else {
  296. // The other cases are simple: the component is made directly synonymous
  297. // with the element of the composite being constructed.
  298. transformation_context->GetFactManager()->AddFactDataSynonym(
  299. MakeDataDescriptor(component, {}),
  300. MakeDataDescriptor(message_.fresh_id(), {index}));
  301. index++;
  302. }
  303. }
  304. }
  305. } // namespace fuzz
  306. } // namespace spvtools