| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169 |
- //
- // Copyright (C) 2017-2018 Google, Inc.
- // Copyright (C) 2017 LunarG, Inc.
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions
- // are met:
- //
- // Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- //
- // Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following
- // disclaimer in the documentation and/or other materials provided
- // with the distribution.
- //
- // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
- // contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- #include "hlslParseHelper.h"
- #include "hlslScanContext.h"
- #include "hlslGrammar.h"
- #include "hlslAttributes.h"
- #include "../Include/Common.h"
- #include "../MachineIndependent/Scan.h"
- #include "../MachineIndependent/preprocessor/PpContext.h"
- #include "../OSDependent/osinclude.h"
- #include <algorithm>
- #include <functional>
- #include <cctype>
- #include <array>
- #include <set>
- namespace glslang {
- HlslParseContext::HlslParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins,
- int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language,
- TInfoSink& infoSink,
- const TString sourceEntryPointName,
- bool forwardCompatible, EShMessages messages) :
- TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink,
- forwardCompatible, messages, &sourceEntryPointName),
- annotationNestingLevel(0),
- inputPatch(nullptr),
- nextInLocation(0), nextOutLocation(0),
- entryPointFunction(nullptr),
- entryPointFunctionBody(nullptr),
- gsStreamOutput(nullptr),
- clipDistanceOutput(nullptr),
- cullDistanceOutput(nullptr),
- clipDistanceInput(nullptr),
- cullDistanceInput(nullptr),
- parsingEntrypointParameters(false)
- {
- globalUniformDefaults.clear();
- globalUniformDefaults.layoutMatrix = ElmRowMajor;
- globalUniformDefaults.layoutPacking = ElpStd140;
- globalBufferDefaults.clear();
- globalBufferDefaults.layoutMatrix = ElmRowMajor;
- globalBufferDefaults.layoutPacking = ElpStd430;
- globalInputDefaults.clear();
- globalOutputDefaults.clear();
- clipSemanticNSizeIn.fill(0);
- cullSemanticNSizeIn.fill(0);
- clipSemanticNSizeOut.fill(0);
- cullSemanticNSizeOut.fill(0);
- // "Shaders in the transform
- // feedback capturing mode have an initial global default of
- // layout(xfb_buffer = 0) out;"
- if (language == EShLangVertex ||
- language == EShLangTessControl ||
- language == EShLangTessEvaluation ||
- language == EShLangGeometry)
- globalOutputDefaults.layoutXfbBuffer = 0;
- if (language == EShLangGeometry)
- globalOutputDefaults.layoutStream = 0;
- }
- HlslParseContext::~HlslParseContext()
- {
- }
- void HlslParseContext::initializeExtensionBehavior()
- {
- TParseContextBase::initializeExtensionBehavior();
- // HLSL allows #line by default.
- extensionBehavior[E_GL_GOOGLE_cpp_style_line_directive] = EBhEnable;
- }
- void HlslParseContext::setLimits(const TBuiltInResource& r)
- {
- resources = r;
- intermediate.setLimits(resources);
- }
- //
- // Parse an array of strings using the parser in HlslRules.
- //
- // Returns true for successful acceptance of the shader, false if any errors.
- //
- bool HlslParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError)
- {
- currentScanner = &input;
- ppContext.setInput(input, versionWillBeError);
- HlslScanContext scanContext(*this, ppContext);
- HlslGrammar grammar(scanContext, *this);
- if (!grammar.parse()) {
- // Print a message formated such that if you click on the message it will take you right to
- // the line through most UIs.
- const glslang::TSourceLoc& sourceLoc = input.getSourceLoc();
- infoSink.info << sourceLoc.getFilenameStr() << "(" << sourceLoc.line << "): error at column " << sourceLoc.column
- << ", HLSL parsing failed.\n";
- ++numErrors;
- return false;
- }
- finish();
- return numErrors == 0;
- }
- //
- // Return true if this l-value node should be converted in some manner.
- // For instance: turning a load aggregate into a store in an l-value.
- //
- bool HlslParseContext::shouldConvertLValue(const TIntermNode* node) const
- {
- if (node == nullptr || node->getAsTyped() == nullptr)
- return false;
- const TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
- const TIntermBinary* lhsAsBinary = node->getAsBinaryNode();
- // If it's a swizzled/indexed aggregate, look at the left node instead.
- if (lhsAsBinary != nullptr &&
- (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect))
- lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
- if (lhsAsAggregate != nullptr && lhsAsAggregate->getOp() == EOpImageLoad)
- return true;
- return false;
- }
- void HlslParseContext::growGlobalUniformBlock(const TSourceLoc& loc, TType& memberType, const TString& memberName,
- TTypeList* newTypeList)
- {
- newTypeList = nullptr;
- correctUniform(memberType.getQualifier());
- if (memberType.isStruct()) {
- auto it = ioTypeMap.find(memberType.getStruct());
- if (it != ioTypeMap.end() && it->second.uniform)
- newTypeList = it->second.uniform;
- }
- TParseContextBase::growGlobalUniformBlock(loc, memberType, memberName, newTypeList);
- }
- //
- // Return a TLayoutFormat corresponding to the given texture type.
- //
- TLayoutFormat HlslParseContext::getLayoutFromTxType(const TSourceLoc& loc, const TType& txType)
- {
- if (txType.isStruct()) {
- // TODO: implement.
- error(loc, "unimplemented: structure type in image or buffer", "", "");
- return ElfNone;
- }
- const int components = txType.getVectorSize();
- const TBasicType txBasicType = txType.getBasicType();
- const auto selectFormat = [this,&components](TLayoutFormat v1, TLayoutFormat v2, TLayoutFormat v4) -> TLayoutFormat {
- if (intermediate.getNoStorageFormat())
- return ElfNone;
- return components == 1 ? v1 :
- components == 2 ? v2 : v4;
- };
- switch (txBasicType) {
- case EbtFloat: return selectFormat(ElfR32f, ElfRg32f, ElfRgba32f);
- case EbtInt: return selectFormat(ElfR32i, ElfRg32i, ElfRgba32i);
- case EbtUint: return selectFormat(ElfR32ui, ElfRg32ui, ElfRgba32ui);
- default:
- error(loc, "unknown basic type in image format", "", "");
- return ElfNone;
- }
- }
- //
- // Both test and if necessary, spit out an error, to see if the node is really
- // an l-value that can be operated on this way.
- //
- // Returns true if there was an error.
- //
- bool HlslParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node)
- {
- if (shouldConvertLValue(node)) {
- // if we're writing to a texture, it must be an RW form.
- TIntermAggregate* lhsAsAggregate = node->getAsAggregate();
- TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
- if (!object->getType().getSampler().isImage()) {
- error(loc, "operator[] on a non-RW texture must be an r-value", "", "");
- return true;
- }
- }
- // We tolerate samplers as l-values, even though they are nominally
- // illegal, because we expect a later optimization to eliminate them.
- if (node->getType().getBasicType() == EbtSampler) {
- intermediate.setNeedsLegalization();
- return false;
- }
- // Let the base class check errors
- return TParseContextBase::lValueErrorCheck(loc, op, node);
- }
- //
- // This function handles l-value conversions and verifications. It uses, but is not synonymous
- // with lValueErrorCheck. That function accepts an l-value directly, while this one must be
- // given the surrounding tree - e.g, with an assignment, so we can convert the assign into a
- // series of other image operations.
- //
- // Most things are passed through unmodified, except for error checking.
- //
- TIntermTyped* HlslParseContext::handleLvalue(const TSourceLoc& loc, const char* op, TIntermTyped*& node)
- {
- if (node == nullptr)
- return nullptr;
- TIntermBinary* nodeAsBinary = node->getAsBinaryNode();
- TIntermUnary* nodeAsUnary = node->getAsUnaryNode();
- TIntermAggregate* sequence = nullptr;
- TIntermTyped* lhs = nodeAsUnary ? nodeAsUnary->getOperand() :
- nodeAsBinary ? nodeAsBinary->getLeft() :
- nullptr;
- // Early bail out if there is no conversion to apply
- if (!shouldConvertLValue(lhs)) {
- if (lhs != nullptr)
- if (lValueErrorCheck(loc, op, lhs))
- return nullptr;
- return node;
- }
- // *** If we get here, we're going to apply some conversion to an l-value.
- // Helper to create a load.
- const auto makeLoad = [&](TIntermSymbol* rhsTmp, TIntermTyped* object, TIntermTyped* coord, const TType& derefType) {
- TIntermAggregate* loadOp = new TIntermAggregate(EOpImageLoad);
- loadOp->setLoc(loc);
- loadOp->getSequence().push_back(object);
- loadOp->getSequence().push_back(intermediate.addSymbol(*coord->getAsSymbolNode()));
- loadOp->setType(derefType);
- sequence = intermediate.growAggregate(sequence,
- intermediate.addAssign(EOpAssign, rhsTmp, loadOp, loc),
- loc);
- };
- // Helper to create a store.
- const auto makeStore = [&](TIntermTyped* object, TIntermTyped* coord, TIntermSymbol* rhsTmp) {
- TIntermAggregate* storeOp = new TIntermAggregate(EOpImageStore);
- storeOp->getSequence().push_back(object);
- storeOp->getSequence().push_back(coord);
- storeOp->getSequence().push_back(intermediate.addSymbol(*rhsTmp));
- storeOp->setLoc(loc);
- storeOp->setType(TType(EbtVoid));
- sequence = intermediate.growAggregate(sequence, storeOp);
- };
- // Helper to create an assign.
- const auto makeBinary = [&](TOperator op, TIntermTyped* lhs, TIntermTyped* rhs) {
- sequence = intermediate.growAggregate(sequence,
- intermediate.addBinaryNode(op, lhs, rhs, loc, lhs->getType()),
- loc);
- };
- // Helper to complete sequence by adding trailing variable, so we evaluate to the right value.
- const auto finishSequence = [&](TIntermSymbol* rhsTmp, const TType& derefType) -> TIntermAggregate* {
- // Add a trailing use of the temp, so the sequence returns the proper value.
- sequence = intermediate.growAggregate(sequence, intermediate.addSymbol(*rhsTmp));
- sequence->setOperator(EOpSequence);
- sequence->setLoc(loc);
- sequence->setType(derefType);
- return sequence;
- };
- // Helper to add unary op
- const auto makeUnary = [&](TOperator op, TIntermSymbol* rhsTmp) {
- sequence = intermediate.growAggregate(sequence,
- intermediate.addUnaryNode(op, intermediate.addSymbol(*rhsTmp), loc,
- rhsTmp->getType()),
- loc);
- };
- // Return true if swizzle or index writes all components of the given variable.
- const auto writesAllComponents = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> bool {
- if (swizzle == nullptr) // not a swizzle or index
- return true;
- // Track which components are being set.
- std::array<bool, 4> compIsSet;
- compIsSet.fill(false);
- const TIntermConstantUnion* asConst = swizzle->getRight()->getAsConstantUnion();
- const TIntermAggregate* asAggregate = swizzle->getRight()->getAsAggregate();
- // This could be either a direct index, or a swizzle.
- if (asConst) {
- compIsSet[asConst->getConstArray()[0].getIConst()] = true;
- } else if (asAggregate) {
- const TIntermSequence& seq = asAggregate->getSequence();
- for (int comp=0; comp<int(seq.size()); ++comp)
- compIsSet[seq[comp]->getAsConstantUnion()->getConstArray()[0].getIConst()] = true;
- } else {
- assert(0);
- }
- // Return true if all components are being set by the index or swizzle
- return std::all_of(compIsSet.begin(), compIsSet.begin() + var->getType().getVectorSize(),
- [](bool isSet) { return isSet; } );
- };
- // Create swizzle matching input swizzle
- const auto addSwizzle = [&](TIntermSymbol* var, TIntermBinary* swizzle) -> TIntermTyped* {
- if (swizzle)
- return intermediate.addBinaryNode(swizzle->getOp(), var, swizzle->getRight(), loc, swizzle->getType());
- else
- return var;
- };
- TIntermBinary* lhsAsBinary = lhs->getAsBinaryNode();
- TIntermAggregate* lhsAsAggregate = lhs->getAsAggregate();
- bool lhsIsSwizzle = false;
- // If it's a swizzled L-value, remember the swizzle, and use the LHS.
- if (lhsAsBinary != nullptr && (lhsAsBinary->getOp() == EOpVectorSwizzle || lhsAsBinary->getOp() == EOpIndexDirect)) {
- lhsAsAggregate = lhsAsBinary->getLeft()->getAsAggregate();
- lhsIsSwizzle = true;
- }
- TIntermTyped* object = lhsAsAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* coord = lhsAsAggregate->getSequence()[1]->getAsTyped();
- const TSampler& texSampler = object->getType().getSampler();
- TType objDerefType;
- getTextureReturnType(texSampler, objDerefType);
- if (nodeAsBinary) {
- TIntermTyped* rhs = nodeAsBinary->getRight();
- const TOperator assignOp = nodeAsBinary->getOp();
- bool isModifyOp = false;
- switch (assignOp) {
- case EOpAddAssign:
- case EOpSubAssign:
- case EOpMulAssign:
- case EOpVectorTimesMatrixAssign:
- case EOpVectorTimesScalarAssign:
- case EOpMatrixTimesScalarAssign:
- case EOpMatrixTimesMatrixAssign:
- case EOpDivAssign:
- case EOpModAssign:
- case EOpAndAssign:
- case EOpInclusiveOrAssign:
- case EOpExclusiveOrAssign:
- case EOpLeftShiftAssign:
- case EOpRightShiftAssign:
- isModifyOp = true;
- // fall through...
- case EOpAssign:
- {
- // Since this is an lvalue, we'll convert an image load to a sequence like this
- // (to still provide the value):
- // OpSequence
- // OpImageStore(object, lhs, rhs)
- // rhs
- // But if it's not a simple symbol RHS (say, a fn call), we don't want to duplicate the RHS,
- // so we'll convert instead to this:
- // OpSequence
- // rhsTmp = rhs
- // OpImageStore(object, coord, rhsTmp)
- // rhsTmp
- // If this is a read-modify-write op, like +=, we issue:
- // OpSequence
- // coordtmp = load's param1
- // rhsTmp = OpImageLoad(object, coordTmp)
- // rhsTmp op= rhs
- // OpImageStore(object, coordTmp, rhsTmp)
- // rhsTmp
- //
- // If the lvalue is swizzled, we apply that when writing the temp variable, like so:
- // ...
- // rhsTmp.some_swizzle = ...
- // For partial writes, an error is generated.
- TIntermSymbol* rhsTmp = rhs->getAsSymbolNode();
- TIntermTyped* coordTmp = coord;
- if (rhsTmp == nullptr || isModifyOp || lhsIsSwizzle) {
- rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
- // Partial updates not yet supported
- if (!writesAllComponents(rhsTmp, lhsAsBinary)) {
- error(loc, "unimplemented: partial image updates", "", "");
- }
- // Assign storeTemp = rhs
- if (isModifyOp) {
- // We have to make a temp var for the coordinate, to avoid evaluating it twice.
- coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
- makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
- makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
- }
- // rhsTmp op= rhs.
- makeBinary(assignOp, addSwizzle(intermediate.addSymbol(*rhsTmp), lhsAsBinary), rhs);
- }
- makeStore(object, coordTmp, rhsTmp); // add a store
- return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
- }
- default:
- break;
- }
- }
- if (nodeAsUnary) {
- const TOperator assignOp = nodeAsUnary->getOp();
- switch (assignOp) {
- case EOpPreIncrement:
- case EOpPreDecrement:
- {
- // We turn this into:
- // OpSequence
- // coordtmp = load's param1
- // rhsTmp = OpImageLoad(object, coordTmp)
- // rhsTmp op
- // OpImageStore(object, coordTmp, rhsTmp)
- // rhsTmp
- TIntermSymbol* rhsTmp = makeInternalVariableNode(loc, "storeTemp", objDerefType);
- TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
- makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
- makeLoad(rhsTmp, object, coordTmp, objDerefType); // rhsTmp = OpImageLoad(object, coordTmp)
- makeUnary(assignOp, rhsTmp); // op rhsTmp
- makeStore(object, coordTmp, rhsTmp); // OpImageStore(object, coordTmp, rhsTmp)
- return finishSequence(rhsTmp, objDerefType); // return rhsTmp from sequence
- }
- case EOpPostIncrement:
- case EOpPostDecrement:
- {
- // We turn this into:
- // OpSequence
- // coordtmp = load's param1
- // rhsTmp1 = OpImageLoad(object, coordTmp)
- // rhsTmp2 = rhsTmp1
- // rhsTmp2 op
- // OpImageStore(object, coordTmp, rhsTmp2)
- // rhsTmp1 (pre-op value)
- TIntermSymbol* rhsTmp1 = makeInternalVariableNode(loc, "storeTempPre", objDerefType);
- TIntermSymbol* rhsTmp2 = makeInternalVariableNode(loc, "storeTempPost", objDerefType);
- TIntermTyped* coordTmp = makeInternalVariableNode(loc, "coordTemp", coord->getType());
- makeBinary(EOpAssign, coordTmp, coord); // coordtmp = load[param1]
- makeLoad(rhsTmp1, object, coordTmp, objDerefType); // rhsTmp1 = OpImageLoad(object, coordTmp)
- makeBinary(EOpAssign, rhsTmp2, rhsTmp1); // rhsTmp2 = rhsTmp1
- makeUnary(assignOp, rhsTmp2); // rhsTmp op
- makeStore(object, coordTmp, rhsTmp2); // OpImageStore(object, coordTmp, rhsTmp2)
- return finishSequence(rhsTmp1, objDerefType); // return rhsTmp from sequence
- }
- default:
- break;
- }
- }
- if (lhs)
- if (lValueErrorCheck(loc, op, lhs))
- return nullptr;
- return node;
- }
- void HlslParseContext::handlePragma(const TSourceLoc& loc, const TVector<TString>& tokens)
- {
- if (pragmaCallback)
- pragmaCallback(loc.line, tokens);
- if (tokens.size() == 0)
- return;
- // These pragmas are case insensitive in HLSL, so we'll compare in lower case.
- TVector<TString> lowerTokens = tokens;
- for (auto it = lowerTokens.begin(); it != lowerTokens.end(); ++it)
- std::transform(it->begin(), it->end(), it->begin(), ::tolower);
- // Handle pack_matrix
- if (tokens.size() == 4 && lowerTokens[0] == "pack_matrix" && tokens[1] == "(" && tokens[3] == ")") {
- // Note that HLSL semantic order is Mrc, not Mcr like SPIR-V, so we reverse the sense.
- // Row major becomes column major and vice versa.
- if (lowerTokens[2] == "row_major") {
- globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmColumnMajor;
- } else if (lowerTokens[2] == "column_major") {
- globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
- } else {
- // unknown majorness strings are treated as (HLSL column major)==(SPIR-V row major)
- warn(loc, "unknown pack_matrix pragma value", tokens[2].c_str(), "");
- globalUniformDefaults.layoutMatrix = globalBufferDefaults.layoutMatrix = ElmRowMajor;
- }
- return;
- }
- // Handle once
- if (lowerTokens[0] == "once") {
- warn(loc, "not implemented", "#pragma once", "");
- return;
- }
- }
- //
- // Look at a '.' matrix selector string and change it into components
- // for a matrix. There are two types:
- //
- // _21 second row, first column (one based)
- // _m21 third row, second column (zero based)
- //
- // Returns true if there is no error.
- //
- bool HlslParseContext::parseMatrixSwizzleSelector(const TSourceLoc& loc, const TString& fields, int cols, int rows,
- TSwizzleSelectors<TMatrixSelector>& components)
- {
- int startPos[MaxSwizzleSelectors];
- int numComps = 0;
- TString compString = fields;
- // Find where each component starts,
- // recording the first character position after the '_'.
- for (size_t c = 0; c < compString.size(); ++c) {
- if (compString[c] == '_') {
- if (numComps >= MaxSwizzleSelectors) {
- error(loc, "matrix component swizzle has too many components", compString.c_str(), "");
- return false;
- }
- if (c > compString.size() - 3 ||
- ((compString[c+1] == 'm' || compString[c+1] == 'M') && c > compString.size() - 4)) {
- error(loc, "matrix component swizzle missing", compString.c_str(), "");
- return false;
- }
- startPos[numComps++] = (int)c + 1;
- }
- }
- // Process each component
- for (int i = 0; i < numComps; ++i) {
- int pos = startPos[i];
- int bias = -1;
- if (compString[pos] == 'm' || compString[pos] == 'M') {
- bias = 0;
- ++pos;
- }
- TMatrixSelector comp;
- comp.coord1 = compString[pos+0] - '0' + bias;
- comp.coord2 = compString[pos+1] - '0' + bias;
- if (comp.coord1 < 0 || comp.coord1 >= cols) {
- error(loc, "matrix row component out of range", compString.c_str(), "");
- return false;
- }
- if (comp.coord2 < 0 || comp.coord2 >= rows) {
- error(loc, "matrix column component out of range", compString.c_str(), "");
- return false;
- }
- components.push_back(comp);
- }
- return true;
- }
- // If the 'comps' express a column of a matrix,
- // return the column. Column means the first coords all match.
- //
- // Otherwise, return -1.
- //
- int HlslParseContext::getMatrixComponentsColumn(int rows, const TSwizzleSelectors<TMatrixSelector>& selector)
- {
- int col = -1;
- // right number of comps?
- if (selector.size() != rows)
- return -1;
- // all comps in the same column?
- // rows in order?
- col = selector[0].coord1;
- for (int i = 0; i < rows; ++i) {
- if (col != selector[i].coord1)
- return -1;
- if (i != selector[i].coord2)
- return -1;
- }
- return col;
- }
- //
- // Handle seeing a variable identifier in the grammar.
- //
- TIntermTyped* HlslParseContext::handleVariable(const TSourceLoc& loc, const TString* string)
- {
- int thisDepth;
- TSymbol* symbol = symbolTable.find(*string, thisDepth);
- if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
- error(loc, "expected symbol, not user-defined type", string->c_str(), "");
- return nullptr;
- }
- const TVariable* variable = nullptr;
- const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr;
- TIntermTyped* node = nullptr;
- if (anon) {
- // It was a member of an anonymous container, which could be a 'this' structure.
- // Create a subtree for its dereference.
- if (thisDepth > 0) {
- variable = getImplicitThis(thisDepth);
- if (variable == nullptr)
- error(loc, "cannot access member variables (static member function?)", "this", "");
- }
- if (variable == nullptr)
- variable = anon->getAnonContainer().getAsVariable();
- TIntermTyped* container = intermediate.addSymbol(*variable, loc);
- TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc);
- node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc);
- node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type);
- if (node->getType().hiddenMember())
- error(loc, "member of nameless block was not redeclared", string->c_str(), "");
- } else {
- // Not a member of an anonymous container.
- // The symbol table search was done in the lexical phase.
- // See if it was a variable.
- variable = symbol ? symbol->getAsVariable() : nullptr;
- if (variable) {
- if ((variable->getType().getBasicType() == EbtBlock ||
- variable->getType().getBasicType() == EbtStruct) && variable->getType().getStruct() == nullptr) {
- error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), "");
- variable = nullptr;
- }
- } else {
- if (symbol)
- error(loc, "variable name expected", string->c_str(), "");
- }
- // Recovery, if it wasn't found or was not a variable.
- if (variable == nullptr) {
- error(loc, "unknown variable", string->c_str(), "");
- variable = new TVariable(string, TType(EbtVoid));
- }
- if (variable->getType().getQualifier().isFrontEndConstant())
- node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc);
- else
- node = intermediate.addSymbol(*variable, loc);
- }
- if (variable->getType().getQualifier().isIo())
- intermediate.addIoAccessed(*string);
- return node;
- }
- //
- // Handle operator[] on any objects it applies to. Currently:
- // Textures
- // Buffers
- //
- TIntermTyped* HlslParseContext::handleBracketOperator(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
- {
- // handle r-value operator[] on textures and images. l-values will be processed later.
- if (base->getType().getBasicType() == EbtSampler && !base->isArray()) {
- const TSampler& sampler = base->getType().getSampler();
- if (sampler.isImage() || sampler.isTexture()) {
- if (! mipsOperatorMipArg.empty() && mipsOperatorMipArg.back().mipLevel == nullptr) {
- // The first operator[] to a .mips[] sequence is the mip level. We'll remember it.
- mipsOperatorMipArg.back().mipLevel = index;
- return base; // next [] index is to the same base.
- } else {
- TIntermAggregate* load = new TIntermAggregate(sampler.isImage() ? EOpImageLoad : EOpTextureFetch);
- TType sampReturnType;
- getTextureReturnType(sampler, sampReturnType);
- load->setType(sampReturnType);
- load->setLoc(loc);
- load->getSequence().push_back(base);
- load->getSequence().push_back(index);
- // Textures need a MIP. If we saw one go by, use it. Otherwise, use zero.
- if (sampler.isTexture()) {
- if (! mipsOperatorMipArg.empty()) {
- load->getSequence().push_back(mipsOperatorMipArg.back().mipLevel);
- mipsOperatorMipArg.pop_back();
- } else {
- load->getSequence().push_back(intermediate.addConstantUnion(0, loc, true));
- }
- }
- return load;
- }
- }
- }
- // Handle operator[] on structured buffers: this indexes into the array element of the buffer.
- // indexStructBufferContent returns nullptr if it isn't a structuredbuffer (SSBO).
- TIntermTyped* sbArray = indexStructBufferContent(loc, base);
- if (sbArray != nullptr) {
- // Now we'll apply the [] index to that array
- const TOperator idxOp = (index->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
- TIntermTyped* element = intermediate.addIndex(idxOp, sbArray, index, loc);
- const TType derefType(sbArray->getType(), 0);
- element->setType(derefType);
- return element;
- }
- return nullptr;
- }
- //
- // Cast index value to a uint if it isn't already (for operator[], load indexes, etc)
- TIntermTyped* HlslParseContext::makeIntegerIndex(TIntermTyped* index)
- {
- const TBasicType indexBasicType = index->getType().getBasicType();
- const int vecSize = index->getType().getVectorSize();
- // We can use int types directly as the index
- if (indexBasicType == EbtInt || indexBasicType == EbtUint ||
- indexBasicType == EbtInt64 || indexBasicType == EbtUint64)
- return index;
- // Cast index to unsigned integer if it isn't one.
- return intermediate.addConversion(EOpConstructUint, TType(EbtUint, EvqTemporary, vecSize), index);
- }
- //
- // Handle seeing a base[index] dereference in the grammar.
- //
- TIntermTyped* HlslParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index)
- {
- index = makeIntegerIndex(index);
- if (index == nullptr) {
- error(loc, " unknown index type ", "", "");
- return nullptr;
- }
- TIntermTyped* result = handleBracketOperator(loc, base, index);
- if (result != nullptr)
- return result; // it was handled as an operator[]
- bool flattened = false;
- int indexValue = 0;
- if (index->getQualifier().isFrontEndConstant())
- indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst();
- variableCheck(base);
- if (! base->isArray() && ! base->isMatrix() && ! base->isVector()) {
- if (base->getAsSymbolNode())
- error(loc, " left of '[' is not of type array, matrix, or vector ",
- base->getAsSymbolNode()->getName().c_str(), "");
- else
- error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", "");
- } else if (base->getType().getQualifier().isFrontEndConstant() &&
- index->getQualifier().isFrontEndConstant()) {
- // both base and index are front-end constants
- checkIndex(loc, base->getType(), indexValue);
- return intermediate.foldDereference(base, indexValue, loc);
- } else {
- // at least one of base and index is variable...
- if (index->getQualifier().isFrontEndConstant())
- checkIndex(loc, base->getType(), indexValue);
- if (base->getType().isScalarOrVec1())
- result = base;
- else if (base->getAsSymbolNode() && wasFlattened(base)) {
- if (index->getQualifier().storage != EvqConst)
- error(loc, "Invalid variable index to flattened array", base->getAsSymbolNode()->getName().c_str(), "");
- result = flattenAccess(base, indexValue);
- flattened = (result != base);
- } else {
- if (index->getQualifier().isFrontEndConstant()) {
- if (base->getType().isUnsizedArray())
- base->getWritableType().updateImplicitArraySize(indexValue + 1);
- else
- checkIndex(loc, base->getType(), indexValue);
- result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
- } else
- result = intermediate.addIndex(EOpIndexIndirect, base, index, loc);
- }
- }
- if (result == nullptr) {
- // Insert dummy error-recovery result
- result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
- } else {
- // If the array reference was flattened, it has the correct type. E.g, if it was
- // a uniform array, it was flattened INTO a set of scalar uniforms, not scalar temps.
- // In that case, we preserve the qualifiers.
- if (!flattened) {
- // Insert valid dereferenced result
- TType newType(base->getType(), 0); // dereferenced type
- if (base->getType().getQualifier().storage == EvqConst && index->getQualifier().storage == EvqConst)
- newType.getQualifier().storage = EvqConst;
- else
- newType.getQualifier().storage = EvqTemporary;
- result->setType(newType);
- }
- }
- return result;
- }
- // Handle seeing a binary node with a math operation.
- TIntermTyped* HlslParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op,
- TIntermTyped* left, TIntermTyped* right)
- {
- TIntermTyped* result = intermediate.addBinaryMath(op, left, right, loc);
- if (result == nullptr)
- binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString());
- return result;
- }
- // Handle seeing a unary node with a math operation.
- TIntermTyped* HlslParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op,
- TIntermTyped* childNode)
- {
- TIntermTyped* result = intermediate.addUnaryMath(op, childNode, loc);
- if (result)
- return result;
- else
- unaryOpError(loc, str, childNode->getCompleteString());
- return childNode;
- }
- //
- // Return true if the name is a struct buffer method
- //
- bool HlslParseContext::isStructBufferMethod(const TString& name) const
- {
- return
- name == "GetDimensions" ||
- name == "Load" ||
- name == "Load2" ||
- name == "Load3" ||
- name == "Load4" ||
- name == "Store" ||
- name == "Store2" ||
- name == "Store3" ||
- name == "Store4" ||
- name == "InterlockedAdd" ||
- name == "InterlockedAnd" ||
- name == "InterlockedCompareExchange" ||
- name == "InterlockedCompareStore" ||
- name == "InterlockedExchange" ||
- name == "InterlockedMax" ||
- name == "InterlockedMin" ||
- name == "InterlockedOr" ||
- name == "InterlockedXor" ||
- name == "IncrementCounter" ||
- name == "DecrementCounter" ||
- name == "Append" ||
- name == "Consume";
- }
- //
- // Handle seeing a base.field dereference in the grammar, where 'field' is a
- // swizzle or member variable.
- //
- TIntermTyped* HlslParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field)
- {
- variableCheck(base);
- if (base->isArray()) {
- error(loc, "cannot apply to an array:", ".", field.c_str());
- return base;
- }
- TIntermTyped* result = base;
- if (base->getType().getBasicType() == EbtSampler) {
- // Handle .mips[mipid][pos] operation on textures
- const TSampler& sampler = base->getType().getSampler();
- if (sampler.isTexture() && field == "mips") {
- // Push a null to signify that we expect a mip level under operator[] next.
- mipsOperatorMipArg.push_back(tMipsOperatorData(loc, nullptr));
- // Keep 'result' pointing to 'base', since we expect an operator[] to go by next.
- } else {
- if (field == "mips")
- error(loc, "unexpected texture type for .mips[][] operator:",
- base->getType().getCompleteString().c_str(), "");
- else
- error(loc, "unexpected operator on texture type:", field.c_str(),
- base->getType().getCompleteString().c_str());
- }
- } else if (base->isVector() || base->isScalar()) {
- TSwizzleSelectors<TVectorSelector> selectors;
- parseSwizzleSelector(loc, field, base->getVectorSize(), selectors);
- if (base->isScalar()) {
- if (selectors.size() == 1)
- return result;
- else {
- TType type(base->getBasicType(), EvqTemporary, selectors.size());
- return addConstructor(loc, base, type);
- }
- }
- if (base->getVectorSize() == 1) {
- TType scalarType(base->getBasicType(), EvqTemporary, 1);
- if (selectors.size() == 1)
- return addConstructor(loc, base, scalarType);
- else {
- TType vectorType(base->getBasicType(), EvqTemporary, selectors.size());
- return addConstructor(loc, addConstructor(loc, base, scalarType), vectorType);
- }
- }
- if (base->getType().getQualifier().isFrontEndConstant())
- result = intermediate.foldSwizzle(base, selectors, loc);
- else {
- if (selectors.size() == 1) {
- TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc);
- result = intermediate.addIndex(EOpIndexDirect, base, index, loc);
- result->setType(TType(base->getBasicType(), EvqTemporary));
- } else {
- TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
- result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc);
- result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
- selectors.size()));
- }
- }
- } else if (base->isMatrix()) {
- TSwizzleSelectors<TMatrixSelector> selectors;
- if (! parseMatrixSwizzleSelector(loc, field, base->getMatrixCols(), base->getMatrixRows(), selectors))
- return result;
- if (selectors.size() == 1) {
- // Representable by m[c][r]
- if (base->getType().getQualifier().isFrontEndConstant()) {
- result = intermediate.foldDereference(base, selectors[0].coord1, loc);
- result = intermediate.foldDereference(result, selectors[0].coord2, loc);
- } else {
- result = intermediate.addIndex(EOpIndexDirect, base,
- intermediate.addConstantUnion(selectors[0].coord1, loc),
- loc);
- TType dereferencedCol(base->getType(), 0);
- result->setType(dereferencedCol);
- result = intermediate.addIndex(EOpIndexDirect, result,
- intermediate.addConstantUnion(selectors[0].coord2, loc),
- loc);
- TType dereferenced(dereferencedCol, 0);
- result->setType(dereferenced);
- }
- } else {
- int column = getMatrixComponentsColumn(base->getMatrixRows(), selectors);
- if (column >= 0) {
- // Representable by m[c]
- if (base->getType().getQualifier().isFrontEndConstant())
- result = intermediate.foldDereference(base, column, loc);
- else {
- result = intermediate.addIndex(EOpIndexDirect, base, intermediate.addConstantUnion(column, loc),
- loc);
- TType dereferenced(base->getType(), 0);
- result->setType(dereferenced);
- }
- } else {
- // general case, not a column, not a single component
- TIntermTyped* index = intermediate.addSwizzle(selectors, loc);
- result = intermediate.addIndex(EOpMatrixSwizzle, base, index, loc);
- result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision,
- selectors.size()));
- }
- }
- } else if (base->getBasicType() == EbtStruct || base->getBasicType() == EbtBlock) {
- const TTypeList* fields = base->getType().getStruct();
- bool fieldFound = false;
- int member;
- for (member = 0; member < (int)fields->size(); ++member) {
- if ((*fields)[member].type->getFieldName() == field) {
- fieldFound = true;
- break;
- }
- }
- if (fieldFound) {
- if (base->getAsSymbolNode() && wasFlattened(base)) {
- result = flattenAccess(base, member);
- } else {
- if (base->getType().getQualifier().storage == EvqConst)
- result = intermediate.foldDereference(base, member, loc);
- else {
- TIntermTyped* index = intermediate.addConstantUnion(member, loc);
- result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc);
- result->setType(*(*fields)[member].type);
- }
- }
- } else
- error(loc, "no such field in structure", field.c_str(), "");
- } else
- error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str());
- return result;
- }
- //
- // Return true if the field should be treated as a built-in method.
- // Return false otherwise.
- //
- bool HlslParseContext::isBuiltInMethod(const TSourceLoc&, TIntermTyped* base, const TString& field)
- {
- if (base == nullptr)
- return false;
- variableCheck(base);
- if (base->getType().getBasicType() == EbtSampler) {
- return true;
- } else if (isStructBufferType(base->getType()) && isStructBufferMethod(field)) {
- return true;
- } else if (field == "Append" ||
- field == "RestartStrip") {
- // We cannot check the type here: it may be sanitized if we're not compiling a geometry shader, but
- // the code is around in the shader source.
- return true;
- } else
- return false;
- }
- // Independently establish a built-in that is a member of a structure.
- // 'arraySizes' are what's desired for the independent built-in, whatever
- // the higher-level source/expression of them was.
- void HlslParseContext::splitBuiltIn(const TString& baseName, const TType& memberType, const TArraySizes* arraySizes,
- const TQualifier& outerQualifier)
- {
- // Because of arrays of structs, we might be asked more than once,
- // but the arraySizes passed in should have captured the whole thing
- // the first time.
- // However, clip/cull rely on multiple updates.
- if (!isClipOrCullDistance(memberType))
- if (splitBuiltIns.find(tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)) !=
- splitBuiltIns.end())
- return;
- TVariable* ioVar = makeInternalVariable(baseName + "." + memberType.getFieldName(), memberType);
- if (arraySizes != nullptr && !memberType.isArray())
- ioVar->getWritableType().copyArraySizes(*arraySizes);
- splitBuiltIns[tInterstageIoData(memberType.getQualifier().builtIn, outerQualifier.storage)] = ioVar;
- if (!isClipOrCullDistance(ioVar->getType()))
- trackLinkage(*ioVar);
- // Merge qualifier from the user structure
- mergeQualifiers(ioVar->getWritableType().getQualifier(), outerQualifier);
- // Fix the builtin type if needed (e.g, some types require fixed array sizes, no matter how the
- // shader declared them). This is done after mergeQualifiers(), in case fixBuiltInIoType looks
- // at the qualifier to determine e.g, in or out qualifications.
- fixBuiltInIoType(ioVar->getWritableType());
- // But, not location, we're losing that
- ioVar->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
- }
- // Split a type into
- // 1. a struct of non-I/O members
- // 2. a collection of independent I/O variables
- void HlslParseContext::split(const TVariable& variable)
- {
- // Create a new variable:
- const TType& clonedType = *variable.getType().clone();
- const TType& splitType = split(clonedType, variable.getName(), clonedType.getQualifier());
- splitNonIoVars[variable.getUniqueId()] = makeInternalVariable(variable.getName(), splitType);
- }
- // Recursive implementation of split().
- // Returns reference to the modified type.
- const TType& HlslParseContext::split(const TType& type, const TString& name, const TQualifier& outerQualifier)
- {
- if (type.isStruct()) {
- TTypeList* userStructure = type.getWritableStruct();
- for (auto ioType = userStructure->begin(); ioType != userStructure->end(); ) {
- if (ioType->type->isBuiltIn()) {
- // move out the built-in
- splitBuiltIn(name, *ioType->type, type.getArraySizes(), outerQualifier);
- ioType = userStructure->erase(ioType);
- } else {
- split(*ioType->type, name + "." + ioType->type->getFieldName(), outerQualifier);
- ++ioType;
- }
- }
- }
- return type;
- }
- // Is this an aggregate that should be flattened?
- // Can be applied to intermediate levels of type in a hierarchy.
- // Some things like flattening uniform arrays are only about the top level
- // of the aggregate, triggered on 'topLevel'.
- bool HlslParseContext::shouldFlatten(const TType& type, TStorageQualifier qualifier, bool topLevel) const
- {
- switch (qualifier) {
- case EvqVaryingIn:
- case EvqVaryingOut:
- return type.isStruct() || type.isArray();
- case EvqUniform:
- return (type.isArray() && intermediate.getFlattenUniformArrays() && topLevel) ||
- (type.isStruct() && type.containsOpaque());
- default:
- return false;
- };
- }
- // Top level variable flattening: construct data
- void HlslParseContext::flatten(const TVariable& variable, bool linkage, bool arrayed)
- {
- const TType& type = variable.getType();
- // If it's a standalone built-in, there is nothing to flatten
- if (type.isBuiltIn() && !type.isStruct())
- return;
- auto entry = flattenMap.insert(std::make_pair(variable.getUniqueId(),
- TFlattenData(type.getQualifier().layoutBinding,
- type.getQualifier().layoutLocation)));
- // if flattening arrayed io struct, array each member of dereferenced type
- if (arrayed) {
- const TType dereferencedType(type, 0);
- flatten(variable, dereferencedType, entry.first->second, variable.getName(), linkage,
- type.getQualifier(), type.getArraySizes());
- } else {
- flatten(variable, type, entry.first->second, variable.getName(), linkage,
- type.getQualifier(), nullptr);
- }
- }
- // Recursively flatten the given variable at the provided type, building the flattenData as we go.
- //
- // This is mutually recursive with flattenStruct and flattenArray.
- // We are going to flatten an arbitrarily nested composite structure into a linear sequence of
- // members, and later on, we want to turn a path through the tree structure into a final
- // location in this linear sequence.
- //
- // If the tree was N-ary, that can be directly calculated. However, we are dealing with
- // arbitrary numbers - perhaps a struct of 7 members containing an array of 3. Thus, we must
- // build a data structure to allow the sequence of bracket and dot operators on arrays and
- // structs to arrive at the proper member.
- //
- // To avoid storing a tree with pointers, we are going to flatten the tree into a vector of integers.
- // The leaves are the indexes into the flattened member array.
- // Each level will have the next location for the Nth item stored sequentially, so for instance:
- //
- // struct { float2 a[2]; int b; float4 c[3] };
- //
- // This will produce the following flattened tree:
- // Pos: 0 1 2 3 4 5 6 7 8 9 10 11 12 13
- // (3, 7, 8, 5, 6, 0, 1, 2, 11, 12, 13, 3, 4, 5}
- //
- // Given a reference to mystruct.c[1], the access chain is (2,1), so we traverse:
- // (0+2) = 8 --> (8+1) = 12 --> 12 = 4
- //
- // so the 4th flattened member in traversal order is ours.
- //
- int HlslParseContext::flatten(const TVariable& variable, const TType& type,
- TFlattenData& flattenData, TString name, bool linkage,
- const TQualifier& outerQualifier,
- const TArraySizes* builtInArraySizes)
- {
- // If something is an arrayed struct, the array flattener will recursively call flatten()
- // to then flatten the struct, so this is an "if else": we don't do both.
- if (type.isArray())
- return flattenArray(variable, type, flattenData, name, linkage, outerQualifier);
- else if (type.isStruct())
- return flattenStruct(variable, type, flattenData, name, linkage, outerQualifier, builtInArraySizes);
- else {
- assert(0); // should never happen
- return -1;
- }
- }
- // Add a single flattened member to the flattened data being tracked for the composite
- // Returns true for the final flattening level.
- int HlslParseContext::addFlattenedMember(const TVariable& variable, const TType& type, TFlattenData& flattenData,
- const TString& memberName, bool linkage,
- const TQualifier& outerQualifier,
- const TArraySizes* builtInArraySizes)
- {
- if (!shouldFlatten(type, outerQualifier.storage, false)) {
- // This is as far as we flatten. Insert the variable.
- TVariable* memberVariable = makeInternalVariable(memberName, type);
- mergeQualifiers(memberVariable->getWritableType().getQualifier(), variable.getType().getQualifier());
- if (flattenData.nextBinding != TQualifier::layoutBindingEnd)
- memberVariable->getWritableType().getQualifier().layoutBinding = flattenData.nextBinding++;
- if (memberVariable->getType().isBuiltIn()) {
- // inherited locations are nonsensical for built-ins (TODO: what if semantic had a number)
- memberVariable->getWritableType().getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
- } else {
- // inherited locations must be auto bumped, not replicated
- if (flattenData.nextLocation != TQualifier::layoutLocationEnd) {
- memberVariable->getWritableType().getQualifier().layoutLocation = flattenData.nextLocation;
- flattenData.nextLocation += intermediate.computeTypeLocationSize(memberVariable->getType(), language);
- nextOutLocation = std::max(nextOutLocation, flattenData.nextLocation);
- }
- }
- // Only propagate arraysizes here for arrayed io
- if (variable.getType().getQualifier().isArrayedIo(language) && builtInArraySizes != nullptr)
- memberVariable->getWritableType().copyArraySizes(*builtInArraySizes);
- flattenData.offsets.push_back(static_cast<int>(flattenData.members.size()));
- flattenData.members.push_back(memberVariable);
- if (linkage)
- trackLinkage(*memberVariable);
- return static_cast<int>(flattenData.offsets.size()) - 1; // location of the member reference
- } else {
- // Further recursion required
- return flatten(variable, type, flattenData, memberName, linkage, outerQualifier, builtInArraySizes);
- }
- }
- // Figure out the mapping between an aggregate's top members and an
- // equivalent set of individual variables.
- //
- // Assumes shouldFlatten() or equivalent was called first.
- int HlslParseContext::flattenStruct(const TVariable& variable, const TType& type,
- TFlattenData& flattenData, TString name, bool linkage,
- const TQualifier& outerQualifier,
- const TArraySizes* builtInArraySizes)
- {
- assert(type.isStruct());
- auto members = *type.getStruct();
- // Reserve space for this tree level.
- int start = static_cast<int>(flattenData.offsets.size());
- int pos = start;
- flattenData.offsets.resize(int(pos + members.size()), -1);
- for (int member = 0; member < (int)members.size(); ++member) {
- TType& dereferencedType = *members[member].type;
- if (dereferencedType.isBuiltIn())
- splitBuiltIn(variable.getName(), dereferencedType, builtInArraySizes, outerQualifier);
- else {
- const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
- name + "." + dereferencedType.getFieldName(),
- linkage, outerQualifier,
- builtInArraySizes == nullptr && dereferencedType.isArray()
- ? dereferencedType.getArraySizes()
- : builtInArraySizes);
- flattenData.offsets[pos++] = mpos;
- }
- }
- return start;
- }
- // Figure out mapping between an array's members and an
- // equivalent set of individual variables.
- //
- // Assumes shouldFlatten() or equivalent was called first.
- int HlslParseContext::flattenArray(const TVariable& variable, const TType& type,
- TFlattenData& flattenData, TString name, bool linkage,
- const TQualifier& outerQualifier)
- {
- assert(type.isSizedArray());
- const int size = type.getOuterArraySize();
- const TType dereferencedType(type, 0);
- if (name.empty())
- name = variable.getName();
- // Reserve space for this tree level.
- int start = static_cast<int>(flattenData.offsets.size());
- int pos = start;
- flattenData.offsets.resize(int(pos + size), -1);
- for (int element=0; element < size; ++element) {
- char elementNumBuf[20]; // sufficient for MAXINT
- snprintf(elementNumBuf, sizeof(elementNumBuf)-1, "[%d]", element);
- const int mpos = addFlattenedMember(variable, dereferencedType, flattenData,
- name + elementNumBuf, linkage, outerQualifier,
- type.getArraySizes());
- flattenData.offsets[pos++] = mpos;
- }
- return start;
- }
- // Return true if we have flattened this node.
- bool HlslParseContext::wasFlattened(const TIntermTyped* node) const
- {
- return node != nullptr && node->getAsSymbolNode() != nullptr &&
- wasFlattened(node->getAsSymbolNode()->getId());
- }
- // Return true if we have split this structure
- bool HlslParseContext::wasSplit(const TIntermTyped* node) const
- {
- return node != nullptr && node->getAsSymbolNode() != nullptr &&
- wasSplit(node->getAsSymbolNode()->getId());
- }
- // Turn an access into an aggregate that was flattened to instead be
- // an access to the individual variable the member was flattened to.
- // Assumes wasFlattened() or equivalent was called first.
- TIntermTyped* HlslParseContext::flattenAccess(TIntermTyped* base, int member)
- {
- const TType dereferencedType(base->getType(), member); // dereferenced type
- const TIntermSymbol& symbolNode = *base->getAsSymbolNode();
- TIntermTyped* flattened = flattenAccess(symbolNode.getId(), member, base->getQualifier().storage,
- dereferencedType, symbolNode.getFlattenSubset());
- return flattened ? flattened : base;
- }
- TIntermTyped* HlslParseContext::flattenAccess(int uniqueId, int member, TStorageQualifier outerStorage,
- const TType& dereferencedType, int subset)
- {
- const auto flattenData = flattenMap.find(uniqueId);
- if (flattenData == flattenMap.end())
- return nullptr;
- // Calculate new cumulative offset from the packed tree
- int newSubset = flattenData->second.offsets[subset >= 0 ? subset + member : member];
- TIntermSymbol* subsetSymbol;
- if (!shouldFlatten(dereferencedType, outerStorage, false)) {
- // Finished flattening: create symbol for variable
- member = flattenData->second.offsets[newSubset];
- const TVariable* memberVariable = flattenData->second.members[member];
- subsetSymbol = intermediate.addSymbol(*memberVariable);
- subsetSymbol->setFlattenSubset(-1);
- } else {
- // If this is not the final flattening, accumulate the position and return
- // an object of the partially dereferenced type.
- subsetSymbol = new TIntermSymbol(uniqueId, "flattenShadow", dereferencedType);
- subsetSymbol->setFlattenSubset(newSubset);
- }
- return subsetSymbol;
- }
- // For finding where the first leaf is in a subtree of a multi-level aggregate
- // that is just getting a subset assigned. Follows the same logic as flattenAccess,
- // but logically going down the "left-most" tree branch each step of the way.
- //
- // Returns the offset into the first leaf of the subset.
- int HlslParseContext::findSubtreeOffset(const TIntermNode& node) const
- {
- const TIntermSymbol* sym = node.getAsSymbolNode();
- if (sym == nullptr)
- return 0;
- if (!sym->isArray() && !sym->isStruct())
- return 0;
- int subset = sym->getFlattenSubset();
- if (subset == -1)
- return 0;
- // Getting this far means a partial aggregate is identified by the flatten subset.
- // Find the first leaf of the subset.
- const auto flattenData = flattenMap.find(sym->getId());
- if (flattenData == flattenMap.end())
- return 0;
- return findSubtreeOffset(sym->getType(), subset, flattenData->second.offsets);
- do {
- subset = flattenData->second.offsets[subset];
- } while (true);
- }
- // Recursively do the desent
- int HlslParseContext::findSubtreeOffset(const TType& type, int subset, const TVector<int>& offsets) const
- {
- if (!type.isArray() && !type.isStruct())
- return offsets[subset];
- TType derefType(type, 0);
- return findSubtreeOffset(derefType, offsets[subset], offsets);
- };
- // Find and return the split IO TVariable for id, or nullptr if none.
- TVariable* HlslParseContext::getSplitNonIoVar(int id) const
- {
- const auto splitNonIoVar = splitNonIoVars.find(id);
- if (splitNonIoVar == splitNonIoVars.end())
- return nullptr;
- return splitNonIoVar->second;
- }
- // Pass through to base class after remembering built-in mappings.
- void HlslParseContext::trackLinkage(TSymbol& symbol)
- {
- TBuiltInVariable biType = symbol.getType().getQualifier().builtIn;
- if (biType != EbvNone)
- builtInTessLinkageSymbols[biType] = symbol.clone();
- TParseContextBase::trackLinkage(symbol);
- }
- // Returns true if the built-in is a clip or cull distance variable.
- bool HlslParseContext::isClipOrCullDistance(TBuiltInVariable builtIn)
- {
- return builtIn == EbvClipDistance || builtIn == EbvCullDistance;
- }
- // Some types require fixed array sizes in SPIR-V, but can be scalars or
- // arrays of sizes SPIR-V doesn't allow. For example, tessellation factors.
- // This creates the right size. A conversion is performed when the internal
- // type is copied to or from the external type. This corrects the externally
- // facing input or output type to abide downstream semantics.
- void HlslParseContext::fixBuiltInIoType(TType& type)
- {
- int requiredArraySize = 0;
- int requiredVectorSize = 0;
- switch (type.getQualifier().builtIn) {
- case EbvTessLevelOuter: requiredArraySize = 4; break;
- case EbvTessLevelInner: requiredArraySize = 2; break;
- case EbvSampleMask:
- {
- // Promote scalar to array of size 1. Leave existing arrays alone.
- if (!type.isArray())
- requiredArraySize = 1;
- break;
- }
- case EbvWorkGroupId: requiredVectorSize = 3; break;
- case EbvGlobalInvocationId: requiredVectorSize = 3; break;
- case EbvLocalInvocationId: requiredVectorSize = 3; break;
- case EbvTessCoord: requiredVectorSize = 3; break;
- default:
- if (isClipOrCullDistance(type)) {
- const int loc = type.getQualifier().layoutLocation;
- if (type.getQualifier().builtIn == EbvClipDistance) {
- if (type.getQualifier().storage == EvqVaryingIn)
- clipSemanticNSizeIn[loc] = type.getVectorSize();
- else
- clipSemanticNSizeOut[loc] = type.getVectorSize();
- } else {
- if (type.getQualifier().storage == EvqVaryingIn)
- cullSemanticNSizeIn[loc] = type.getVectorSize();
- else
- cullSemanticNSizeOut[loc] = type.getVectorSize();
- }
- }
- return;
- }
- // Alter or set vector size as needed.
- if (requiredVectorSize > 0) {
- TType newType(type.getBasicType(), type.getQualifier().storage, requiredVectorSize);
- newType.getQualifier() = type.getQualifier();
- type.shallowCopy(newType);
- }
- // Alter or set array size as needed.
- if (requiredArraySize > 0) {
- if (!type.isArray() || type.getOuterArraySize() != requiredArraySize) {
- TArraySizes* arraySizes = new TArraySizes;
- arraySizes->addInnerSize(requiredArraySize);
- type.transferArraySizes(arraySizes);
- }
- }
- }
- // Variables that correspond to the user-interface in and out of a stage
- // (not the built-in interface) are
- // - assigned locations
- // - registered as a linkage node (part of the stage's external interface).
- // Assumes it is called in the order in which locations should be assigned.
- void HlslParseContext::assignToInterface(TVariable& variable)
- {
- const auto assignLocation = [&](TVariable& variable) {
- TType& type = variable.getWritableType();
- if (!type.isStruct() || type.getStruct()->size() > 0) {
- TQualifier& qualifier = type.getQualifier();
- if (qualifier.storage == EvqVaryingIn || qualifier.storage == EvqVaryingOut) {
- if (qualifier.builtIn == EbvNone && !qualifier.hasLocation()) {
- // Strip off the outer array dimension for those having an extra one.
- int size;
- if (type.isArray() && qualifier.isArrayedIo(language)) {
- TType elementType(type, 0);
- size = intermediate.computeTypeLocationSize(elementType, language);
- } else
- size = intermediate.computeTypeLocationSize(type, language);
- if (qualifier.storage == EvqVaryingIn) {
- variable.getWritableType().getQualifier().layoutLocation = nextInLocation;
- nextInLocation += size;
- } else {
- variable.getWritableType().getQualifier().layoutLocation = nextOutLocation;
- nextOutLocation += size;
- }
- }
- trackLinkage(variable);
- }
- }
- };
- if (wasFlattened(variable.getUniqueId())) {
- auto& memberList = flattenMap[variable.getUniqueId()].members;
- for (auto member = memberList.begin(); member != memberList.end(); ++member)
- assignLocation(**member);
- } else if (wasSplit(variable.getUniqueId())) {
- TVariable* splitIoVar = getSplitNonIoVar(variable.getUniqueId());
- assignLocation(*splitIoVar);
- } else {
- assignLocation(variable);
- }
- }
- //
- // Handle seeing a function declarator in the grammar. This is the precursor
- // to recognizing a function prototype or function definition.
- //
- void HlslParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype)
- {
- //
- // Multiple declarations of the same function name are allowed.
- //
- // If this is a definition, the definition production code will check for redefinitions
- // (we don't know at this point if it's a definition or not).
- //
- bool builtIn;
- TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn);
- const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0;
- if (prototype) {
- // All built-in functions are defined, even though they don't have a body.
- // Count their prototype as a definition instead.
- if (symbolTable.atBuiltInLevel())
- function.setDefined();
- else {
- if (prevDec && ! builtIn)
- symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const
- function.setPrototyped();
- }
- }
- // This insert won't actually insert it if it's a duplicate signature, but it will still check for
- // other forms of name collisions.
- if (! symbolTable.insert(function))
- error(loc, "function name is redeclaration of existing name", function.getName().c_str(), "");
- }
- // For struct buffers with counters, we must pass the counter buffer as hidden parameter.
- // This adds the hidden parameter to the parameter list in 'paramNodes' if needed.
- // Otherwise, it's a no-op
- void HlslParseContext::addStructBufferHiddenCounterParam(const TSourceLoc& loc, TParameter& param,
- TIntermAggregate*& paramNodes)
- {
- if (! hasStructBuffCounter(*param.type))
- return;
- const TString counterBlockName(intermediate.addCounterBufferName(*param.name));
- TType counterType;
- counterBufferType(loc, counterType);
- TVariable *variable = makeInternalVariable(counterBlockName, counterType);
- if (! symbolTable.insert(*variable))
- error(loc, "redefinition", variable->getName().c_str(), "");
- paramNodes = intermediate.growAggregate(paramNodes,
- intermediate.addSymbol(*variable, loc),
- loc);
- }
- //
- // Handle seeing the function prototype in front of a function definition in the grammar.
- // The body is handled after this function returns.
- //
- // Returns an aggregate of parameter-symbol nodes.
- //
- TIntermAggregate* HlslParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function,
- const TAttributes& attributes,
- TIntermNode*& entryPointTree)
- {
- currentCaller = function.getMangledName();
- TSymbol* symbol = symbolTable.find(function.getMangledName());
- TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr;
- if (prevDec == nullptr)
- error(loc, "can't find function", function.getName().c_str(), "");
- // Note: 'prevDec' could be 'function' if this is the first time we've seen function
- // as it would have just been put in the symbol table. Otherwise, we're looking up
- // an earlier occurrence.
- if (prevDec && prevDec->isDefined()) {
- // Then this function already has a body.
- error(loc, "function already has a body", function.getName().c_str(), "");
- }
- if (prevDec && ! prevDec->isDefined()) {
- prevDec->setDefined();
- // Remember the return type for later checking for RETURN statements.
- currentFunctionType = &(prevDec->getType());
- } else
- currentFunctionType = new TType(EbtVoid);
- functionReturnsValue = false;
- // Entry points need different I/O and other handling, transform it so the
- // rest of this function doesn't care.
- entryPointTree = transformEntryPoint(loc, function, attributes);
- //
- // New symbol table scope for body of function plus its arguments
- //
- pushScope();
- //
- // Insert parameters into the symbol table.
- // If the parameter has no name, it's not an error, just don't insert it
- // (could be used for unused args).
- //
- // Also, accumulate the list of parameters into the AST, so lower level code
- // knows where to find parameters.
- //
- TIntermAggregate* paramNodes = new TIntermAggregate;
- for (int i = 0; i < function.getParamCount(); i++) {
- TParameter& param = function[i];
- if (param.name != nullptr) {
- TVariable *variable = new TVariable(param.name, *param.type);
- if (i == 0 && function.hasImplicitThis()) {
- // Anonymous 'this' members are already in a symbol-table level,
- // and we need to know what function parameter to map them to.
- symbolTable.makeInternalVariable(*variable);
- pushImplicitThis(variable);
- }
- // Insert the parameters with name in the symbol table.
- if (! symbolTable.insert(*variable))
- error(loc, "redefinition", variable->getName().c_str(), "");
- // Add parameters to the AST list.
- if (shouldFlatten(variable->getType(), variable->getType().getQualifier().storage, true)) {
- // Expand the AST parameter nodes (but not the name mangling or symbol table view)
- // for structures that need to be flattened.
- flatten(*variable, false);
- const TTypeList* structure = variable->getType().getStruct();
- for (int mem = 0; mem < (int)structure->size(); ++mem) {
- paramNodes = intermediate.growAggregate(paramNodes,
- flattenAccess(variable->getUniqueId(), mem,
- variable->getType().getQualifier().storage,
- *(*structure)[mem].type),
- loc);
- }
- } else {
- // Add the parameter to the AST
- paramNodes = intermediate.growAggregate(paramNodes,
- intermediate.addSymbol(*variable, loc),
- loc);
- }
- // Add hidden AST parameter for struct buffer counters, if needed.
- addStructBufferHiddenCounterParam(loc, param, paramNodes);
- } else
- paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc);
- }
- if (function.hasIllegalImplicitThis())
- pushImplicitThis(nullptr);
- intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc);
- loopNestingLevel = 0;
- controlFlowNestingLevel = 0;
- postEntryPointReturn = false;
- return paramNodes;
- }
- // Handle all [attrib] attribute for the shader entry point
- void HlslParseContext::handleEntryPointAttributes(const TSourceLoc& loc, const TAttributes& attributes)
- {
- for (auto it = attributes.begin(); it != attributes.end(); ++it) {
- switch (it->name) {
- case EatNumThreads:
- {
- const TIntermSequence& sequence = it->args->getSequence();
- for (int lid = 0; lid < int(sequence.size()); ++lid)
- intermediate.setLocalSize(lid, sequence[lid]->getAsConstantUnion()->getConstArray()[0].getIConst());
- break;
- }
- case EatMaxVertexCount:
- {
- int maxVertexCount;
- if (! it->getInt(maxVertexCount)) {
- error(loc, "invalid maxvertexcount", "", "");
- } else {
- if (! intermediate.setVertices(maxVertexCount))
- error(loc, "cannot change previously set maxvertexcount attribute", "", "");
- }
- break;
- }
- case EatPatchConstantFunc:
- {
- TString pcfName;
- if (! it->getString(pcfName, 0, false)) {
- error(loc, "invalid patch constant function", "", "");
- } else {
- patchConstantFunctionName = pcfName;
- }
- break;
- }
- case EatDomain:
- {
- // Handle [domain("...")]
- TString domainStr;
- if (! it->getString(domainStr)) {
- error(loc, "invalid domain", "", "");
- } else {
- TLayoutGeometry domain = ElgNone;
- if (domainStr == "tri") {
- domain = ElgTriangles;
- } else if (domainStr == "quad") {
- domain = ElgQuads;
- } else if (domainStr == "isoline") {
- domain = ElgIsolines;
- } else {
- error(loc, "unsupported domain type", domainStr.c_str(), "");
- }
- if (language == EShLangTessEvaluation) {
- if (! intermediate.setInputPrimitive(domain))
- error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
- } else {
- if (! intermediate.setOutputPrimitive(domain))
- error(loc, "cannot change previously set domain", TQualifier::getGeometryString(domain), "");
- }
- }
- break;
- }
- case EatOutputTopology:
- {
- // Handle [outputtopology("...")]
- TString topologyStr;
- if (! it->getString(topologyStr)) {
- error(loc, "invalid outputtopology", "", "");
- } else {
- TVertexOrder vertexOrder = EvoNone;
- TLayoutGeometry primitive = ElgNone;
- if (topologyStr == "point") {
- intermediate.setPointMode();
- } else if (topologyStr == "line") {
- primitive = ElgIsolines;
- } else if (topologyStr == "triangle_cw") {
- vertexOrder = EvoCw;
- primitive = ElgTriangles;
- } else if (topologyStr == "triangle_ccw") {
- vertexOrder = EvoCcw;
- primitive = ElgTriangles;
- } else {
- error(loc, "unsupported outputtopology type", topologyStr.c_str(), "");
- }
- if (vertexOrder != EvoNone) {
- if (! intermediate.setVertexOrder(vertexOrder)) {
- error(loc, "cannot change previously set outputtopology",
- TQualifier::getVertexOrderString(vertexOrder), "");
- }
- }
- if (primitive != ElgNone)
- intermediate.setOutputPrimitive(primitive);
- }
- break;
- }
- case EatPartitioning:
- {
- // Handle [partitioning("...")]
- TString partitionStr;
- if (! it->getString(partitionStr)) {
- error(loc, "invalid partitioning", "", "");
- } else {
- TVertexSpacing partitioning = EvsNone;
- if (partitionStr == "integer") {
- partitioning = EvsEqual;
- } else if (partitionStr == "fractional_even") {
- partitioning = EvsFractionalEven;
- } else if (partitionStr == "fractional_odd") {
- partitioning = EvsFractionalOdd;
- //} else if (partition == "pow2") { // TODO: currently nothing to map this to.
- } else {
- error(loc, "unsupported partitioning type", partitionStr.c_str(), "");
- }
- if (! intermediate.setVertexSpacing(partitioning))
- error(loc, "cannot change previously set partitioning",
- TQualifier::getVertexSpacingString(partitioning), "");
- }
- break;
- }
- case EatOutputControlPoints:
- {
- // Handle [outputcontrolpoints("...")]
- int ctrlPoints;
- if (! it->getInt(ctrlPoints)) {
- error(loc, "invalid outputcontrolpoints", "", "");
- } else {
- if (! intermediate.setVertices(ctrlPoints)) {
- error(loc, "cannot change previously set outputcontrolpoints attribute", "", "");
- }
- }
- break;
- }
- case EatEarlyDepthStencil:
- intermediate.setEarlyFragmentTests();
- break;
- case EatBuiltIn:
- case EatLocation:
- // tolerate these because of dual use of entrypoint and type attributes
- break;
- default:
- warn(loc, "attribute does not apply to entry point", "", "");
- break;
- }
- }
- }
- // Update the given type with any type-like attribute information in the
- // attributes.
- void HlslParseContext::transferTypeAttributes(const TSourceLoc& loc, const TAttributes& attributes, TType& type,
- bool allowEntry)
- {
- if (attributes.size() == 0)
- return;
- int value;
- TString builtInString;
- for (auto it = attributes.begin(); it != attributes.end(); ++it) {
- switch (it->name) {
- case EatLocation:
- // location
- if (it->getInt(value))
- type.getQualifier().layoutLocation = value;
- else
- error(loc, "needs a literal integer", "location", "");
- break;
- case EatBinding:
- // binding
- if (it->getInt(value)) {
- type.getQualifier().layoutBinding = value;
- type.getQualifier().layoutSet = 0;
- } else
- error(loc, "needs a literal integer", "binding", "");
- // set
- if (it->getInt(value, 1))
- type.getQualifier().layoutSet = value;
- break;
- case EatGlobalBinding:
- // global cbuffer binding
- if (it->getInt(value))
- globalUniformBinding = value;
- else
- error(loc, "needs a literal integer", "global binding", "");
- // global cbuffer set
- if (it->getInt(value, 1))
- globalUniformSet = value;
- break;
- case EatInputAttachment:
- // input attachment
- if (it->getInt(value))
- type.getQualifier().layoutAttachment = value;
- else
- error(loc, "needs a literal integer", "input attachment", "");
- break;
- case EatBuiltIn:
- // PointSize built-in
- if (it->getString(builtInString, 0, false)) {
- if (builtInString == "PointSize")
- type.getQualifier().builtIn = EbvPointSize;
- }
- break;
- case EatPushConstant:
- // push_constant
- type.getQualifier().layoutPushConstant = true;
- break;
- case EatConstantId:
- // specialization constant
- if (type.getQualifier().storage != EvqConst) {
- error(loc, "needs a const type", "constant_id", "");
- break;
- }
- if (it->getInt(value)) {
- TSourceLoc loc;
- loc.init();
- setSpecConstantId(loc, type.getQualifier(), value);
- }
- break;
- // image formats
- case EatFormatRgba32f: type.getQualifier().layoutFormat = ElfRgba32f; break;
- case EatFormatRgba16f: type.getQualifier().layoutFormat = ElfRgba16f; break;
- case EatFormatR32f: type.getQualifier().layoutFormat = ElfR32f; break;
- case EatFormatRgba8: type.getQualifier().layoutFormat = ElfRgba8; break;
- case EatFormatRgba8Snorm: type.getQualifier().layoutFormat = ElfRgba8Snorm; break;
- case EatFormatRg32f: type.getQualifier().layoutFormat = ElfRg32f; break;
- case EatFormatRg16f: type.getQualifier().layoutFormat = ElfRg16f; break;
- case EatFormatR11fG11fB10f: type.getQualifier().layoutFormat = ElfR11fG11fB10f; break;
- case EatFormatR16f: type.getQualifier().layoutFormat = ElfR16f; break;
- case EatFormatRgba16: type.getQualifier().layoutFormat = ElfRgba16; break;
- case EatFormatRgb10A2: type.getQualifier().layoutFormat = ElfRgb10A2; break;
- case EatFormatRg16: type.getQualifier().layoutFormat = ElfRg16; break;
- case EatFormatRg8: type.getQualifier().layoutFormat = ElfRg8; break;
- case EatFormatR16: type.getQualifier().layoutFormat = ElfR16; break;
- case EatFormatR8: type.getQualifier().layoutFormat = ElfR8; break;
- case EatFormatRgba16Snorm: type.getQualifier().layoutFormat = ElfRgba16Snorm; break;
- case EatFormatRg16Snorm: type.getQualifier().layoutFormat = ElfRg16Snorm; break;
- case EatFormatRg8Snorm: type.getQualifier().layoutFormat = ElfRg8Snorm; break;
- case EatFormatR16Snorm: type.getQualifier().layoutFormat = ElfR16Snorm; break;
- case EatFormatR8Snorm: type.getQualifier().layoutFormat = ElfR8Snorm; break;
- case EatFormatRgba32i: type.getQualifier().layoutFormat = ElfRgba32i; break;
- case EatFormatRgba16i: type.getQualifier().layoutFormat = ElfRgba16i; break;
- case EatFormatRgba8i: type.getQualifier().layoutFormat = ElfRgba8i; break;
- case EatFormatR32i: type.getQualifier().layoutFormat = ElfR32i; break;
- case EatFormatRg32i: type.getQualifier().layoutFormat = ElfRg32i; break;
- case EatFormatRg16i: type.getQualifier().layoutFormat = ElfRg16i; break;
- case EatFormatRg8i: type.getQualifier().layoutFormat = ElfRg8i; break;
- case EatFormatR16i: type.getQualifier().layoutFormat = ElfR16i; break;
- case EatFormatR8i: type.getQualifier().layoutFormat = ElfR8i; break;
- case EatFormatRgba32ui: type.getQualifier().layoutFormat = ElfRgba32ui; break;
- case EatFormatRgba16ui: type.getQualifier().layoutFormat = ElfRgba16ui; break;
- case EatFormatRgba8ui: type.getQualifier().layoutFormat = ElfRgba8ui; break;
- case EatFormatR32ui: type.getQualifier().layoutFormat = ElfR32ui; break;
- case EatFormatRgb10a2ui: type.getQualifier().layoutFormat = ElfRgb10a2ui; break;
- case EatFormatRg32ui: type.getQualifier().layoutFormat = ElfRg32ui; break;
- case EatFormatRg16ui: type.getQualifier().layoutFormat = ElfRg16ui; break;
- case EatFormatRg8ui: type.getQualifier().layoutFormat = ElfRg8ui; break;
- case EatFormatR16ui: type.getQualifier().layoutFormat = ElfR16ui; break;
- case EatFormatR8ui: type.getQualifier().layoutFormat = ElfR8ui; break;
- case EatFormatUnknown: type.getQualifier().layoutFormat = ElfNone; break;
- case EatNonWritable: type.getQualifier().readonly = true; break;
- case EatNonReadable: type.getQualifier().writeonly = true; break;
- default:
- if (! allowEntry)
- warn(loc, "attribute does not apply to a type", "", "");
- break;
- }
- }
- }
- //
- // Do all special handling for the entry point, including wrapping
- // the shader's entry point with the official entry point that will call it.
- //
- // The following:
- //
- // retType shaderEntryPoint(args...) // shader declared entry point
- // { body }
- //
- // Becomes
- //
- // out retType ret;
- // in iargs<that are input>...;
- // out oargs<that are output> ...;
- //
- // void shaderEntryPoint() // synthesized, but official, entry point
- // {
- // args<that are input> = iargs...;
- // ret = @shaderEntryPoint(args...);
- // oargs = args<that are output>...;
- // }
- // retType @shaderEntryPoint(args...)
- // { body }
- //
- // The symbol table will still map the original entry point name to the
- // the modified function and its new name:
- //
- // symbol table: shaderEntryPoint -> @shaderEntryPoint
- //
- // Returns nullptr if no entry-point tree was built, otherwise, returns
- // a subtree that creates the entry point.
- //
- TIntermNode* HlslParseContext::transformEntryPoint(const TSourceLoc& loc, TFunction& userFunction,
- const TAttributes& attributes)
- {
- // Return true if this is a tessellation patch constant function input to a domain shader.
- const auto isDsPcfInput = [this](const TType& type) {
- return language == EShLangTessEvaluation &&
- type.contains([](const TType* t) {
- return t->getQualifier().builtIn == EbvTessLevelOuter ||
- t->getQualifier().builtIn == EbvTessLevelInner;
- });
- };
- // if we aren't in the entry point, fix the IO as such and exit
- if (! isEntrypointName(userFunction.getName())) {
- remapNonEntryPointIO(userFunction);
- return nullptr;
- }
- entryPointFunction = &userFunction; // needed in finish()
- // Handle entry point attributes
- handleEntryPointAttributes(loc, attributes);
- // entry point logic...
- // Move parameters and return value to shader in/out
- TVariable* entryPointOutput; // gets created in remapEntryPointIO
- TVector<TVariable*> inputs;
- TVector<TVariable*> outputs;
- remapEntryPointIO(userFunction, entryPointOutput, inputs, outputs);
- // Further this return/in/out transform by flattening, splitting, and assigning locations
- const auto makeVariableInOut = [&](TVariable& variable) {
- if (variable.getType().isStruct()) {
- bool arrayed = variable.getType().getQualifier().isArrayedIo(language);
- flatten(variable, false /* don't track linkage here, it will be tracked in assignToInterface() */, arrayed);
- }
- // TODO: flatten arrays too
- // TODO: flatten everything in I/O
- // TODO: replace all split with flatten, make all paths can create flattened I/O, then split code can be removed
- // For clip and cull distance, multiple output variables potentially get merged
- // into one in assignClipCullDistance. That code in assignClipCullDistance
- // handles the interface logic, so we avoid it here in that case.
- if (!isClipOrCullDistance(variable.getType()))
- assignToInterface(variable);
- };
- if (entryPointOutput != nullptr)
- makeVariableInOut(*entryPointOutput);
- for (auto it = inputs.begin(); it != inputs.end(); ++it)
- if (!isDsPcfInput((*it)->getType())) // wait until the end for PCF input (see comment below)
- makeVariableInOut(*(*it));
- for (auto it = outputs.begin(); it != outputs.end(); ++it)
- makeVariableInOut(*(*it));
- // In the domain shader, PCF input must be at the end of the linkage. That's because in the
- // hull shader there is no ordering: the output comes from the separate PCF, which does not
- // participate in the argument list. That is always put at the end of the HS linkage, so the
- // input side of the DS must match. The argument may be in any position in the DS argument list
- // however, so this ensures the linkage is built in the correct order regardless of argument order.
- if (language == EShLangTessEvaluation) {
- for (auto it = inputs.begin(); it != inputs.end(); ++it)
- if (isDsPcfInput((*it)->getType()))
- makeVariableInOut(*(*it));
- }
- // Add uniform parameters to the $Global uniform block.
- TVector<TVariable*> opaque_uniforms;
- for (int i = 0; i < userFunction.getParamCount(); i++) {
- TType& paramType = *userFunction[i].type;
- TString& paramName = *userFunction[i].name;
- if (paramType.getQualifier().storage == EvqUniform) {
- if (!paramType.containsOpaque()) {
- // Add it to the global uniform block.
- growGlobalUniformBlock(loc, paramType, paramName);
- } else {
- // Declare it as a separate variable.
- TVariable *var = makeInternalVariable(paramName.c_str(), paramType);
- opaque_uniforms.push_back(var);
- }
- }
- }
- // Synthesize the call
- pushScope(); // matches the one in handleFunctionBody()
- // new signature
- TType voidType(EbtVoid);
- TFunction synthEntryPoint(&userFunction.getName(), voidType);
- TIntermAggregate* synthParams = new TIntermAggregate();
- intermediate.setAggregateOperator(synthParams, EOpParameters, voidType, loc);
- intermediate.setEntryPointMangledName(synthEntryPoint.getMangledName().c_str());
- intermediate.incrementEntryPointCount();
- TFunction callee(&userFunction.getName(), voidType); // call based on old name, which is still in the symbol table
- // change original name
- userFunction.addPrefix("@"); // change the name in the function, but not in the symbol table
- // Copy inputs (shader-in -> calling arg), while building up the call node
- TVector<TVariable*> argVars;
- TIntermAggregate* synthBody = new TIntermAggregate();
- auto inputIt = inputs.begin();
- auto opaqueUniformIt = opaque_uniforms.begin();
- TIntermTyped* callingArgs = nullptr;
- for (int i = 0; i < userFunction.getParamCount(); i++) {
- TParameter& param = userFunction[i];
- argVars.push_back(makeInternalVariable(*param.name, *param.type));
- argVars.back()->getWritableType().getQualifier().makeTemporary();
- // Track the input patch, which is the only non-builtin supported by hull shader PCF.
- if (param.getDeclaredBuiltIn() == EbvInputPatch)
- inputPatch = argVars.back();
- TIntermSymbol* arg = intermediate.addSymbol(*argVars.back());
- handleFunctionArgument(&callee, callingArgs, arg);
- if (param.type->getQualifier().isParamInput()) {
- intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
- intermediate.addSymbol(**inputIt)));
- inputIt++;
- }
- if (param.type->getQualifier().storage == EvqUniform) {
- if (!param.type->containsOpaque()) {
- // Look it up in the $Global uniform block.
- intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
- handleVariable(loc, param.name)));
- } else {
- intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign, arg,
- intermediate.addSymbol(**opaqueUniformIt)));
- ++opaqueUniformIt;
- }
- }
- }
- // Call
- currentCaller = synthEntryPoint.getMangledName();
- TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
- currentCaller = userFunction.getMangledName();
- // Return value
- if (entryPointOutput) {
- TIntermTyped* returnAssign;
- // For hull shaders, the wrapped entry point return value is written to
- // an array element as indexed by invocation ID, which we might have to make up.
- // This is required to match SPIR-V semantics.
- if (language == EShLangTessControl) {
- TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
- // If there is no user declared invocation ID, we must make one.
- if (invocationIdSym == nullptr) {
- TType invocationIdType(EbtUint, EvqIn, 1);
- TString* invocationIdName = NewPoolTString("InvocationId");
- invocationIdType.getQualifier().builtIn = EbvInvocationId;
- TVariable* variable = makeInternalVariable(*invocationIdName, invocationIdType);
- globalQualifierFix(loc, variable->getWritableType().getQualifier());
- trackLinkage(*variable);
- invocationIdSym = intermediate.addSymbol(*variable);
- }
- TIntermTyped* element = intermediate.addIndex(EOpIndexIndirect, intermediate.addSymbol(*entryPointOutput),
- invocationIdSym, loc);
- // Set the type of the array element being dereferenced
- const TType derefElementType(entryPointOutput->getType(), 0);
- element->setType(derefElementType);
- returnAssign = handleAssign(loc, EOpAssign, element, callReturn);
- } else {
- returnAssign = handleAssign(loc, EOpAssign, intermediate.addSymbol(*entryPointOutput), callReturn);
- }
- intermediate.growAggregate(synthBody, returnAssign);
- } else
- intermediate.growAggregate(synthBody, callReturn);
- // Output copies
- auto outputIt = outputs.begin();
- for (int i = 0; i < userFunction.getParamCount(); i++) {
- TParameter& param = userFunction[i];
- // GS outputs are via emit, so we do not copy them here.
- if (param.type->getQualifier().isParamOutput()) {
- if (param.getDeclaredBuiltIn() == EbvGsOutputStream) {
- // GS output stream does not assign outputs here: it's the Append() method
- // which writes to the output, probably multiple times separated by Emit.
- // We merely remember the output to use, here.
- gsStreamOutput = *outputIt;
- } else {
- intermediate.growAggregate(synthBody, handleAssign(loc, EOpAssign,
- intermediate.addSymbol(**outputIt),
- intermediate.addSymbol(*argVars[i])));
- }
- outputIt++;
- }
- }
- // Put the pieces together to form a full function subtree
- // for the synthesized entry point.
- synthBody->setOperator(EOpSequence);
- TIntermNode* synthFunctionDef = synthParams;
- handleFunctionBody(loc, synthEntryPoint, synthBody, synthFunctionDef);
- entryPointFunctionBody = synthBody;
- return synthFunctionDef;
- }
- void HlslParseContext::handleFunctionBody(const TSourceLoc& loc, TFunction& function, TIntermNode* functionBody,
- TIntermNode*& node)
- {
- node = intermediate.growAggregate(node, functionBody);
- intermediate.setAggregateOperator(node, EOpFunction, function.getType(), loc);
- node->getAsAggregate()->setName(function.getMangledName().c_str());
- popScope();
- if (function.hasImplicitThis())
- popImplicitThis();
- if (function.getType().getBasicType() != EbtVoid && ! functionReturnsValue)
- error(loc, "function does not return a value:", "", function.getName().c_str());
- }
- // AST I/O is done through shader globals declared in the 'in' or 'out'
- // storage class. An HLSL entry point has a return value, input parameters
- // and output parameters. These need to get remapped to the AST I/O.
- void HlslParseContext::remapEntryPointIO(TFunction& function, TVariable*& returnValue,
- TVector<TVariable*>& inputs, TVector<TVariable*>& outputs)
- {
- // We might have in input structure type with no decorations that caused it
- // to look like an input type, yet it has (e.g.) interpolation types that
- // must be modified that turn it into an input type.
- // Hence, a missing ioTypeMap for 'input' might need to be synthesized.
- const auto synthesizeEditedInput = [this](TType& type) {
- // True if a type needs to be 'flat'
- const auto needsFlat = [](const TType& type) {
- return type.containsBasicType(EbtInt) ||
- type.containsBasicType(EbtUint) ||
- type.containsBasicType(EbtInt64) ||
- type.containsBasicType(EbtUint64) ||
- type.containsBasicType(EbtBool) ||
- type.containsBasicType(EbtDouble);
- };
- if (language == EShLangFragment && needsFlat(type)) {
- if (type.isStruct()) {
- TTypeList* finalList = nullptr;
- auto it = ioTypeMap.find(type.getStruct());
- if (it == ioTypeMap.end() || it->second.input == nullptr) {
- // Getting here means we have no input struct, but we need one.
- auto list = new TTypeList;
- for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
- TType* newType = new TType;
- newType->shallowCopy(*member->type);
- TTypeLoc typeLoc = { newType, member->loc };
- list->push_back(typeLoc);
- }
- // install the new input type
- if (it == ioTypeMap.end()) {
- tIoKinds newLists = { list, nullptr, nullptr };
- ioTypeMap[type.getStruct()] = newLists;
- } else
- it->second.input = list;
- finalList = list;
- } else
- finalList = it->second.input;
- // edit for 'flat'
- for (auto member = finalList->begin(); member != finalList->end(); ++member) {
- if (needsFlat(*member->type)) {
- member->type->getQualifier().clearInterpolation();
- member->type->getQualifier().flat = true;
- }
- }
- } else {
- type.getQualifier().clearInterpolation();
- type.getQualifier().flat = true;
- }
- }
- };
- // Do the actual work to make a type be a shader input or output variable,
- // and clear the original to be non-IO (for use as a normal function parameter/return).
- const auto makeIoVariable = [this](const char* name, TType& type, TStorageQualifier storage) -> TVariable* {
- TVariable* ioVariable = makeInternalVariable(name, type);
- clearUniformInputOutput(type.getQualifier());
- if (type.isStruct()) {
- auto newLists = ioTypeMap.find(ioVariable->getType().getStruct());
- if (newLists != ioTypeMap.end()) {
- if (storage == EvqVaryingIn && newLists->second.input)
- ioVariable->getWritableType().setStruct(newLists->second.input);
- else if (storage == EvqVaryingOut && newLists->second.output)
- ioVariable->getWritableType().setStruct(newLists->second.output);
- }
- }
- if (storage == EvqVaryingIn) {
- correctInput(ioVariable->getWritableType().getQualifier());
- if (language == EShLangTessEvaluation)
- if (!ioVariable->getType().isArray())
- ioVariable->getWritableType().getQualifier().patch = true;
- } else {
- correctOutput(ioVariable->getWritableType().getQualifier());
- }
- ioVariable->getWritableType().getQualifier().storage = storage;
- fixBuiltInIoType(ioVariable->getWritableType());
- return ioVariable;
- };
- // return value is actually a shader-scoped output (out)
- if (function.getType().getBasicType() == EbtVoid) {
- returnValue = nullptr;
- } else {
- if (language == EShLangTessControl) {
- // tessellation evaluation in HLSL writes a per-ctrl-pt value, but it needs to be an
- // array in SPIR-V semantics. We'll write to it indexed by invocation ID.
- returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
- TType outputType;
- outputType.shallowCopy(function.getType());
- // vertices has necessarily already been set when handling entry point attributes.
- TArraySizes* arraySizes = new TArraySizes;
- arraySizes->addInnerSize(intermediate.getVertices());
- outputType.transferArraySizes(arraySizes);
- clearUniformInputOutput(function.getWritableType().getQualifier());
- returnValue = makeIoVariable("@entryPointOutput", outputType, EvqVaryingOut);
- } else {
- returnValue = makeIoVariable("@entryPointOutput", function.getWritableType(), EvqVaryingOut);
- }
- }
- // parameters are actually shader-scoped inputs and outputs (in or out)
- for (int i = 0; i < function.getParamCount(); i++) {
- TType& paramType = *function[i].type;
- if (paramType.getQualifier().isParamInput()) {
- synthesizeEditedInput(paramType);
- TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingIn);
- inputs.push_back(argAsGlobal);
- }
- if (paramType.getQualifier().isParamOutput()) {
- TVariable* argAsGlobal = makeIoVariable(function[i].name->c_str(), paramType, EvqVaryingOut);
- outputs.push_back(argAsGlobal);
- }
- }
- }
- // An HLSL function that looks like an entry point, but is not,
- // declares entry point IO built-ins, but these have to be undone.
- void HlslParseContext::remapNonEntryPointIO(TFunction& function)
- {
- // return value
- if (function.getType().getBasicType() != EbtVoid)
- clearUniformInputOutput(function.getWritableType().getQualifier());
- // parameters.
- // References to structuredbuffer types are left unmodified
- for (int i = 0; i < function.getParamCount(); i++)
- if (!isReference(*function[i].type))
- clearUniformInputOutput(function[i].type->getQualifier());
- }
- // Handle function returns, including type conversions to the function return type
- // if necessary.
- TIntermNode* HlslParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value)
- {
- functionReturnsValue = true;
- if (currentFunctionType->getBasicType() == EbtVoid) {
- error(loc, "void function cannot return a value", "return", "");
- return intermediate.addBranch(EOpReturn, loc);
- } else if (*currentFunctionType != value->getType()) {
- value = intermediate.addConversion(EOpReturn, *currentFunctionType, value);
- if (value && *currentFunctionType != value->getType())
- value = intermediate.addUniShapeConversion(EOpReturn, *currentFunctionType, value);
- if (value == nullptr || *currentFunctionType != value->getType()) {
- error(loc, "type does not match, or is not convertible to, the function's return type", "return", "");
- return value;
- }
- }
- return intermediate.addBranch(EOpReturn, value, loc);
- }
- void HlslParseContext::handleFunctionArgument(TFunction* function,
- TIntermTyped*& arguments, TIntermTyped* newArg)
- {
- TParameter param = { 0, new TType, nullptr };
- param.type->shallowCopy(newArg->getType());
- function->addParameter(param);
- if (arguments)
- arguments = intermediate.growAggregate(arguments, newArg);
- else
- arguments = newArg;
- }
- // Position may require special handling: we can optionally invert Y.
- // See: https://github.com/KhronosGroup/glslang/issues/1173
- // https://github.com/KhronosGroup/glslang/issues/494
- TIntermTyped* HlslParseContext::assignPosition(const TSourceLoc& loc, TOperator op,
- TIntermTyped* left, TIntermTyped* right)
- {
- // If we are not asked for Y inversion, use a plain old assign.
- if (!intermediate.getInvertY())
- return intermediate.addAssign(op, left, right, loc);
- // If we get here, we should invert Y.
- TIntermAggregate* assignList = nullptr;
- // If this is a complex rvalue, we don't want to dereference it many times. Create a temporary.
- TVariable* rhsTempVar = nullptr;
- rhsTempVar = makeInternalVariable("@position", right->getType());
- rhsTempVar->getWritableType().getQualifier().makeTemporary();
- {
- TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
- assignList = intermediate.growAggregate(assignList,
- intermediate.addAssign(EOpAssign, rhsTempSym, right, loc), loc);
- }
- // pos.y = -pos.y
- {
- const int Y = 1;
- TIntermTyped* tempSymL = intermediate.addSymbol(*rhsTempVar, loc);
- TIntermTyped* tempSymR = intermediate.addSymbol(*rhsTempVar, loc);
- TIntermTyped* index = intermediate.addConstantUnion(Y, loc);
- TIntermTyped* lhsElement = intermediate.addIndex(EOpIndexDirect, tempSymL, index, loc);
- TIntermTyped* rhsElement = intermediate.addIndex(EOpIndexDirect, tempSymR, index, loc);
- const TType derefType(right->getType(), 0);
- lhsElement->setType(derefType);
- rhsElement->setType(derefType);
- TIntermTyped* yNeg = intermediate.addUnaryMath(EOpNegative, rhsElement, loc);
- assignList = intermediate.growAggregate(assignList, intermediate.addAssign(EOpAssign, lhsElement, yNeg, loc));
- }
- // Assign the rhs temp (now with Y inversion) to the final output
- {
- TIntermTyped* rhsTempSym = intermediate.addSymbol(*rhsTempVar, loc);
- assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, rhsTempSym, loc));
- }
- assert(assignList != nullptr);
- assignList->setOperator(EOpSequence);
- return assignList;
- }
- // Clip and cull distance require special handling due to a semantic mismatch. In HLSL,
- // these can be float scalar, float vector, or arrays of float scalar or float vector.
- // In SPIR-V, they are arrays of scalar floats in all cases. We must copy individual components
- // (e.g, both x and y components of a float2) out into the destination float array.
- //
- // The values are assigned to sequential members of the output array. The inner dimension
- // is vector components. The outer dimension is array elements.
- TIntermAggregate* HlslParseContext::assignClipCullDistance(const TSourceLoc& loc, TOperator op, int semanticId,
- TIntermTyped* left, TIntermTyped* right)
- {
- switch (language) {
- case EShLangFragment:
- case EShLangVertex:
- case EShLangGeometry:
- break;
- default:
- error(loc, "unimplemented: clip/cull not currently implemented for this stage", "", "");
- return nullptr;
- }
- TVariable** clipCullVar = nullptr;
- // Figure out if we are assigning to, or from, clip or cull distance.
- const bool isOutput = isClipOrCullDistance(left->getType());
- // This is the rvalue or lvalue holding the clip or cull distance.
- TIntermTyped* clipCullNode = isOutput ? left : right;
- // This is the value going into or out of the clip or cull distance.
- TIntermTyped* internalNode = isOutput ? right : left;
- const TBuiltInVariable builtInType = clipCullNode->getQualifier().builtIn;
- decltype(clipSemanticNSizeIn)* semanticNSize = nullptr;
- // Refer to either the clip or the cull distance, depending on semantic.
- switch (builtInType) {
- case EbvClipDistance:
- clipCullVar = isOutput ? &clipDistanceOutput : &clipDistanceInput;
- semanticNSize = isOutput ? &clipSemanticNSizeOut : &clipSemanticNSizeIn;
- break;
- case EbvCullDistance:
- clipCullVar = isOutput ? &cullDistanceOutput : &cullDistanceInput;
- semanticNSize = isOutput ? &cullSemanticNSizeOut : &cullSemanticNSizeIn;
- break;
- // called invalidly: we expected a clip or a cull distance.
- // static compile time problem: should not happen.
- default: assert(0); return nullptr;
- }
- // This is the offset in the destination array of a given semantic's data
- std::array<int, maxClipCullRegs> semanticOffset;
- // Calculate offset of variable of semantic N in destination array
- int arrayLoc = 0;
- int vecItems = 0;
- for (int x = 0; x < maxClipCullRegs; ++x) {
- // See if we overflowed the vec4 packing
- if ((vecItems + (*semanticNSize)[x]) > 4) {
- arrayLoc = (arrayLoc + 3) & (~0x3); // round up to next multiple of 4
- vecItems = 0;
- }
- semanticOffset[x] = arrayLoc;
- vecItems += (*semanticNSize)[x];
- arrayLoc += (*semanticNSize)[x];
- }
- // It can have up to 2 array dimensions (in the case of geometry shader inputs)
- const TArraySizes* const internalArraySizes = internalNode->getType().getArraySizes();
- const int internalArrayDims = internalNode->getType().isArray() ? internalArraySizes->getNumDims() : 0;
- // vector sizes:
- const int internalVectorSize = internalNode->getType().getVectorSize();
- // array sizes, or 1 if it's not an array:
- const int internalInnerArraySize = (internalArrayDims > 0 ? internalArraySizes->getDimSize(internalArrayDims-1) : 1);
- const int internalOuterArraySize = (internalArrayDims > 1 ? internalArraySizes->getDimSize(0) : 1);
- // The created type may be an array of arrays, e.g, for geometry shader inputs.
- const bool isImplicitlyArrayed = (language == EShLangGeometry && !isOutput);
- // If we haven't created the output already, create it now.
- if (*clipCullVar == nullptr) {
- // ClipDistance and CullDistance are handled specially in the entry point input/output copy
- // algorithm, because they may need to be unpacked from components of vectors (or a scalar)
- // into a float array, or vice versa. Here, we make the array the right size and type,
- // which depends on the incoming data, which has several potential dimensions:
- // * Semantic ID
- // * vector size
- // * array size
- // Of those, semantic ID and array size cannot appear simultaneously.
- //
- // Also to note: for implicitly arrayed forms (e.g, geometry shader inputs), we need to create two
- // array dimensions. The shader's declaration may have one or two array dimensions. One is always
- // the geometry's dimension.
- const bool useInnerSize = internalArrayDims > 1 || !isImplicitlyArrayed;
- const int requiredInnerArraySize = arrayLoc * (useInnerSize ? internalInnerArraySize : 1);
- const int requiredOuterArraySize = (internalArrayDims > 0) ? internalArraySizes->getDimSize(0) : 1;
- TType clipCullType(EbtFloat, clipCullNode->getType().getQualifier().storage, 1);
- clipCullType.getQualifier() = clipCullNode->getType().getQualifier();
- // Create required array dimension
- TArraySizes* arraySizes = new TArraySizes;
- if (isImplicitlyArrayed)
- arraySizes->addInnerSize(requiredOuterArraySize);
- arraySizes->addInnerSize(requiredInnerArraySize);
- clipCullType.transferArraySizes(arraySizes);
- // Obtain symbol name: we'll use that for the symbol we introduce.
- TIntermSymbol* sym = clipCullNode->getAsSymbolNode();
- assert(sym != nullptr);
- // We are moving the semantic ID from the layout location, so it is no longer needed or
- // desired there.
- clipCullType.getQualifier().layoutLocation = TQualifier::layoutLocationEnd;
- // Create variable and track its linkage
- *clipCullVar = makeInternalVariable(sym->getName().c_str(), clipCullType);
- trackLinkage(**clipCullVar);
- }
- // Create symbol for the clip or cull variable.
- TIntermSymbol* clipCullSym = intermediate.addSymbol(**clipCullVar);
- // vector sizes:
- const int clipCullVectorSize = clipCullSym->getType().getVectorSize();
- // array sizes, or 1 if it's not an array:
- const TArraySizes* const clipCullArraySizes = clipCullSym->getType().getArraySizes();
- const int clipCullOuterArraySize = isImplicitlyArrayed ? clipCullArraySizes->getDimSize(0) : 1;
- const int clipCullInnerArraySize = clipCullArraySizes->getDimSize(isImplicitlyArrayed ? 1 : 0);
- // clipCullSym has got to be an array of scalar floats, per SPIR-V semantics.
- // fixBuiltInIoType() should have handled that upstream.
- assert(clipCullSym->getType().isArray());
- assert(clipCullSym->getType().getVectorSize() == 1);
- assert(clipCullSym->getType().getBasicType() == EbtFloat);
- // We may be creating multiple sub-assignments. This is an aggregate to hold them.
- // TODO: it would be possible to be clever sometimes and avoid the sequence node if not needed.
- TIntermAggregate* assignList = nullptr;
- // Holds individual component assignments as we make them.
- TIntermTyped* clipCullAssign = nullptr;
- // If the types are homomorphic, use a simple assign. No need to mess about with
- // individual components.
- if (clipCullSym->getType().isArray() == internalNode->getType().isArray() &&
- clipCullInnerArraySize == internalInnerArraySize &&
- clipCullOuterArraySize == internalOuterArraySize &&
- clipCullVectorSize == internalVectorSize) {
- if (isOutput)
- clipCullAssign = intermediate.addAssign(op, clipCullSym, internalNode, loc);
- else
- clipCullAssign = intermediate.addAssign(op, internalNode, clipCullSym, loc);
- assignList = intermediate.growAggregate(assignList, clipCullAssign);
- assignList->setOperator(EOpSequence);
- return assignList;
- }
- // We are going to copy each component of the internal (per array element if indicated) to sequential
- // array elements of the clipCullSym. This tracks the lhs element we're writing to as we go along.
- // We may be starting in the middle - e.g, for a non-zero semantic ID calculated above.
- int clipCullInnerArrayPos = semanticOffset[semanticId];
- int clipCullOuterArrayPos = 0;
- // Lambda to add an index to a node, set the type of the result, and return the new node.
- const auto addIndex = [this, &loc](TIntermTyped* node, int pos) -> TIntermTyped* {
- const TType derefType(node->getType(), 0);
- node = intermediate.addIndex(EOpIndexDirect, node, intermediate.addConstantUnion(pos, loc), loc);
- node->setType(derefType);
- return node;
- };
- // Loop through every component of every element of the internal, and copy to or from the matching external.
- for (int internalOuterArrayPos = 0; internalOuterArrayPos < internalOuterArraySize; ++internalOuterArrayPos) {
- for (int internalInnerArrayPos = 0; internalInnerArrayPos < internalInnerArraySize; ++internalInnerArrayPos) {
- for (int internalComponent = 0; internalComponent < internalVectorSize; ++internalComponent) {
- // clip/cull array member to read from / write to:
- TIntermTyped* clipCullMember = clipCullSym;
- // If implicitly arrayed, there is an outer array dimension involved
- if (isImplicitlyArrayed)
- clipCullMember = addIndex(clipCullMember, clipCullOuterArrayPos);
- // Index into proper array position for clip cull member
- clipCullMember = addIndex(clipCullMember, clipCullInnerArrayPos++);
- // if needed, start over with next outer array slice.
- if (isImplicitlyArrayed && clipCullInnerArrayPos >= clipCullInnerArraySize) {
- clipCullInnerArrayPos = semanticOffset[semanticId];
- ++clipCullOuterArrayPos;
- }
- // internal member to read from / write to:
- TIntermTyped* internalMember = internalNode;
- // If internal node has outer array dimension, index appropriately.
- if (internalArrayDims > 1)
- internalMember = addIndex(internalMember, internalOuterArrayPos);
- // If internal node has inner array dimension, index appropriately.
- if (internalArrayDims > 0)
- internalMember = addIndex(internalMember, internalInnerArrayPos);
- // If internal node is a vector, extract the component of interest.
- if (internalNode->getType().isVector())
- internalMember = addIndex(internalMember, internalComponent);
- // Create an assignment: output from internal to clip cull, or input from clip cull to internal.
- if (isOutput)
- clipCullAssign = intermediate.addAssign(op, clipCullMember, internalMember, loc);
- else
- clipCullAssign = intermediate.addAssign(op, internalMember, clipCullMember, loc);
- // Track assignment in the sequence.
- assignList = intermediate.growAggregate(assignList, clipCullAssign);
- }
- }
- }
- assert(assignList != nullptr);
- assignList->setOperator(EOpSequence);
- return assignList;
- }
- // Some simple source assignments need to be flattened to a sequence
- // of AST assignments. Catch these and flatten, otherwise, pass through
- // to intermediate.addAssign().
- //
- // Also, assignment to matrix swizzles requires multiple component assignments,
- // intercept those as well.
- TIntermTyped* HlslParseContext::handleAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
- TIntermTyped* right)
- {
- if (left == nullptr || right == nullptr)
- return nullptr;
- // writing to opaques will require fixing transforms
- if (left->getType().containsOpaque())
- intermediate.setNeedsLegalization();
- if (left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle)
- return handleAssignToMatrixSwizzle(loc, op, left, right);
- // Return true if the given node is an index operation into a split variable.
- const auto indexesSplit = [this](const TIntermTyped* node) -> bool {
- const TIntermBinary* binaryNode = node->getAsBinaryNode();
- if (binaryNode == nullptr)
- return false;
- return (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect) &&
- wasSplit(binaryNode->getLeft());
- };
- // Return symbol if node is symbol or index ref
- const auto getSymbol = [](const TIntermTyped* node) -> const TIntermSymbol* {
- const TIntermSymbol* symbolNode = node->getAsSymbolNode();
- if (symbolNode != nullptr)
- return symbolNode;
- const TIntermBinary* binaryNode = node->getAsBinaryNode();
- if (binaryNode != nullptr && (binaryNode->getOp() == EOpIndexDirect || binaryNode->getOp() == EOpIndexIndirect))
- return binaryNode->getLeft()->getAsSymbolNode();
- return nullptr;
- };
- // Return true if this stage assigns clip position with potentially inverted Y
- const auto assignsClipPos = [this](const TIntermTyped* node) -> bool {
- return node->getType().getQualifier().builtIn == EbvPosition &&
- (language == EShLangVertex || language == EShLangGeometry || language == EShLangTessEvaluation);
- };
- const TIntermSymbol* leftSymbol = getSymbol(left);
- const TIntermSymbol* rightSymbol = getSymbol(right);
- const bool isSplitLeft = wasSplit(left) || indexesSplit(left);
- const bool isSplitRight = wasSplit(right) || indexesSplit(right);
- const bool isFlattenLeft = wasFlattened(leftSymbol);
- const bool isFlattenRight = wasFlattened(rightSymbol);
- // OK to do a single assign if neither side is split or flattened. Otherwise,
- // fall through to a member-wise copy.
- if (!isFlattenLeft && !isFlattenRight && !isSplitLeft && !isSplitRight) {
- // Clip and cull distance requires more processing. See comment above assignClipCullDistance.
- if (isClipOrCullDistance(left->getType()) || isClipOrCullDistance(right->getType())) {
- const bool isOutput = isClipOrCullDistance(left->getType());
- const int semanticId = (isOutput ? left : right)->getType().getQualifier().layoutLocation;
- return assignClipCullDistance(loc, op, semanticId, left, right);
- } else if (assignsClipPos(left)) {
- // Position can require special handling: see comment above assignPosition
- return assignPosition(loc, op, left, right);
- } else if (left->getQualifier().builtIn == EbvSampleMask) {
- // Certain builtins are required to be arrayed outputs in SPIR-V, but may internally be scalars
- // in the shader. Copy the scalar RHS into the LHS array element zero, if that happens.
- if (left->isArray() && !right->isArray()) {
- const TType derefType(left->getType(), 0);
- left = intermediate.addIndex(EOpIndexDirect, left, intermediate.addConstantUnion(0, loc), loc);
- left->setType(derefType);
- // Fall through to add assign.
- }
- }
- return intermediate.addAssign(op, left, right, loc);
- }
- TIntermAggregate* assignList = nullptr;
- const TVector<TVariable*>* leftVariables = nullptr;
- const TVector<TVariable*>* rightVariables = nullptr;
- // A temporary to store the right node's value, so we don't keep indirecting into it
- // if it's not a simple symbol.
- TVariable* rhsTempVar = nullptr;
- // If the RHS is a simple symbol node, we'll copy it for each member.
- TIntermSymbol* cloneSymNode = nullptr;
- int memberCount = 0;
- // Track how many items there are to copy.
- if (left->getType().isStruct())
- memberCount = (int)left->getType().getStruct()->size();
- if (left->getType().isArray())
- memberCount = left->getType().getCumulativeArraySize();
- if (isFlattenLeft)
- leftVariables = &flattenMap.find(leftSymbol->getId())->second.members;
- if (isFlattenRight) {
- rightVariables = &flattenMap.find(rightSymbol->getId())->second.members;
- } else {
- // The RHS is not flattened. There are several cases:
- // 1. 1 item to copy: Use the RHS directly.
- // 2. >1 item, simple symbol RHS: we'll create a new TIntermSymbol node for each, but no assign to temp.
- // 3. >1 item, complex RHS: assign it to a new temp variable, and create a TIntermSymbol for each member.
- if (memberCount <= 1) {
- // case 1: we'll use the symbol directly below. Nothing to do.
- } else {
- if (right->getAsSymbolNode() != nullptr) {
- // case 2: we'll copy the symbol per iteration below.
- cloneSymNode = right->getAsSymbolNode();
- } else {
- // case 3: assign to a temp, and indirect into that.
- rhsTempVar = makeInternalVariable("flattenTemp", right->getType());
- rhsTempVar->getWritableType().getQualifier().makeTemporary();
- TIntermTyped* noFlattenRHS = intermediate.addSymbol(*rhsTempVar, loc);
- // Add this to the aggregate being built.
- assignList = intermediate.growAggregate(assignList,
- intermediate.addAssign(op, noFlattenRHS, right, loc), loc);
- }
- }
- }
- // When dealing with split arrayed structures of built-ins, the arrayness is moved to the extracted built-in
- // variables, which is awkward when copying between split and unsplit structures. This variable tracks
- // array indirections so they can be percolated from outer structs to inner variables.
- std::vector <int> arrayElement;
- TStorageQualifier leftStorage = left->getType().getQualifier().storage;
- TStorageQualifier rightStorage = right->getType().getQualifier().storage;
- int leftOffsetStart = findSubtreeOffset(*left);
- int rightOffsetStart = findSubtreeOffset(*right);
- int leftOffset = leftOffsetStart;
- int rightOffset = rightOffsetStart;
- const auto getMember = [&](bool isLeft, const TType& type, int member, TIntermTyped* splitNode, int splitMember,
- bool flattened)
- -> TIntermTyped * {
- const bool split = isLeft ? isSplitLeft : isSplitRight;
- TIntermTyped* subTree;
- const TType derefType(type, member);
- const TVariable* builtInVar = nullptr;
- if ((flattened || split) && derefType.isBuiltIn()) {
- auto splitPair = splitBuiltIns.find(HlslParseContext::tInterstageIoData(
- derefType.getQualifier().builtIn,
- isLeft ? leftStorage : rightStorage));
- if (splitPair != splitBuiltIns.end())
- builtInVar = splitPair->second;
- }
- if (builtInVar != nullptr) {
- // copy from interstage IO built-in if needed
- subTree = intermediate.addSymbol(*builtInVar);
- if (subTree->getType().isArray()) {
- // Arrayness of builtIn symbols isn't handled by the normal recursion:
- // it's been extracted and moved to the built-in.
- if (!arrayElement.empty()) {
- const TType splitDerefType(subTree->getType(), arrayElement.back());
- subTree = intermediate.addIndex(EOpIndexDirect, subTree,
- intermediate.addConstantUnion(arrayElement.back(), loc), loc);
- subTree->setType(splitDerefType);
- } else if (splitNode->getAsOperator() != nullptr && (splitNode->getAsOperator()->getOp() == EOpIndexIndirect)) {
- // This might also be a stage with arrayed outputs, in which case there's an index
- // operation we should transfer to the output builtin.
- const TType splitDerefType(subTree->getType(), 0);
- subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
- splitNode->getAsBinaryNode()->getRight(), loc);
- subTree->setType(splitDerefType);
- }
- }
- } else if (flattened && !shouldFlatten(derefType, isLeft ? leftStorage : rightStorage, false)) {
- if (isLeft) {
- // offset will cycle through variables for arrayed io
- if (leftOffset >= static_cast<int>(leftVariables->size()))
- leftOffset = leftOffsetStart;
- subTree = intermediate.addSymbol(*(*leftVariables)[leftOffset++]);
- } else {
- // offset will cycle through variables for arrayed io
- if (rightOffset >= static_cast<int>(rightVariables->size()))
- rightOffset = rightOffsetStart;
- subTree = intermediate.addSymbol(*(*rightVariables)[rightOffset++]);
- }
- // arrayed io
- if (subTree->getType().isArray()) {
- if (!arrayElement.empty()) {
- const TType derefType(subTree->getType(), arrayElement.front());
- subTree = intermediate.addIndex(EOpIndexDirect, subTree,
- intermediate.addConstantUnion(arrayElement.front(), loc), loc);
- subTree->setType(derefType);
- } else {
- // There's an index operation we should transfer to the output builtin.
- assert(splitNode->getAsOperator() != nullptr &&
- splitNode->getAsOperator()->getOp() == EOpIndexIndirect);
- const TType splitDerefType(subTree->getType(), 0);
- subTree = intermediate.addIndex(splitNode->getAsOperator()->getOp(), subTree,
- splitNode->getAsBinaryNode()->getRight(), loc);
- subTree->setType(splitDerefType);
- }
- }
- } else {
- // Index operator if it's an aggregate, else EOpNull
- const TOperator accessOp = type.isArray() ? EOpIndexDirect
- : type.isStruct() ? EOpIndexDirectStruct
- : EOpNull;
- if (accessOp == EOpNull) {
- subTree = splitNode;
- } else {
- subTree = intermediate.addIndex(accessOp, splitNode, intermediate.addConstantUnion(splitMember, loc),
- loc);
- const TType splitDerefType(splitNode->getType(), splitMember);
- subTree->setType(splitDerefType);
- }
- }
- return subTree;
- };
- // Use the proper RHS node: a new symbol from a TVariable, copy
- // of an TIntermSymbol node, or sometimes the right node directly.
- right = rhsTempVar != nullptr ? intermediate.addSymbol(*rhsTempVar, loc) :
- cloneSymNode != nullptr ? intermediate.addSymbol(*cloneSymNode) :
- right;
- // Cannot use auto here, because this is recursive, and auto can't work out the type without seeing the
- // whole thing. So, we'll resort to an explicit type via std::function.
- const std::function<void(TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
- bool topLevel)>
- traverse = [&](TIntermTyped* left, TIntermTyped* right, TIntermTyped* splitLeft, TIntermTyped* splitRight,
- bool topLevel) -> void {
- // If we get here, we are assigning to or from a whole array or struct that must be
- // flattened, so have to do member-by-member assignment:
- bool shouldFlattenSubsetLeft = isFlattenLeft && shouldFlatten(left->getType(), leftStorage, topLevel);
- bool shouldFlattenSubsetRight = isFlattenRight && shouldFlatten(right->getType(), rightStorage, topLevel);
- if ((left->getType().isArray() || right->getType().isArray()) &&
- (shouldFlattenSubsetLeft || isSplitLeft ||
- shouldFlattenSubsetRight || isSplitRight)) {
- const int elementsL = left->getType().isArray() ? left->getType().getOuterArraySize() : 1;
- const int elementsR = right->getType().isArray() ? right->getType().getOuterArraySize() : 1;
- // The arrays might not be the same size,
- // e.g., if the size has been forced for EbvTessLevelInner/Outer.
- const int elementsToCopy = std::min(elementsL, elementsR);
- // array case
- for (int element = 0; element < elementsToCopy; ++element) {
- arrayElement.push_back(element);
- // Add a new AST symbol node if we have a temp variable holding a complex RHS.
- TIntermTyped* subLeft = getMember(true, left->getType(), element, left, element,
- shouldFlattenSubsetLeft);
- TIntermTyped* subRight = getMember(false, right->getType(), element, right, element,
- shouldFlattenSubsetRight);
- TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), element, splitLeft,
- element, shouldFlattenSubsetLeft)
- : subLeft;
- TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), element, splitRight,
- element, shouldFlattenSubsetRight)
- : subRight;
- traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
- arrayElement.pop_back();
- }
- } else if (left->getType().isStruct() && (shouldFlattenSubsetLeft || isSplitLeft ||
- shouldFlattenSubsetRight || isSplitRight)) {
- // struct case
- const auto& membersL = *left->getType().getStruct();
- const auto& membersR = *right->getType().getStruct();
- // These track the members in the split structures corresponding to the same in the unsplit structures,
- // which we traverse in parallel.
- int memberL = 0;
- int memberR = 0;
- // Handle empty structure assignment
- if (int(membersL.size()) == 0 && int(membersR.size()) == 0)
- assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
- for (int member = 0; member < int(membersL.size()); ++member) {
- const TType& typeL = *membersL[member].type;
- const TType& typeR = *membersR[member].type;
- TIntermTyped* subLeft = getMember(true, left->getType(), member, left, member,
- shouldFlattenSubsetLeft);
- TIntermTyped* subRight = getMember(false, right->getType(), member, right, member,
- shouldFlattenSubsetRight);
- // If there is no splitting, use the same values to avoid inefficiency.
- TIntermTyped* subSplitLeft = isSplitLeft ? getMember(true, left->getType(), member, splitLeft,
- memberL, shouldFlattenSubsetLeft)
- : subLeft;
- TIntermTyped* subSplitRight = isSplitRight ? getMember(false, right->getType(), member, splitRight,
- memberR, shouldFlattenSubsetRight)
- : subRight;
- if (isClipOrCullDistance(subSplitLeft->getType()) || isClipOrCullDistance(subSplitRight->getType())) {
- // Clip and cull distance built-in assignment is complex in its own right, and is handled in
- // a separate function dedicated to that task. See comment above assignClipCullDistance;
- const bool isOutput = isClipOrCullDistance(subSplitLeft->getType());
- // Since all clip/cull semantics boil down to the same built-in type, we need to get the
- // semantic ID from the dereferenced type's layout location, to avoid an N-1 mapping.
- const TType derefType((isOutput ? left : right)->getType(), member);
- const int semanticId = derefType.getQualifier().layoutLocation;
- TIntermAggregate* clipCullAssign = assignClipCullDistance(loc, op, semanticId,
- subSplitLeft, subSplitRight);
- assignList = intermediate.growAggregate(assignList, clipCullAssign, loc);
- } else if (assignsClipPos(subSplitLeft)) {
- // Position can require special handling: see comment above assignPosition
- TIntermTyped* positionAssign = assignPosition(loc, op, subSplitLeft, subSplitRight);
- assignList = intermediate.growAggregate(assignList, positionAssign, loc);
- } else if (!shouldFlattenSubsetLeft && !shouldFlattenSubsetRight &&
- !typeL.containsBuiltIn() && !typeR.containsBuiltIn()) {
- // If this is the final flattening (no nested types below to flatten)
- // we'll copy the member, else recurse into the type hierarchy.
- // However, if splitting the struct, that means we can copy a whole
- // subtree here IFF it does not itself contain any interstage built-in
- // IO variables, so we only have to recurse into it if there's something
- // for splitting to do. That can save a lot of AST verbosity for
- // a bunch of memberwise copies.
- assignList = intermediate.growAggregate(assignList,
- intermediate.addAssign(op, subSplitLeft, subSplitRight, loc),
- loc);
- } else {
- traverse(subLeft, subRight, subSplitLeft, subSplitRight, false);
- }
- memberL += (typeL.isBuiltIn() ? 0 : 1);
- memberR += (typeR.isBuiltIn() ? 0 : 1);
- }
- } else {
- // Member copy
- assignList = intermediate.growAggregate(assignList, intermediate.addAssign(op, left, right, loc), loc);
- }
- };
- TIntermTyped* splitLeft = left;
- TIntermTyped* splitRight = right;
- // If either left or right was a split structure, we must read or write it, but still have to
- // parallel-recurse through the unsplit structure to identify the built-in IO vars.
- // The left can be either a symbol, or an index into a symbol (e.g, array reference)
- if (isSplitLeft) {
- if (indexesSplit(left)) {
- // Index case: Refer to the indexed symbol, if the left is an index operator.
- const TIntermSymbol* symNode = left->getAsBinaryNode()->getLeft()->getAsSymbolNode();
- TIntermTyped* splitLeftNonIo = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
- splitLeft = intermediate.addIndex(left->getAsBinaryNode()->getOp(), splitLeftNonIo,
- left->getAsBinaryNode()->getRight(), loc);
- const TType derefType(splitLeftNonIo->getType(), 0);
- splitLeft->setType(derefType);
- } else {
- // Symbol case: otherwise, if not indexed, we have the symbol directly.
- const TIntermSymbol* symNode = left->getAsSymbolNode();
- splitLeft = intermediate.addSymbol(*getSplitNonIoVar(symNode->getId()), loc);
- }
- }
- if (isSplitRight)
- splitRight = intermediate.addSymbol(*getSplitNonIoVar(right->getAsSymbolNode()->getId()), loc);
- // This makes the whole assignment, recursing through subtypes as needed.
- traverse(left, right, splitLeft, splitRight, true);
- assert(assignList != nullptr);
- assignList->setOperator(EOpSequence);
- return assignList;
- }
- // An assignment to matrix swizzle must be decomposed into individual assignments.
- // These must be selected component-wise from the RHS and stored component-wise
- // into the LHS.
- TIntermTyped* HlslParseContext::handleAssignToMatrixSwizzle(const TSourceLoc& loc, TOperator op, TIntermTyped* left,
- TIntermTyped* right)
- {
- assert(left->getAsOperator() && left->getAsOperator()->getOp() == EOpMatrixSwizzle);
- if (op != EOpAssign)
- error(loc, "only simple assignment to non-simple matrix swizzle is supported", "assign", "");
- // isolate the matrix and swizzle nodes
- TIntermTyped* matrix = left->getAsBinaryNode()->getLeft()->getAsTyped();
- const TIntermSequence& swizzle = left->getAsBinaryNode()->getRight()->getAsAggregate()->getSequence();
- // if the RHS isn't already a simple vector, let's store into one
- TIntermSymbol* vector = right->getAsSymbolNode();
- TIntermTyped* vectorAssign = nullptr;
- if (vector == nullptr) {
- // create a new intermediate vector variable to assign to
- TType vectorType(matrix->getBasicType(), EvqTemporary, matrix->getQualifier().precision, (int)swizzle.size()/2);
- vector = intermediate.addSymbol(*makeInternalVariable("intermVec", vectorType), loc);
- // assign the right to the new vector
- vectorAssign = handleAssign(loc, op, vector, right);
- }
- // Assign the vector components to the matrix components.
- // Store this as a sequence, so a single aggregate node represents this
- // entire operation.
- TIntermAggregate* result = intermediate.makeAggregate(vectorAssign);
- TType columnType(matrix->getType(), 0);
- TType componentType(columnType, 0);
- TType indexType(EbtInt);
- for (int i = 0; i < (int)swizzle.size(); i += 2) {
- // the right component, single index into the RHS vector
- TIntermTyped* rightComp = intermediate.addIndex(EOpIndexDirect, vector,
- intermediate.addConstantUnion(i/2, loc), loc);
- // the left component, double index into the LHS matrix
- TIntermTyped* leftComp = intermediate.addIndex(EOpIndexDirect, matrix,
- intermediate.addConstantUnion(swizzle[i]->getAsConstantUnion()->getConstArray(),
- indexType, loc),
- loc);
- leftComp->setType(columnType);
- leftComp = intermediate.addIndex(EOpIndexDirect, leftComp,
- intermediate.addConstantUnion(swizzle[i+1]->getAsConstantUnion()->getConstArray(),
- indexType, loc),
- loc);
- leftComp->setType(componentType);
- // Add the assignment to the aggregate
- result = intermediate.growAggregate(result, intermediate.addAssign(op, leftComp, rightComp, loc));
- }
- result->setOp(EOpSequence);
- return result;
- }
- //
- // HLSL atomic operations have slightly different arguments than
- // GLSL/AST/SPIRV. The semantics are converted below in decomposeIntrinsic.
- // This provides the post-decomposition equivalent opcode.
- //
- TOperator HlslParseContext::mapAtomicOp(const TSourceLoc& loc, TOperator op, bool isImage)
- {
- switch (op) {
- case EOpInterlockedAdd: return isImage ? EOpImageAtomicAdd : EOpAtomicAdd;
- case EOpInterlockedAnd: return isImage ? EOpImageAtomicAnd : EOpAtomicAnd;
- case EOpInterlockedCompareExchange: return isImage ? EOpImageAtomicCompSwap : EOpAtomicCompSwap;
- case EOpInterlockedMax: return isImage ? EOpImageAtomicMax : EOpAtomicMax;
- case EOpInterlockedMin: return isImage ? EOpImageAtomicMin : EOpAtomicMin;
- case EOpInterlockedOr: return isImage ? EOpImageAtomicOr : EOpAtomicOr;
- case EOpInterlockedXor: return isImage ? EOpImageAtomicXor : EOpAtomicXor;
- case EOpInterlockedExchange: return isImage ? EOpImageAtomicExchange : EOpAtomicExchange;
- case EOpInterlockedCompareStore: // TODO: ...
- default:
- error(loc, "unknown atomic operation", "unknown op", "");
- return EOpNull;
- }
- }
- //
- // Create a combined sampler/texture from separate sampler and texture.
- //
- TIntermAggregate* HlslParseContext::handleSamplerTextureCombine(const TSourceLoc& loc, TIntermTyped* argTex,
- TIntermTyped* argSampler)
- {
- TIntermAggregate* txcombine = new TIntermAggregate(EOpConstructTextureSampler);
- txcombine->getSequence().push_back(argTex);
- txcombine->getSequence().push_back(argSampler);
- TSampler samplerType = argTex->getType().getSampler();
- samplerType.combined = true;
- // TODO:
- // This block exists until the spec no longer requires shadow modes on texture objects.
- // It can be deleted after that, along with the shadowTextureVariant member.
- {
- const bool shadowMode = argSampler->getType().getSampler().shadow;
- TIntermSymbol* texSymbol = argTex->getAsSymbolNode();
- if (texSymbol == nullptr)
- texSymbol = argTex->getAsBinaryNode()->getLeft()->getAsSymbolNode();
- if (texSymbol == nullptr) {
- error(loc, "unable to find texture symbol", "", "");
- return nullptr;
- }
- // This forces the texture's shadow state to be the sampler's
- // shadow state. This depends on downstream optimization to
- // DCE one variant in [shadow, nonshadow] if both are present,
- // or the SPIR-V module would be invalid.
- int newId = texSymbol->getId();
- // Check to see if this texture has been given a shadow mode already.
- // If so, look up the one we already have.
- const auto textureShadowEntry = textureShadowVariant.find(texSymbol->getId());
- if (textureShadowEntry != textureShadowVariant.end())
- newId = textureShadowEntry->second->get(shadowMode);
- else
- textureShadowVariant[texSymbol->getId()] = NewPoolObject(tShadowTextureSymbols(), 1);
- // Sometimes we have to create another symbol (if this texture has been seen before,
- // and we haven't created the form for this shadow mode).
- if (newId == -1) {
- TType texType;
- texType.shallowCopy(argTex->getType());
- texType.getSampler().shadow = shadowMode; // set appropriate shadow mode.
- globalQualifierFix(loc, texType.getQualifier());
- TVariable* newTexture = makeInternalVariable(texSymbol->getName(), texType);
- trackLinkage(*newTexture);
- newId = newTexture->getUniqueId();
- }
- assert(newId != -1);
- if (textureShadowVariant.find(newId) == textureShadowVariant.end())
- textureShadowVariant[newId] = textureShadowVariant[texSymbol->getId()];
- textureShadowVariant[newId]->set(shadowMode, newId);
- // Remember this shadow mode in the texture and the merged type.
- argTex->getWritableType().getSampler().shadow = shadowMode;
- samplerType.shadow = shadowMode;
- texSymbol->switchId(newId);
- }
- txcombine->setType(TType(samplerType, EvqTemporary));
- txcombine->setLoc(loc);
- return txcombine;
- }
- // Return true if this a buffer type that has an associated counter buffer.
- bool HlslParseContext::hasStructBuffCounter(const TType& type) const
- {
- switch (type.getQualifier().declaredBuiltIn) {
- case EbvAppendConsume: // fall through...
- case EbvRWStructuredBuffer: // ...
- return true;
- default:
- return false; // the other structuredbuffer types do not have a counter.
- }
- }
- void HlslParseContext::counterBufferType(const TSourceLoc& loc, TType& type)
- {
- // Counter type
- TType* counterType = new TType(EbtUint, EvqBuffer);
- counterType->setFieldName(intermediate.implicitCounterName);
- TTypeList* blockStruct = new TTypeList;
- TTypeLoc member = { counterType, loc };
- blockStruct->push_back(member);
- TType blockType(blockStruct, "", counterType->getQualifier());
- blockType.getQualifier().storage = EvqBuffer;
- type.shallowCopy(blockType);
- shareStructBufferType(type);
- }
- // declare counter for a structured buffer type
- void HlslParseContext::declareStructBufferCounter(const TSourceLoc& loc, const TType& bufferType, const TString& name)
- {
- // Bail out if not a struct buffer
- if (! isStructBufferType(bufferType))
- return;
- if (! hasStructBuffCounter(bufferType))
- return;
- TType blockType;
- counterBufferType(loc, blockType);
- TString* blockName = NewPoolTString(intermediate.addCounterBufferName(name).c_str());
- // Counter buffer is not yet in use
- structBufferCounter[*blockName] = false;
- shareStructBufferType(blockType);
- declareBlock(loc, blockType, blockName);
- }
- // return the counter that goes with a given structuredbuffer
- TIntermTyped* HlslParseContext::getStructBufferCounter(const TSourceLoc& loc, TIntermTyped* buffer)
- {
- // Bail out if not a struct buffer
- if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
- return nullptr;
- const TString counterBlockName(intermediate.addCounterBufferName(buffer->getAsSymbolNode()->getName()));
- // Mark the counter as being used
- structBufferCounter[counterBlockName] = true;
- TIntermTyped* counterVar = handleVariable(loc, &counterBlockName); // find the block structure
- TIntermTyped* index = intermediate.addConstantUnion(0, loc); // index to counter inside block struct
- TIntermTyped* counterMember = intermediate.addIndex(EOpIndexDirectStruct, counterVar, index, loc);
- counterMember->setType(TType(EbtUint));
- return counterMember;
- }
- //
- // Decompose structure buffer methods into AST
- //
- void HlslParseContext::decomposeStructBufferMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
- {
- if (node == nullptr || node->getAsOperator() == nullptr || arguments == nullptr)
- return;
- const TOperator op = node->getAsOperator()->getOp();
- TIntermAggregate* argAggregate = arguments->getAsAggregate();
- // Buffer is the object upon which method is called, so always arg 0
- TIntermTyped* bufferObj = nullptr;
- // The parameters can be an aggregate, or just a the object as a symbol if there are no fn params.
- if (argAggregate) {
- if (argAggregate->getSequence().empty())
- return;
- if (argAggregate->getSequence()[0])
- bufferObj = argAggregate->getSequence()[0]->getAsTyped();
- } else {
- bufferObj = arguments->getAsSymbolNode();
- }
- if (bufferObj == nullptr || bufferObj->getAsSymbolNode() == nullptr)
- return;
- // Some methods require a hidden internal counter, obtained via getStructBufferCounter().
- // This lambda adds something to it and returns the old value.
- const auto incDecCounter = [&](int incval) -> TIntermTyped* {
- TIntermTyped* incrementValue = intermediate.addConstantUnion(static_cast<unsigned int>(incval), loc, true);
- TIntermTyped* counter = getStructBufferCounter(loc, bufferObj); // obtain the counter member
- if (counter == nullptr)
- return nullptr;
- TIntermAggregate* counterIncrement = new TIntermAggregate(EOpAtomicAdd);
- counterIncrement->setType(TType(EbtUint, EvqTemporary));
- counterIncrement->setLoc(loc);
- counterIncrement->getSequence().push_back(counter);
- counterIncrement->getSequence().push_back(incrementValue);
- return counterIncrement;
- };
- // Index to obtain the runtime sized array out of the buffer.
- TIntermTyped* argArray = indexStructBufferContent(loc, bufferObj);
- if (argArray == nullptr)
- return; // It might not be a struct buffer method.
- switch (op) {
- case EOpMethodLoad:
- {
- TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
- const TType& bufferType = bufferObj->getType();
- const TBuiltInVariable builtInType = bufferType.getQualifier().declaredBuiltIn;
- // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
- // buffer then, but that's what it calls itself.
- const bool isByteAddressBuffer = (builtInType == EbvByteAddressBuffer ||
- builtInType == EbvRWByteAddressBuffer);
- if (isByteAddressBuffer)
- argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex,
- intermediate.addConstantUnion(2, loc, true),
- loc, TType(EbtInt));
- // Index into the array to find the item being loaded.
- const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
- node = intermediate.addIndex(idxOp, argArray, argIndex, loc);
- const TType derefType(argArray->getType(), 0);
- node->setType(derefType);
- }
- break;
- case EOpMethodLoad2:
- case EOpMethodLoad3:
- case EOpMethodLoad4:
- {
- TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
- TOperator constructOp = EOpNull;
- int size = 0;
- switch (op) {
- case EOpMethodLoad2: size = 2; constructOp = EOpConstructVec2; break;
- case EOpMethodLoad3: size = 3; constructOp = EOpConstructVec3; break;
- case EOpMethodLoad4: size = 4; constructOp = EOpConstructVec4; break;
- default: assert(0);
- }
- TIntermTyped* body = nullptr;
- // First, we'll store the address in a variable to avoid multiple shifts
- // (we must convert the byte address to an item address)
- TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
- intermediate.addConstantUnion(2, loc, true),
- loc, TType(EbtInt));
- TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
- TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
- body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
- TIntermTyped* vec = nullptr;
- // These are only valid on (rw)byteaddressbuffers, so we can always perform the >>2
- // address conversion.
- for (int idx=0; idx<size; ++idx) {
- TIntermTyped* offsetIdx = byteAddrIdxVar;
- // add index offset
- if (idx != 0)
- offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx,
- intermediate.addConstantUnion(idx, loc, true),
- loc, TType(EbtInt));
- const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
- : EOpIndexIndirect;
- TIntermTyped* indexVal = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
- TType derefType(argArray->getType(), 0);
- derefType.getQualifier().makeTemporary();
- indexVal->setType(derefType);
- vec = intermediate.growAggregate(vec, indexVal);
- }
- vec->setType(TType(argArray->getBasicType(), EvqTemporary, size));
- vec->getAsAggregate()->setOperator(constructOp);
- body = intermediate.growAggregate(body, vec);
- body->setType(vec->getType());
- body->getAsAggregate()->setOperator(EOpSequence);
- node = body;
- }
- break;
- case EOpMethodStore:
- case EOpMethodStore2:
- case EOpMethodStore3:
- case EOpMethodStore4:
- {
- TIntermTyped* argIndex = makeIntegerIndex(argAggregate->getSequence()[1]->getAsTyped()); // index
- TIntermTyped* argValue = argAggregate->getSequence()[2]->getAsTyped(); // value
- // Index into the array to find the item being loaded.
- // Byte address buffers index in bytes (only multiples of 4 permitted... not so much a byte address
- // buffer then, but that's what it calls itself).
- int size = 0;
- switch (op) {
- case EOpMethodStore: size = 1; break;
- case EOpMethodStore2: size = 2; break;
- case EOpMethodStore3: size = 3; break;
- case EOpMethodStore4: size = 4; break;
- default: assert(0);
- }
- TIntermAggregate* body = nullptr;
- // First, we'll store the address in a variable to avoid multiple shifts
- // (we must convert the byte address to an item address)
- TIntermTyped* byteAddrIdx = intermediate.addBinaryNode(EOpRightShift, argIndex,
- intermediate.addConstantUnion(2, loc, true), loc, TType(EbtInt));
- TVariable* byteAddrSym = makeInternalVariable("byteAddrTemp", TType(EbtInt, EvqTemporary));
- TIntermTyped* byteAddrIdxVar = intermediate.addSymbol(*byteAddrSym, loc);
- body = intermediate.growAggregate(body, intermediate.addAssign(EOpAssign, byteAddrIdxVar, byteAddrIdx, loc));
- for (int idx=0; idx<size; ++idx) {
- TIntermTyped* offsetIdx = byteAddrIdxVar;
- TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
- // add index offset
- if (idx != 0)
- offsetIdx = intermediate.addBinaryNode(EOpAdd, offsetIdx, idxConst, loc, TType(EbtInt));
- const TOperator idxOp = (offsetIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect
- : EOpIndexIndirect;
- TIntermTyped* lValue = intermediate.addIndex(idxOp, argArray, offsetIdx, loc);
- const TType derefType(argArray->getType(), 0);
- lValue->setType(derefType);
- TIntermTyped* rValue;
- if (size == 1) {
- rValue = argValue;
- } else {
- rValue = intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc);
- const TType indexType(argValue->getType(), 0);
- rValue->setType(indexType);
- }
- TIntermTyped* assign = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
- body = intermediate.growAggregate(body, assign);
- }
- body->setOperator(EOpSequence);
- node = body;
- }
- break;
- case EOpMethodGetDimensions:
- {
- const int numArgs = (int)argAggregate->getSequence().size();
- TIntermTyped* argNumItems = argAggregate->getSequence()[1]->getAsTyped(); // out num items
- TIntermTyped* argStride = numArgs > 2 ? argAggregate->getSequence()[2]->getAsTyped() : nullptr; // out stride
- TIntermAggregate* body = nullptr;
- // Length output:
- if (argArray->getType().isSizedArray()) {
- const int length = argArray->getType().getOuterArraySize();
- TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems,
- intermediate.addConstantUnion(length, loc, true), loc);
- body = intermediate.growAggregate(body, assign, loc);
- } else {
- TIntermTyped* lengthCall = intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, argArray,
- argNumItems->getType());
- TIntermTyped* assign = intermediate.addAssign(EOpAssign, argNumItems, lengthCall, loc);
- body = intermediate.growAggregate(body, assign, loc);
- }
- // Stride output:
- if (argStride != nullptr) {
- int size;
- int stride;
- intermediate.getMemberAlignment(argArray->getType(), size, stride, argArray->getType().getQualifier().layoutPacking,
- argArray->getType().getQualifier().layoutMatrix == ElmRowMajor);
- TIntermTyped* assign = intermediate.addAssign(EOpAssign, argStride,
- intermediate.addConstantUnion(stride, loc, true), loc);
- body = intermediate.growAggregate(body, assign);
- }
- body->setOperator(EOpSequence);
- node = body;
- }
- break;
- case EOpInterlockedAdd:
- case EOpInterlockedAnd:
- case EOpInterlockedExchange:
- case EOpInterlockedMax:
- case EOpInterlockedMin:
- case EOpInterlockedOr:
- case EOpInterlockedXor:
- case EOpInterlockedCompareExchange:
- case EOpInterlockedCompareStore:
- {
- // We'll replace the first argument with the block dereference, and let
- // downstream decomposition handle the rest.
- TIntermSequence& sequence = argAggregate->getSequence();
- TIntermTyped* argIndex = makeIntegerIndex(sequence[1]->getAsTyped()); // index
- argIndex = intermediate.addBinaryNode(EOpRightShift, argIndex, intermediate.addConstantUnion(2, loc, true),
- loc, TType(EbtInt));
- const TOperator idxOp = (argIndex->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
- TIntermTyped* element = intermediate.addIndex(idxOp, argArray, argIndex, loc);
- const TType derefType(argArray->getType(), 0);
- element->setType(derefType);
- // Replace the numeric byte offset parameter with array reference.
- sequence[1] = element;
- sequence.erase(sequence.begin(), sequence.begin()+1);
- }
- break;
- case EOpMethodIncrementCounter:
- {
- node = incDecCounter(1);
- break;
- }
- case EOpMethodDecrementCounter:
- {
- TIntermTyped* preIncValue = incDecCounter(-1); // result is original value
- node = intermediate.addBinaryNode(EOpAdd, preIncValue, intermediate.addConstantUnion(-1, loc, true), loc,
- preIncValue->getType());
- break;
- }
- case EOpMethodAppend:
- {
- TIntermTyped* oldCounter = incDecCounter(1);
- TIntermTyped* lValue = intermediate.addIndex(EOpIndexIndirect, argArray, oldCounter, loc);
- TIntermTyped* rValue = argAggregate->getSequence()[1]->getAsTyped();
- const TType derefType(argArray->getType(), 0);
- lValue->setType(derefType);
- node = intermediate.addAssign(EOpAssign, lValue, rValue, loc);
- break;
- }
- case EOpMethodConsume:
- {
- TIntermTyped* oldCounter = incDecCounter(-1);
- TIntermTyped* newCounter = intermediate.addBinaryNode(EOpAdd, oldCounter,
- intermediate.addConstantUnion(-1, loc, true), loc,
- oldCounter->getType());
- node = intermediate.addIndex(EOpIndexIndirect, argArray, newCounter, loc);
- const TType derefType(argArray->getType(), 0);
- node->setType(derefType);
- break;
- }
- default:
- break; // most pass through unchanged
- }
- }
- // Create array of standard sample positions for given sample count.
- // TODO: remove when a real method to query sample pos exists in SPIR-V.
- TIntermConstantUnion* HlslParseContext::getSamplePosArray(int count)
- {
- struct tSamplePos { float x, y; };
- static const tSamplePos pos1[] = {
- { 0.0/16.0, 0.0/16.0 },
- };
- // standard sample positions for 2, 4, 8, and 16 samples.
- static const tSamplePos pos2[] = {
- { 4.0/16.0, 4.0/16.0 }, {-4.0/16.0, -4.0/16.0 },
- };
- static const tSamplePos pos4[] = {
- {-2.0/16.0, -6.0/16.0 }, { 6.0/16.0, -2.0/16.0 }, {-6.0/16.0, 2.0/16.0 }, { 2.0/16.0, 6.0/16.0 },
- };
- static const tSamplePos pos8[] = {
- { 1.0/16.0, -3.0/16.0 }, {-1.0/16.0, 3.0/16.0 }, { 5.0/16.0, 1.0/16.0 }, {-3.0/16.0, -5.0/16.0 },
- {-5.0/16.0, 5.0/16.0 }, {-7.0/16.0, -1.0/16.0 }, { 3.0/16.0, 7.0/16.0 }, { 7.0/16.0, -7.0/16.0 },
- };
- static const tSamplePos pos16[] = {
- { 1.0/16.0, 1.0/16.0 }, {-1.0/16.0, -3.0/16.0 }, {-3.0/16.0, 2.0/16.0 }, { 4.0/16.0, -1.0/16.0 },
- {-5.0/16.0, -2.0/16.0 }, { 2.0/16.0, 5.0/16.0 }, { 5.0/16.0, 3.0/16.0 }, { 3.0/16.0, -5.0/16.0 },
- {-2.0/16.0, 6.0/16.0 }, { 0.0/16.0, -7.0/16.0 }, {-4.0/16.0, -6.0/16.0 }, {-6.0/16.0, 4.0/16.0 },
- {-8.0/16.0, 0.0/16.0 }, { 7.0/16.0, -4.0/16.0 }, { 6.0/16.0, 7.0/16.0 }, {-7.0/16.0, -8.0/16.0 },
- };
- const tSamplePos* sampleLoc = nullptr;
- int numSamples = count;
- switch (count) {
- case 2: sampleLoc = pos2; break;
- case 4: sampleLoc = pos4; break;
- case 8: sampleLoc = pos8; break;
- case 16: sampleLoc = pos16; break;
- default:
- sampleLoc = pos1;
- numSamples = 1;
- }
- TConstUnionArray* values = new TConstUnionArray(numSamples*2);
- for (int pos=0; pos<count; ++pos) {
- TConstUnion x, y;
- x.setDConst(sampleLoc[pos].x);
- y.setDConst(sampleLoc[pos].y);
- (*values)[pos*2+0] = x;
- (*values)[pos*2+1] = y;
- }
- TType retType(EbtFloat, EvqConst, 2);
- if (numSamples != 1) {
- TArraySizes* arraySizes = new TArraySizes;
- arraySizes->addInnerSize(numSamples);
- retType.transferArraySizes(arraySizes);
- }
- return new TIntermConstantUnion(*values, retType);
- }
- //
- // Decompose DX9 and DX10 sample intrinsics & object methods into AST
- //
- void HlslParseContext::decomposeSampleMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
- {
- if (node == nullptr || !node->getAsOperator())
- return;
- // Sampler return must always be a vec4, but we can construct a shorter vector or a structure from it.
- const auto convertReturn = [&loc, &node, this](TIntermTyped* result, const TSampler& sampler) -> TIntermTyped* {
- result->setType(TType(node->getType().getBasicType(), EvqTemporary, node->getVectorSize()));
- TIntermTyped* convertedResult = nullptr;
- TType retType;
- getTextureReturnType(sampler, retType);
- if (retType.isStruct()) {
- // For type convenience, conversionAggregate points to the convertedResult (we know it's an aggregate here)
- TIntermAggregate* conversionAggregate = new TIntermAggregate;
- convertedResult = conversionAggregate;
- // Convert vector output to return structure. We will need a temp symbol to copy the results to.
- TVariable* structVar = makeInternalVariable("@sampleStructTemp", retType);
- // We also need a temp symbol to hold the result of the texture. We don't want to re-fetch the
- // sample each time we'll index into the result, so we'll copy to this, and index into the copy.
- TVariable* sampleShadow = makeInternalVariable("@sampleResultShadow", result->getType());
- // Initial copy from texture to our sample result shadow.
- TIntermTyped* shadowCopy = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*sampleShadow, loc),
- result, loc);
- conversionAggregate->getSequence().push_back(shadowCopy);
- unsigned vec4Pos = 0;
- for (unsigned m = 0; m < unsigned(retType.getStruct()->size()); ++m) {
- const TType memberType(retType, m); // dereferenced type of the member we're about to assign.
- // Check for bad struct members. This should have been caught upstream. Complain, because
- // wwe don't know what to do with it. This algorithm could be generalized to handle
- // other things, e.g, sub-structures, but HLSL doesn't allow them.
- if (!memberType.isVector() && !memberType.isScalar()) {
- error(loc, "expected: scalar or vector type in texture structure", "", "");
- return nullptr;
- }
- // Index into the struct variable to find the member to assign.
- TIntermTyped* structMember = intermediate.addIndex(EOpIndexDirectStruct,
- intermediate.addSymbol(*structVar, loc),
- intermediate.addConstantUnion(m, loc), loc);
- structMember->setType(memberType);
- // Assign each component of (possible) vector in struct member.
- for (int component = 0; component < memberType.getVectorSize(); ++component) {
- TIntermTyped* vec4Member = intermediate.addIndex(EOpIndexDirect,
- intermediate.addSymbol(*sampleShadow, loc),
- intermediate.addConstantUnion(vec4Pos++, loc), loc);
- vec4Member->setType(TType(memberType.getBasicType(), EvqTemporary, 1));
- TIntermTyped* memberAssign = nullptr;
- if (memberType.isVector()) {
- // Vector member: we need to create an access chain to the vector component.
- TIntermTyped* structVecComponent = intermediate.addIndex(EOpIndexDirect, structMember,
- intermediate.addConstantUnion(component, loc), loc);
- memberAssign = intermediate.addAssign(EOpAssign, structVecComponent, vec4Member, loc);
- } else {
- // Scalar member: we can assign to it directly.
- memberAssign = intermediate.addAssign(EOpAssign, structMember, vec4Member, loc);
- }
- conversionAggregate->getSequence().push_back(memberAssign);
- }
- }
- // Add completed variable so the expression results in the whole struct value we just built.
- conversionAggregate->getSequence().push_back(intermediate.addSymbol(*structVar, loc));
- // Make it a sequence.
- intermediate.setAggregateOperator(conversionAggregate, EOpSequence, retType, loc);
- } else {
- // vector clamp the output if template vector type is smaller than sample result.
- if (retType.getVectorSize() < node->getVectorSize()) {
- // Too many components. Construct shorter vector from it.
- const TOperator op = intermediate.mapTypeToConstructorOp(retType);
- convertedResult = constructBuiltIn(retType, op, result, loc, false);
- } else {
- // Enough components. Use directly.
- convertedResult = result;
- }
- }
- convertedResult->setLoc(loc);
- return convertedResult;
- };
- const TOperator op = node->getAsOperator()->getOp();
- const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
- // Bail out if not a sampler method.
- // Note though this is odd to do before checking the op, because the op
- // could be something that takes the arguments, and the function in question
- // takes the result of the op. So, this is not the final word.
- if (arguments != nullptr) {
- if (argAggregate == nullptr) {
- if (arguments->getAsTyped()->getBasicType() != EbtSampler)
- return;
- } else {
- if (argAggregate->getSequence().size() == 0 ||
- argAggregate->getSequence()[0] == nullptr ||
- argAggregate->getSequence()[0]->getAsTyped()->getBasicType() != EbtSampler)
- return;
- }
- }
- switch (op) {
- // **** DX9 intrinsics: ****
- case EOpTexture:
- {
- // Texture with ddx & ddy is really gradient form in HLSL
- if (argAggregate->getSequence().size() == 4)
- node->getAsAggregate()->setOperator(EOpTextureGrad);
- break;
- }
- case EOpTextureLod: //is almost EOpTextureBias (only args & operations are different)
- {
- TIntermTyped *argSamp = argAggregate->getSequence()[0]->getAsTyped(); // sampler
- TIntermTyped *argCoord = argAggregate->getSequence()[1]->getAsTyped(); // coord
- assert(argCoord->getVectorSize() == 4);
- TIntermTyped *w = intermediate.addConstantUnion(3, loc, true);
- TIntermTyped *argLod = intermediate.addIndex(EOpIndexDirect, argCoord, w, loc);
- TOperator constructOp = EOpNull;
- const TSampler &sampler = argSamp->getType().getSampler();
- int coordSize = 0;
- switch (sampler.dim)
- {
- case Esd1D: constructOp = EOpConstructFloat; coordSize = 1; break; // 1D
- case Esd2D: constructOp = EOpConstructVec2; coordSize = 2; break; // 2D
- case Esd3D: constructOp = EOpConstructVec3; coordSize = 3; break; // 3D
- case EsdCube: constructOp = EOpConstructVec3; coordSize = 3; break; // also 3D
- default:
- error(loc, "unhandled DX9 texture LoD dimension", "", "");
- break;
- }
- TIntermAggregate *constructCoord = new TIntermAggregate(constructOp);
- constructCoord->getSequence().push_back(argCoord);
- constructCoord->setLoc(loc);
- constructCoord->setType(TType(argCoord->getBasicType(), EvqTemporary, coordSize));
- TIntermAggregate *tex = new TIntermAggregate(EOpTextureLod);
- tex->getSequence().push_back(argSamp); // sampler
- tex->getSequence().push_back(constructCoord); // coordinate
- tex->getSequence().push_back(argLod); // lod
- node = convertReturn(tex, sampler);
- break;
- }
- case EOpTextureBias:
- {
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // sampler
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // coord
- // HLSL puts bias in W component of coordinate. We extract it and add it to
- // the argument list, instead
- TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
- TIntermTyped* bias = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
- TOperator constructOp = EOpNull;
- const TSampler& sampler = arg0->getType().getSampler();
- switch (sampler.dim) {
- case Esd1D: constructOp = EOpConstructFloat; break; // 1D
- case Esd2D: constructOp = EOpConstructVec2; break; // 2D
- case Esd3D: constructOp = EOpConstructVec3; break; // 3D
- case EsdCube: constructOp = EOpConstructVec3; break; // also 3D
- default:
- error(loc, "unhandled DX9 texture bias dimension", "", "");
- break;
- }
- TIntermAggregate* constructCoord = new TIntermAggregate(constructOp);
- constructCoord->getSequence().push_back(arg1);
- constructCoord->setLoc(loc);
- // The input vector should never be less than 2, since there's always a bias.
- // The max is for safety, and should be a no-op.
- constructCoord->setType(TType(arg1->getBasicType(), EvqTemporary, std::max(arg1->getVectorSize() - 1, 0)));
- TIntermAggregate* tex = new TIntermAggregate(EOpTexture);
- tex->getSequence().push_back(arg0); // sampler
- tex->getSequence().push_back(constructCoord); // coordinate
- tex->getSequence().push_back(bias); // bias
- node = convertReturn(tex, sampler);
- break;
- }
- // **** DX10 methods: ****
- case EOpMethodSample: // fall through
- case EOpMethodSampleBias: // ...
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* argBias = nullptr;
- TIntermTyped* argOffset = nullptr;
- const TSampler& sampler = argTex->getType().getSampler();
- int nextArg = 3;
- if (op == EOpMethodSampleBias) // SampleBias has a bias arg
- argBias = argAggregate->getSequence()[nextArg++]->getAsTyped();
- TOperator textureOp = EOpTexture;
- if ((int)argAggregate->getSequence().size() == (nextArg+1)) { // last parameter is offset form
- textureOp = EOpTextureOffset;
- argOffset = argAggregate->getSequence()[nextArg++]->getAsTyped();
- }
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- TIntermAggregate* txsample = new TIntermAggregate(textureOp);
- txsample->getSequence().push_back(txcombine);
- txsample->getSequence().push_back(argCoord);
- if (argBias != nullptr)
- txsample->getSequence().push_back(argBias);
- if (argOffset != nullptr)
- txsample->getSequence().push_back(argOffset);
- node = convertReturn(txsample, sampler);
- break;
- }
- case EOpMethodSampleGrad: // ...
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* argDDX = argAggregate->getSequence()[3]->getAsTyped();
- TIntermTyped* argDDY = argAggregate->getSequence()[4]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- const TSampler& sampler = argTex->getType().getSampler();
- TOperator textureOp = EOpTextureGrad;
- if (argAggregate->getSequence().size() == 6) { // last parameter is offset form
- textureOp = EOpTextureGradOffset;
- argOffset = argAggregate->getSequence()[5]->getAsTyped();
- }
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- TIntermAggregate* txsample = new TIntermAggregate(textureOp);
- txsample->getSequence().push_back(txcombine);
- txsample->getSequence().push_back(argCoord);
- txsample->getSequence().push_back(argDDX);
- txsample->getSequence().push_back(argDDY);
- if (argOffset != nullptr)
- txsample->getSequence().push_back(argOffset);
- node = convertReturn(txsample, sampler);
- break;
- }
- case EOpMethodGetDimensions:
- {
- // AST returns a vector of results, which we break apart component-wise into
- // separate values to assign to the HLSL method's outputs, ala:
- // tx . GetDimensions(width, height);
- // float2 sizeQueryTemp = EOpTextureQuerySize
- // width = sizeQueryTemp.X;
- // height = sizeQueryTemp.Y;
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- const TType& texType = argTex->getType();
- assert(texType.getBasicType() == EbtSampler);
- const TSampler& sampler = texType.getSampler();
- const TSamplerDim dim = sampler.dim;
- const bool isImage = sampler.isImage();
- const bool isMs = sampler.isMultiSample();
- const int numArgs = (int)argAggregate->getSequence().size();
- int numDims = 0;
- switch (dim) {
- case Esd1D: numDims = 1; break; // W
- case Esd2D: numDims = 2; break; // W, H
- case Esd3D: numDims = 3; break; // W, H, D
- case EsdCube: numDims = 2; break; // W, H (cube)
- case EsdBuffer: numDims = 1; break; // W (buffers)
- case EsdRect: numDims = 2; break; // W, H (rect)
- default:
- error(loc, "unhandled DX10 MethodGet dimension", "", "");
- break;
- }
- // Arrayed adds another dimension for the number of array elements
- if (sampler.isArrayed())
- ++numDims;
- // Establish whether the method itself is querying mip levels. This can be false even
- // if the underlying query requires a MIP level, due to the available HLSL method overloads.
- const bool mipQuery = (numArgs > (numDims + 1 + (isMs ? 1 : 0)));
- // Establish whether we must use the LOD form of query (even if the method did not supply a mip level to query).
- // True if:
- // 1. 1D/2D/3D/Cube AND multisample==0 AND NOT image (those can be sent to the non-LOD query)
- // or,
- // 2. There is a LOD (because the non-LOD query cannot be used in that case, per spec)
- const bool mipRequired =
- ((dim == Esd1D || dim == Esd2D || dim == Esd3D || dim == EsdCube) && !isMs && !isImage) || // 1...
- mipQuery; // 2...
- // AST assumes integer return. Will be converted to float if required.
- TIntermAggregate* sizeQuery = new TIntermAggregate(isImage ? EOpImageQuerySize : EOpTextureQuerySize);
- sizeQuery->getSequence().push_back(argTex);
- // If we're building an LOD query, add the LOD.
- if (mipRequired) {
- // If the base HLSL query had no MIP level given, use level 0.
- TIntermTyped* queryLod = mipQuery ? argAggregate->getSequence()[1]->getAsTyped() :
- intermediate.addConstantUnion(0, loc, true);
- sizeQuery->getSequence().push_back(queryLod);
- }
- sizeQuery->setType(TType(EbtUint, EvqTemporary, numDims));
- sizeQuery->setLoc(loc);
- // Return value from size query
- TVariable* tempArg = makeInternalVariable("sizeQueryTemp", sizeQuery->getType());
- tempArg->getWritableType().getQualifier().makeTemporary();
- TIntermTyped* sizeQueryAssign = intermediate.addAssign(EOpAssign,
- intermediate.addSymbol(*tempArg, loc),
- sizeQuery, loc);
- // Compound statement for assigning outputs
- TIntermAggregate* compoundStatement = intermediate.makeAggregate(sizeQueryAssign, loc);
- // Index of first output parameter
- const int outParamBase = mipQuery ? 2 : 1;
- for (int compNum = 0; compNum < numDims; ++compNum) {
- TIntermTyped* indexedOut = nullptr;
- TIntermSymbol* sizeQueryReturn = intermediate.addSymbol(*tempArg, loc);
- if (numDims > 1) {
- TIntermTyped* component = intermediate.addConstantUnion(compNum, loc, true);
- indexedOut = intermediate.addIndex(EOpIndexDirect, sizeQueryReturn, component, loc);
- indexedOut->setType(TType(EbtUint, EvqTemporary, 1));
- indexedOut->setLoc(loc);
- } else {
- indexedOut = sizeQueryReturn;
- }
- TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + compNum]->getAsTyped();
- TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, indexedOut, loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
- }
- // handle mip level parameter
- if (mipQuery) {
- TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
- TIntermAggregate* levelsQuery = new TIntermAggregate(EOpTextureQueryLevels);
- levelsQuery->getSequence().push_back(argTex);
- levelsQuery->setType(TType(EbtUint, EvqTemporary, 1));
- levelsQuery->setLoc(loc);
- TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, levelsQuery, loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
- }
- // 2DMS formats query # samples, which needs a different query op
- if (sampler.isMultiSample()) {
- TIntermTyped* outParam = argAggregate->getSequence()[outParamBase + numDims]->getAsTyped();
- TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
- samplesQuery->getSequence().push_back(argTex);
- samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
- samplesQuery->setLoc(loc);
- TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, outParam, samplesQuery, loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
- }
- compoundStatement->setOperator(EOpSequence);
- compoundStatement->setLoc(loc);
- compoundStatement->setType(TType(EbtVoid));
- node = compoundStatement;
- break;
- }
- case EOpMethodSampleCmp: // fall through...
- case EOpMethodSampleCmpLevelZero:
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* argCmpVal = argAggregate->getSequence()[3]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- // Sampler argument should be a sampler.
- if (argSamp->getType().getBasicType() != EbtSampler) {
- error(loc, "expected: sampler type", "", "");
- return;
- }
- // Sampler should be a SamplerComparisonState
- if (! argSamp->getType().getSampler().isShadow()) {
- error(loc, "expected: SamplerComparisonState", "", "");
- return;
- }
- // optional offset value
- if (argAggregate->getSequence().size() > 4)
- argOffset = argAggregate->getSequence()[4]->getAsTyped();
- const int coordDimWithCmpVal = argCoord->getType().getVectorSize() + 1; // +1 for cmp
- // AST wants comparison value as one of the texture coordinates
- TOperator constructOp = EOpNull;
- switch (coordDimWithCmpVal) {
- // 1D can't happen: there's always at least 1 coordinate dimension + 1 cmp val
- case 2: constructOp = EOpConstructVec2; break;
- case 3: constructOp = EOpConstructVec3; break;
- case 4: constructOp = EOpConstructVec4; break;
- case 5: constructOp = EOpConstructVec4; break; // cubeArrayShadow, cmp value is separate arg.
- default:
- error(loc, "unhandled DX10 MethodSample dimension", "", "");
- break;
- }
- TIntermAggregate* coordWithCmp = new TIntermAggregate(constructOp);
- coordWithCmp->getSequence().push_back(argCoord);
- if (coordDimWithCmpVal != 5) // cube array shadow is special.
- coordWithCmp->getSequence().push_back(argCmpVal);
- coordWithCmp->setLoc(loc);
- coordWithCmp->setType(TType(argCoord->getBasicType(), EvqTemporary, std::min(coordDimWithCmpVal, 4)));
- TOperator textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLod : EOpTexture);
- if (argOffset != nullptr)
- textureOp = (op == EOpMethodSampleCmpLevelZero ? EOpTextureLodOffset : EOpTextureOffset);
- // Create combined sampler & texture op
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- TIntermAggregate* txsample = new TIntermAggregate(textureOp);
- txsample->getSequence().push_back(txcombine);
- txsample->getSequence().push_back(coordWithCmp);
- if (coordDimWithCmpVal == 5) // cube array shadow is special: cmp val follows coord.
- txsample->getSequence().push_back(argCmpVal);
- // the LevelZero form uses 0 as an explicit LOD
- if (op == EOpMethodSampleCmpLevelZero)
- txsample->getSequence().push_back(intermediate.addConstantUnion(0.0, EbtFloat, loc, true));
- // Add offset if present
- if (argOffset != nullptr)
- txsample->getSequence().push_back(argOffset);
- txsample->setType(node->getType());
- txsample->setLoc(loc);
- node = txsample;
- break;
- }
- case EOpMethodLoad:
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- TIntermTyped* lodComponent = nullptr;
- TIntermTyped* coordSwizzle = nullptr;
- const TSampler& sampler = argTex->getType().getSampler();
- const bool isMS = sampler.isMultiSample();
- const bool isBuffer = sampler.dim == EsdBuffer;
- const bool isImage = sampler.isImage();
- const TBasicType coordBaseType = argCoord->getType().getBasicType();
- // Last component of coordinate is the mip level, for non-MS. we separate them here:
- if (isMS || isBuffer || isImage) {
- // MS, Buffer, and Image have no LOD
- coordSwizzle = argCoord;
- } else {
- // Extract coordinate
- int swizzleSize = argCoord->getType().getVectorSize() - (isMS ? 0 : 1);
- TSwizzleSelectors<TVectorSelector> coordFields;
- for (int i = 0; i < swizzleSize; ++i)
- coordFields.push_back(i);
- TIntermTyped* coordIdx = intermediate.addSwizzle(coordFields, loc);
- coordSwizzle = intermediate.addIndex(EOpVectorSwizzle, argCoord, coordIdx, loc);
- coordSwizzle->setType(TType(coordBaseType, EvqTemporary, coordFields.size()));
- // Extract LOD
- TIntermTyped* lodIdx = intermediate.addConstantUnion(coordFields.size(), loc, true);
- lodComponent = intermediate.addIndex(EOpIndexDirect, argCoord, lodIdx, loc);
- lodComponent->setType(TType(coordBaseType, EvqTemporary, 1));
- }
- const int numArgs = (int)argAggregate->getSequence().size();
- const bool hasOffset = ((!isMS && numArgs == 3) || (isMS && numArgs == 4));
- // Create texel fetch
- const TOperator fetchOp = (isImage ? EOpImageLoad :
- hasOffset ? EOpTextureFetchOffset :
- EOpTextureFetch);
- TIntermAggregate* txfetch = new TIntermAggregate(fetchOp);
- // Build up the fetch
- txfetch->getSequence().push_back(argTex);
- txfetch->getSequence().push_back(coordSwizzle);
- if (isMS) {
- // add 2DMS sample index
- TIntermTyped* argSampleIdx = argAggregate->getSequence()[2]->getAsTyped();
- txfetch->getSequence().push_back(argSampleIdx);
- } else if (isBuffer) {
- // Nothing else to do for buffers.
- } else if (isImage) {
- // Nothing else to do for images.
- } else {
- // 2DMS and buffer have no LOD, but everything else does.
- txfetch->getSequence().push_back(lodComponent);
- }
- // Obtain offset arg, if there is one.
- if (hasOffset) {
- const int offsetPos = (isMS ? 3 : 2);
- argOffset = argAggregate->getSequence()[offsetPos]->getAsTyped();
- txfetch->getSequence().push_back(argOffset);
- }
- node = convertReturn(txfetch, sampler);
- break;
- }
- case EOpMethodSampleLevel:
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* argLod = argAggregate->getSequence()[3]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- const TSampler& sampler = argTex->getType().getSampler();
- const int numArgs = (int)argAggregate->getSequence().size();
- if (numArgs == 5) // offset, if present
- argOffset = argAggregate->getSequence()[4]->getAsTyped();
- const TOperator textureOp = (argOffset == nullptr ? EOpTextureLod : EOpTextureLodOffset);
- TIntermAggregate* txsample = new TIntermAggregate(textureOp);
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- txsample->getSequence().push_back(txcombine);
- txsample->getSequence().push_back(argCoord);
- txsample->getSequence().push_back(argLod);
- if (argOffset != nullptr)
- txsample->getSequence().push_back(argOffset);
- node = convertReturn(txsample, sampler);
- break;
- }
- case EOpMethodGather:
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- // Offset is optional
- if (argAggregate->getSequence().size() > 3)
- argOffset = argAggregate->getSequence()[3]->getAsTyped();
- const TOperator textureOp = (argOffset == nullptr ? EOpTextureGather : EOpTextureGatherOffset);
- TIntermAggregate* txgather = new TIntermAggregate(textureOp);
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- txgather->getSequence().push_back(txcombine);
- txgather->getSequence().push_back(argCoord);
- // Offset if not given is implicitly channel 0 (red)
- if (argOffset != nullptr)
- txgather->getSequence().push_back(argOffset);
- txgather->setType(node->getType());
- txgather->setLoc(loc);
- node = txgather;
- break;
- }
- case EOpMethodGatherRed: // fall through...
- case EOpMethodGatherGreen: // ...
- case EOpMethodGatherBlue: // ...
- case EOpMethodGatherAlpha: // ...
- case EOpMethodGatherCmpRed: // ...
- case EOpMethodGatherCmpGreen: // ...
- case EOpMethodGatherCmpBlue: // ...
- case EOpMethodGatherCmpAlpha: // ...
- {
- int channel = 0; // the channel we are gathering
- int cmpValues = 0; // 1 if there is a compare value (handier than a bool below)
- switch (op) {
- case EOpMethodGatherCmpRed: cmpValues = 1; // fall through
- case EOpMethodGatherRed: channel = 0; break;
- case EOpMethodGatherCmpGreen: cmpValues = 1; // fall through
- case EOpMethodGatherGreen: channel = 1; break;
- case EOpMethodGatherCmpBlue: cmpValues = 1; // fall through
- case EOpMethodGatherBlue: channel = 2; break;
- case EOpMethodGatherCmpAlpha: cmpValues = 1; // fall through
- case EOpMethodGatherAlpha: channel = 3; break;
- default: assert(0); break;
- }
- // For now, we have nothing to map the component-wise comparison forms
- // to, because neither GLSL nor SPIR-V has such an opcode. Issue an
- // unimplemented error instead. Most of the machinery is here if that
- // should ever become available. However, red can be passed through
- // to OpImageDrefGather. G/B/A cannot, because that opcode does not
- // accept a component.
- if (cmpValues != 0 && op != EOpMethodGatherCmpRed) {
- error(loc, "unimplemented: component-level gather compare", "", "");
- return;
- }
- int arg = 0;
- TIntermTyped* argTex = argAggregate->getSequence()[arg++]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[arg++]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[arg++]->getAsTyped();
- TIntermTyped* argOffset = nullptr;
- TIntermTyped* argOffsets[4] = { nullptr, nullptr, nullptr, nullptr };
- // TIntermTyped* argStatus = nullptr; // TODO: residency
- TIntermTyped* argCmp = nullptr;
- const TSamplerDim dim = argTex->getType().getSampler().dim;
- const int argSize = (int)argAggregate->getSequence().size();
- bool hasStatus = (argSize == (5+cmpValues) || argSize == (8+cmpValues));
- bool hasOffset1 = false;
- bool hasOffset4 = false;
- // Sampler argument should be a sampler.
- if (argSamp->getType().getBasicType() != EbtSampler) {
- error(loc, "expected: sampler type", "", "");
- return;
- }
- // Cmp forms require SamplerComparisonState
- if (cmpValues > 0 && ! argSamp->getType().getSampler().isShadow()) {
- error(loc, "expected: SamplerComparisonState", "", "");
- return;
- }
- // Only 2D forms can have offsets. Discover if we have 0, 1 or 4 offsets.
- if (dim == Esd2D) {
- hasOffset1 = (argSize == (4+cmpValues) || argSize == (5+cmpValues));
- hasOffset4 = (argSize == (7+cmpValues) || argSize == (8+cmpValues));
- }
- assert(!(hasOffset1 && hasOffset4));
- TOperator textureOp = EOpTextureGather;
- // Compare forms have compare value
- if (cmpValues != 0)
- argCmp = argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
- // Some forms have single offset
- if (hasOffset1) {
- textureOp = EOpTextureGatherOffset; // single offset form
- argOffset = argAggregate->getSequence()[arg++]->getAsTyped();
- }
- // Some forms have 4 gather offsets
- if (hasOffset4) {
- textureOp = EOpTextureGatherOffsets; // note plural, for 4 offset form
- for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
- argOffsets[offsetNum] = argAggregate->getSequence()[arg++]->getAsTyped();
- }
- // Residency status
- if (hasStatus) {
- // argStatus = argAggregate->getSequence()[arg++]->getAsTyped();
- error(loc, "unimplemented: residency status", "", "");
- return;
- }
- TIntermAggregate* txgather = new TIntermAggregate(textureOp);
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- TIntermTyped* argChannel = intermediate.addConstantUnion(channel, loc, true);
- txgather->getSequence().push_back(txcombine);
- txgather->getSequence().push_back(argCoord);
- // AST wants an array of 4 offsets, where HLSL has separate args. Here
- // we construct an array from the separate args.
- if (hasOffset4) {
- TType arrayType(EbtInt, EvqTemporary, 2);
- TArraySizes* arraySizes = new TArraySizes;
- arraySizes->addInnerSize(4);
- arrayType.transferArraySizes(arraySizes);
- TIntermAggregate* initList = new TIntermAggregate(EOpNull);
- for (int offsetNum = 0; offsetNum < 4; ++offsetNum)
- initList->getSequence().push_back(argOffsets[offsetNum]);
- argOffset = addConstructor(loc, initList, arrayType);
- }
- // Add comparison value if we have one
- if (argCmp != nullptr)
- txgather->getSequence().push_back(argCmp);
- // Add offset (either 1, or an array of 4) if we have one
- if (argOffset != nullptr)
- txgather->getSequence().push_back(argOffset);
- // Add channel value if the sampler is not shadow
- if (! argSamp->getType().getSampler().isShadow())
- txgather->getSequence().push_back(argChannel);
- txgather->setType(node->getType());
- txgather->setLoc(loc);
- node = txgather;
- break;
- }
- case EOpMethodCalculateLevelOfDetail:
- case EOpMethodCalculateLevelOfDetailUnclamped:
- {
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSamp = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* argCoord = argAggregate->getSequence()[2]->getAsTyped();
- TIntermAggregate* txquerylod = new TIntermAggregate(EOpTextureQueryLod);
- TIntermAggregate* txcombine = handleSamplerTextureCombine(loc, argTex, argSamp);
- txquerylod->getSequence().push_back(txcombine);
- txquerylod->getSequence().push_back(argCoord);
- TIntermTyped* lodComponent = intermediate.addConstantUnion(
- op == EOpMethodCalculateLevelOfDetail ? 0 : 1,
- loc, true);
- TIntermTyped* lodComponentIdx = intermediate.addIndex(EOpIndexDirect, txquerylod, lodComponent, loc);
- lodComponentIdx->setType(TType(EbtFloat, EvqTemporary, 1));
- node = lodComponentIdx;
- break;
- }
- case EOpMethodGetSamplePosition:
- {
- // TODO: this entire decomposition exists because there is not yet a way to query
- // the sample position directly through SPIR-V. Instead, we return fixed sample
- // positions for common cases. *** If the sample positions are set differently,
- // this will be wrong. ***
- TIntermTyped* argTex = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* argSampIdx = argAggregate->getSequence()[1]->getAsTyped();
- TIntermAggregate* samplesQuery = new TIntermAggregate(EOpImageQuerySamples);
- samplesQuery->getSequence().push_back(argTex);
- samplesQuery->setType(TType(EbtUint, EvqTemporary, 1));
- samplesQuery->setLoc(loc);
- TIntermAggregate* compoundStatement = nullptr;
- TVariable* outSampleCount = makeInternalVariable("@sampleCount", TType(EbtUint));
- outSampleCount->getWritableType().getQualifier().makeTemporary();
- TIntermTyped* compAssign = intermediate.addAssign(EOpAssign, intermediate.addSymbol(*outSampleCount, loc),
- samplesQuery, loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, compAssign);
- TIntermTyped* idxtest[4];
- // Create tests against 2, 4, 8, and 16 sample values
- int count = 0;
- for (int val = 2; val <= 16; val *= 2)
- idxtest[count++] =
- intermediate.addBinaryNode(EOpEqual,
- intermediate.addSymbol(*outSampleCount, loc),
- intermediate.addConstantUnion(val, loc),
- loc, TType(EbtBool));
- const TOperator idxOp = (argSampIdx->getQualifier().storage == EvqConst) ? EOpIndexDirect : EOpIndexIndirect;
- // Create index ops into position arrays given sample index.
- // TODO: should it be clamped?
- TIntermTyped* index[4];
- count = 0;
- for (int val = 2; val <= 16; val *= 2) {
- index[count] = intermediate.addIndex(idxOp, getSamplePosArray(val), argSampIdx, loc);
- index[count++]->setType(TType(EbtFloat, EvqTemporary, 2));
- }
- // Create expression as:
- // (sampleCount == 2) ? pos2[idx] :
- // (sampleCount == 4) ? pos4[idx] :
- // (sampleCount == 8) ? pos8[idx] :
- // (sampleCount == 16) ? pos16[idx] : float2(0,0);
- TIntermTyped* test =
- intermediate.addSelection(idxtest[0], index[0],
- intermediate.addSelection(idxtest[1], index[1],
- intermediate.addSelection(idxtest[2], index[2],
- intermediate.addSelection(idxtest[3], index[3],
- getSamplePosArray(1), loc), loc), loc), loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, test);
- compoundStatement->setOperator(EOpSequence);
- compoundStatement->setLoc(loc);
- compoundStatement->setType(TType(EbtFloat, EvqTemporary, 2));
- node = compoundStatement;
- break;
- }
- case EOpSubpassLoad:
- {
- const TIntermTyped* argSubpass =
- argAggregate ? argAggregate->getSequence()[0]->getAsTyped() :
- arguments->getAsTyped();
- const TSampler& sampler = argSubpass->getType().getSampler();
- // subpass load: the multisample form is overloaded. Here, we convert that to
- // the EOpSubpassLoadMS opcode.
- if (argAggregate != nullptr && argAggregate->getSequence().size() > 1)
- node->getAsOperator()->setOp(EOpSubpassLoadMS);
- node = convertReturn(node, sampler);
- break;
- }
- default:
- break; // most pass through unchanged
- }
- }
- //
- // Decompose geometry shader methods
- //
- void HlslParseContext::decomposeGeometryMethods(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
- {
- if (node == nullptr || !node->getAsOperator())
- return;
- const TOperator op = node->getAsOperator()->getOp();
- const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
- switch (op) {
- case EOpMethodAppend:
- if (argAggregate) {
- // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
- if (language != EShLangGeometry) {
- node = nullptr;
- return;
- }
- TIntermAggregate* sequence = nullptr;
- TIntermAggregate* emit = new TIntermAggregate(EOpEmitVertex);
- emit->setLoc(loc);
- emit->setType(TType(EbtVoid));
- TIntermTyped* data = argAggregate->getSequence()[1]->getAsTyped();
- // This will be patched in finalization during finalizeAppendMethods()
- sequence = intermediate.growAggregate(sequence, data, loc);
- sequence = intermediate.growAggregate(sequence, emit);
- sequence->setOperator(EOpSequence);
- sequence->setLoc(loc);
- sequence->setType(TType(EbtVoid));
- gsAppends.push_back({sequence, loc});
- node = sequence;
- }
- break;
- case EOpMethodRestartStrip:
- {
- // Don't emit these for non-GS stage, since we won't have the gsStreamOutput symbol.
- if (language != EShLangGeometry) {
- node = nullptr;
- return;
- }
- TIntermAggregate* cut = new TIntermAggregate(EOpEndPrimitive);
- cut->setLoc(loc);
- cut->setType(TType(EbtVoid));
- node = cut;
- }
- break;
- default:
- break; // most pass through unchanged
- }
- }
- //
- // Optionally decompose intrinsics to AST opcodes.
- //
- void HlslParseContext::decomposeIntrinsic(const TSourceLoc& loc, TIntermTyped*& node, TIntermNode* arguments)
- {
- // Helper to find image data for image atomics:
- // OpImageLoad(image[idx])
- // We take the image load apart and add its params to the atomic op aggregate node
- const auto imageAtomicParams = [this, &loc, &node](TIntermAggregate* atomic, TIntermTyped* load) {
- TIntermAggregate* loadOp = load->getAsAggregate();
- if (loadOp == nullptr) {
- error(loc, "unknown image type in atomic operation", "", "");
- node = nullptr;
- return;
- }
- atomic->getSequence().push_back(loadOp->getSequence()[0]);
- atomic->getSequence().push_back(loadOp->getSequence()[1]);
- };
- // Return true if this is an imageLoad, which we will change to an image atomic.
- const auto isImageParam = [](TIntermTyped* image) -> bool {
- TIntermAggregate* imageAggregate = image->getAsAggregate();
- return imageAggregate != nullptr && imageAggregate->getOp() == EOpImageLoad;
- };
- const auto lookupBuiltinVariable = [&](const char* name, TBuiltInVariable builtin, TType& type) -> TIntermTyped* {
- TSymbol* symbol = symbolTable.find(name);
- if (nullptr == symbol) {
- type.getQualifier().builtIn = builtin;
- TVariable* variable = new TVariable(NewPoolTString(name), type);
- symbolTable.insert(*variable);
- symbol = symbolTable.find(name);
- assert(symbol && "Inserted symbol could not be found!");
- }
- return intermediate.addSymbol(*(symbol->getAsVariable()), loc);
- };
- // HLSL intrinsics can be pass through to native AST opcodes, or decomposed here to existing AST
- // opcodes for compatibility with existing software stacks.
- static const bool decomposeHlslIntrinsics = true;
- if (!decomposeHlslIntrinsics || !node || !node->getAsOperator())
- return;
- const TIntermAggregate* argAggregate = arguments ? arguments->getAsAggregate() : nullptr;
- TIntermUnary* fnUnary = node->getAsUnaryNode();
- const TOperator op = node->getAsOperator()->getOp();
- switch (op) {
- case EOpGenMul:
- {
- // mul(a,b) -> MatrixTimesMatrix, MatrixTimesVector, MatrixTimesScalar, VectorTimesScalar, Dot, Mul
- // Since we are treating HLSL rows like GLSL columns (the first matrix indirection),
- // we must reverse the operand order here. Hence, arg0 gets sequence[1], etc.
- TIntermTyped* arg0 = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* arg1 = argAggregate->getSequence()[0]->getAsTyped();
- if (arg0->isVector() && arg1->isVector()) { // vec * vec
- node->getAsAggregate()->setOperator(EOpDot);
- } else {
- node = handleBinaryMath(loc, "mul", EOpMul, arg0, arg1);
- }
- break;
- }
- case EOpRcp:
- {
- // rcp(a) -> 1 / a
- TIntermTyped* arg0 = fnUnary->getOperand();
- TBasicType type0 = arg0->getBasicType();
- TIntermTyped* one = intermediate.addConstantUnion(1, type0, loc, true);
- node = handleBinaryMath(loc, "rcp", EOpDiv, one, arg0);
- break;
- }
- case EOpAny: // fall through
- case EOpAll:
- {
- TIntermTyped* typedArg = arguments->getAsTyped();
- // HLSL allows float/etc types here, and the SPIR-V opcode requires a bool.
- // We'll convert here. Note that for efficiency, we could add a smarter
- // decomposition for some type cases, e.g, maybe by decomposing a dot product.
- if (typedArg->getType().getBasicType() != EbtBool) {
- const TType boolType(EbtBool, EvqTemporary,
- typedArg->getVectorSize(),
- typedArg->getMatrixCols(),
- typedArg->getMatrixRows(),
- typedArg->isVector());
- typedArg = intermediate.addConversion(EOpConstructBool, boolType, typedArg);
- node->getAsUnaryNode()->setOperand(typedArg);
- }
- break;
- }
- case EOpSaturate:
- {
- // saturate(a) -> clamp(a,0,1)
- TIntermTyped* arg0 = fnUnary->getOperand();
- TBasicType type0 = arg0->getBasicType();
- TIntermAggregate* clamp = new TIntermAggregate(EOpClamp);
- clamp->getSequence().push_back(arg0);
- clamp->getSequence().push_back(intermediate.addConstantUnion(0, type0, loc, true));
- clamp->getSequence().push_back(intermediate.addConstantUnion(1, type0, loc, true));
- clamp->setLoc(loc);
- clamp->setType(node->getType());
- clamp->getWritableType().getQualifier().makeTemporary();
- node = clamp;
- break;
- }
- case EOpSinCos:
- {
- // sincos(a,b,c) -> b = sin(a), c = cos(a)
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped();
- TIntermTyped* sinStatement = handleUnaryMath(loc, "sin", EOpSin, arg0);
- TIntermTyped* cosStatement = handleUnaryMath(loc, "cos", EOpCos, arg0);
- TIntermTyped* sinAssign = intermediate.addAssign(EOpAssign, arg1, sinStatement, loc);
- TIntermTyped* cosAssign = intermediate.addAssign(EOpAssign, arg2, cosStatement, loc);
- TIntermAggregate* compoundStatement = intermediate.makeAggregate(sinAssign, loc);
- compoundStatement = intermediate.growAggregate(compoundStatement, cosAssign);
- compoundStatement->setOperator(EOpSequence);
- compoundStatement->setLoc(loc);
- compoundStatement->setType(TType(EbtVoid));
- node = compoundStatement;
- break;
- }
- case EOpClip:
- {
- // clip(a) -> if (any(a<0)) discard;
- TIntermTyped* arg0 = fnUnary->getOperand();
- TBasicType type0 = arg0->getBasicType();
- TIntermTyped* compareNode = nullptr;
- // For non-scalars: per experiment with FXC compiler, discard if any component < 0.
- if (!arg0->isScalar()) {
- // component-wise compare: a < 0
- TIntermAggregate* less = new TIntermAggregate(EOpLessThan);
- less->getSequence().push_back(arg0);
- less->setLoc(loc);
- // make vec or mat of bool matching dimensions of input
- less->setType(TType(EbtBool, EvqTemporary,
- arg0->getType().getVectorSize(),
- arg0->getType().getMatrixCols(),
- arg0->getType().getMatrixRows(),
- arg0->getType().isVector()));
- // calculate # of components for comparison const
- const int constComponentCount =
- std::max(arg0->getType().getVectorSize(), 1) *
- std::max(arg0->getType().getMatrixCols(), 1) *
- std::max(arg0->getType().getMatrixRows(), 1);
- TConstUnion zero;
- if (arg0->getType().isIntegerDomain())
- zero.setDConst(0);
- else
- zero.setDConst(0.0);
- TConstUnionArray zeros(constComponentCount, zero);
- less->getSequence().push_back(intermediate.addConstantUnion(zeros, arg0->getType(), loc, true));
- compareNode = intermediate.addBuiltInFunctionCall(loc, EOpAny, true, less, TType(EbtBool));
- } else {
- TIntermTyped* zero;
- if (arg0->getType().isIntegerDomain())
- zero = intermediate.addConstantUnion(0, loc, true);
- else
- zero = intermediate.addConstantUnion(0.0, type0, loc, true);
- compareNode = handleBinaryMath(loc, "clip", EOpLessThan, arg0, zero);
- }
- TIntermBranch* killNode = intermediate.addBranch(EOpKill, loc);
- node = new TIntermSelection(compareNode, killNode, nullptr);
- node->setLoc(loc);
- break;
- }
- case EOpLog10:
- {
- // log10(a) -> log2(a) * 0.301029995663981 (== 1/log2(10))
- TIntermTyped* arg0 = fnUnary->getOperand();
- TIntermTyped* log2 = handleUnaryMath(loc, "log2", EOpLog2, arg0);
- TIntermTyped* base = intermediate.addConstantUnion(0.301029995663981f, EbtFloat, loc, true);
- node = handleBinaryMath(loc, "mul", EOpMul, log2, base);
- break;
- }
- case EOpDst:
- {
- // dest.x = 1;
- // dest.y = src0.y * src1.y;
- // dest.z = src0.z;
- // dest.w = src1.w;
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* y = intermediate.addConstantUnion(1, loc, true);
- TIntermTyped* z = intermediate.addConstantUnion(2, loc, true);
- TIntermTyped* w = intermediate.addConstantUnion(3, loc, true);
- TIntermTyped* src0y = intermediate.addIndex(EOpIndexDirect, arg0, y, loc);
- TIntermTyped* src1y = intermediate.addIndex(EOpIndexDirect, arg1, y, loc);
- TIntermTyped* src0z = intermediate.addIndex(EOpIndexDirect, arg0, z, loc);
- TIntermTyped* src1w = intermediate.addIndex(EOpIndexDirect, arg1, w, loc);
- TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
- dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
- dst->getSequence().push_back(handleBinaryMath(loc, "mul", EOpMul, src0y, src1y));
- dst->getSequence().push_back(src0z);
- dst->getSequence().push_back(src1w);
- dst->setType(TType(EbtFloat, EvqTemporary, 4));
- dst->setLoc(loc);
- node = dst;
- break;
- }
- case EOpInterlockedAdd: // optional last argument (if present) is assigned from return value
- case EOpInterlockedMin: // ...
- case EOpInterlockedMax: // ...
- case EOpInterlockedAnd: // ...
- case EOpInterlockedOr: // ...
- case EOpInterlockedXor: // ...
- case EOpInterlockedExchange: // always has output arg
- {
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // value
- TIntermTyped* arg2 = nullptr;
- if (argAggregate->getSequence().size() > 2)
- arg2 = argAggregate->getSequence()[2]->getAsTyped();
- const bool isImage = isImageParam(arg0);
- const TOperator atomicOp = mapAtomicOp(loc, op, isImage);
- TIntermAggregate* atomic = new TIntermAggregate(atomicOp);
- atomic->setType(arg0->getType());
- atomic->getWritableType().getQualifier().makeTemporary();
- atomic->setLoc(loc);
- if (isImage) {
- // orig_value = imageAtomicOp(image, loc, data)
- imageAtomicParams(atomic, arg0);
- atomic->getSequence().push_back(arg1);
- if (argAggregate->getSequence().size() > 2) {
- node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
- } else {
- node = atomic; // no assignment needed, as there was no out var.
- }
- } else {
- // Normal memory variable:
- // arg0 = mem, arg1 = data, arg2(optional,out) = orig_value
- if (argAggregate->getSequence().size() > 2) {
- // optional output param is present. return value goes to arg2.
- atomic->getSequence().push_back(arg0);
- atomic->getSequence().push_back(arg1);
- node = intermediate.addAssign(EOpAssign, arg2, atomic, loc);
- } else {
- // Set the matching operator. Since output is absent, this is all we need to do.
- node->getAsAggregate()->setOperator(atomicOp);
- node->setType(atomic->getType());
- }
- }
- break;
- }
- case EOpInterlockedCompareExchange:
- {
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // dest
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // cmp
- TIntermTyped* arg2 = argAggregate->getSequence()[2]->getAsTyped(); // value
- TIntermTyped* arg3 = argAggregate->getSequence()[3]->getAsTyped(); // orig
- const bool isImage = isImageParam(arg0);
- TIntermAggregate* atomic = new TIntermAggregate(mapAtomicOp(loc, op, isImage));
- atomic->setLoc(loc);
- atomic->setType(arg2->getType());
- atomic->getWritableType().getQualifier().makeTemporary();
- if (isImage) {
- imageAtomicParams(atomic, arg0);
- } else {
- atomic->getSequence().push_back(arg0);
- }
- atomic->getSequence().push_back(arg1);
- atomic->getSequence().push_back(arg2);
- node = intermediate.addAssign(EOpAssign, arg3, atomic, loc);
- break;
- }
- case EOpEvaluateAttributeSnapped:
- {
- // SPIR-V InterpolateAtOffset uses float vec2 offset in pixels
- // HLSL uses int2 offset on a 16x16 grid in [-8..7] on x & y:
- // iU = (iU<<28)>>28
- // fU = ((float)iU)/16
- // Targets might handle this natively, in which case they can disable
- // decompositions.
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped(); // value
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped(); // offset
- TIntermTyped* i28 = intermediate.addConstantUnion(28, loc, true);
- TIntermTyped* iU = handleBinaryMath(loc, ">>", EOpRightShift,
- handleBinaryMath(loc, "<<", EOpLeftShift, arg1, i28),
- i28);
- TIntermTyped* recip16 = intermediate.addConstantUnion((1.0/16.0), EbtFloat, loc, true);
- TIntermTyped* floatOffset = handleBinaryMath(loc, "mul", EOpMul,
- intermediate.addConversion(EOpConstructFloat,
- TType(EbtFloat, EvqTemporary, 2), iU),
- recip16);
- TIntermAggregate* interp = new TIntermAggregate(EOpInterpolateAtOffset);
- interp->getSequence().push_back(arg0);
- interp->getSequence().push_back(floatOffset);
- interp->setLoc(loc);
- interp->setType(arg0->getType());
- interp->getWritableType().getQualifier().makeTemporary();
- node = interp;
- break;
- }
- case EOpLit:
- {
- TIntermTyped* n_dot_l = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* n_dot_h = argAggregate->getSequence()[1]->getAsTyped();
- TIntermTyped* m = argAggregate->getSequence()[2]->getAsTyped();
- TIntermAggregate* dst = new TIntermAggregate(EOpConstructVec4);
- // Ambient
- dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
- // Diffuse:
- TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
- TIntermAggregate* diffuse = new TIntermAggregate(EOpMax);
- diffuse->getSequence().push_back(n_dot_l);
- diffuse->getSequence().push_back(zero);
- diffuse->setLoc(loc);
- diffuse->setType(TType(EbtFloat));
- dst->getSequence().push_back(diffuse);
- // Specular:
- TIntermAggregate* min_ndot = new TIntermAggregate(EOpMin);
- min_ndot->getSequence().push_back(n_dot_l);
- min_ndot->getSequence().push_back(n_dot_h);
- min_ndot->setLoc(loc);
- min_ndot->setType(TType(EbtFloat));
- TIntermTyped* compare = handleBinaryMath(loc, "<", EOpLessThan, min_ndot, zero);
- TIntermTyped* n_dot_h_m = handleBinaryMath(loc, "mul", EOpMul, n_dot_h, m); // n_dot_h * m
- dst->getSequence().push_back(intermediate.addSelection(compare, zero, n_dot_h_m, loc));
- // One:
- dst->getSequence().push_back(intermediate.addConstantUnion(1.0, EbtFloat, loc, true));
- dst->setLoc(loc);
- dst->setType(TType(EbtFloat, EvqTemporary, 4));
- node = dst;
- break;
- }
- case EOpAsDouble:
- {
- // asdouble accepts two 32 bit ints. we can use EOpUint64BitsToDouble, but must
- // first construct a uint64.
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
- if (arg0->getType().isVector()) { // TODO: ...
- error(loc, "double2 conversion not implemented", "asdouble", "");
- break;
- }
- TIntermAggregate* uint64 = new TIntermAggregate(EOpConstructUVec2);
- uint64->getSequence().push_back(arg0);
- uint64->getSequence().push_back(arg1);
- uint64->setType(TType(EbtUint, EvqTemporary, 2)); // convert 2 uints to a uint2
- uint64->setLoc(loc);
- // bitcast uint2 to a double
- TIntermTyped* convert = new TIntermUnary(EOpUint64BitsToDouble);
- convert->getAsUnaryNode()->setOperand(uint64);
- convert->setLoc(loc);
- convert->setType(TType(EbtDouble, EvqTemporary));
- node = convert;
- break;
- }
- case EOpF16tof32:
- {
- // input uvecN with low 16 bits of each component holding a float16. convert to float32.
- TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
- TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
- const int vecSize = argValue->getType().getVectorSize();
- TOperator constructOp = EOpNull;
- switch (vecSize) {
- case 1: constructOp = EOpNull; break; // direct use, no construct needed
- case 2: constructOp = EOpConstructVec2; break;
- case 3: constructOp = EOpConstructVec3; break;
- case 4: constructOp = EOpConstructVec4; break;
- default: assert(0); break;
- }
- // For scalar case, we don't need to construct another type.
- TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
- if (result) {
- result->setType(TType(EbtFloat, EvqTemporary, vecSize));
- result->setLoc(loc);
- }
- for (int idx = 0; idx < vecSize; ++idx) {
- TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
- TIntermTyped* component = argValue->getType().isVector() ?
- intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
- if (component != argValue)
- component->setType(TType(argValue->getBasicType(), EvqTemporary));
- TIntermTyped* unpackOp = new TIntermUnary(EOpUnpackHalf2x16);
- unpackOp->setType(TType(EbtFloat, EvqTemporary, 2));
- unpackOp->getAsUnaryNode()->setOperand(component);
- unpackOp->setLoc(loc);
- TIntermTyped* lowOrder = intermediate.addIndex(EOpIndexDirect, unpackOp, zero, loc);
- if (result != nullptr) {
- result->getSequence().push_back(lowOrder);
- node = result;
- } else {
- node = lowOrder;
- }
- }
- break;
- }
- case EOpF32tof16:
- {
- // input floatN converted to 16 bit float in low order bits of each component of uintN
- TIntermTyped* argValue = node->getAsUnaryNode()->getOperand();
- TIntermTyped* zero = intermediate.addConstantUnion(0.0, EbtFloat, loc, true);
- const int vecSize = argValue->getType().getVectorSize();
- TOperator constructOp = EOpNull;
- switch (vecSize) {
- case 1: constructOp = EOpNull; break; // direct use, no construct needed
- case 2: constructOp = EOpConstructUVec2; break;
- case 3: constructOp = EOpConstructUVec3; break;
- case 4: constructOp = EOpConstructUVec4; break;
- default: assert(0); break;
- }
- // For scalar case, we don't need to construct another type.
- TIntermAggregate* result = (vecSize > 1) ? new TIntermAggregate(constructOp) : nullptr;
- if (result) {
- result->setType(TType(EbtUint, EvqTemporary, vecSize));
- result->setLoc(loc);
- }
- for (int idx = 0; idx < vecSize; ++idx) {
- TIntermTyped* idxConst = intermediate.addConstantUnion(idx, loc, true);
- TIntermTyped* component = argValue->getType().isVector() ?
- intermediate.addIndex(EOpIndexDirect, argValue, idxConst, loc) : argValue;
- if (component != argValue)
- component->setType(TType(argValue->getBasicType(), EvqTemporary));
- TIntermAggregate* vec2ComponentAndZero = new TIntermAggregate(EOpConstructVec2);
- vec2ComponentAndZero->getSequence().push_back(component);
- vec2ComponentAndZero->getSequence().push_back(zero);
- vec2ComponentAndZero->setType(TType(EbtFloat, EvqTemporary, 2));
- vec2ComponentAndZero->setLoc(loc);
- TIntermTyped* packOp = new TIntermUnary(EOpPackHalf2x16);
- packOp->getAsUnaryNode()->setOperand(vec2ComponentAndZero);
- packOp->setLoc(loc);
- packOp->setType(TType(EbtUint, EvqTemporary));
- if (result != nullptr) {
- result->getSequence().push_back(packOp);
- node = result;
- } else {
- node = packOp;
- }
- }
- break;
- }
- case EOpD3DCOLORtoUBYTE4:
- {
- // ivec4 ( x.zyxw * 255.001953 );
- TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
- TSwizzleSelectors<TVectorSelector> selectors;
- selectors.push_back(2);
- selectors.push_back(1);
- selectors.push_back(0);
- selectors.push_back(3);
- TIntermTyped* swizzleIdx = intermediate.addSwizzle(selectors, loc);
- TIntermTyped* swizzled = intermediate.addIndex(EOpVectorSwizzle, arg0, swizzleIdx, loc);
- swizzled->setType(arg0->getType());
- swizzled->getWritableType().getQualifier().makeTemporary();
- TIntermTyped* conversion = intermediate.addConstantUnion(255.001953f, EbtFloat, loc, true);
- TIntermTyped* rangeConverted = handleBinaryMath(loc, "mul", EOpMul, conversion, swizzled);
- rangeConverted->setType(arg0->getType());
- rangeConverted->getWritableType().getQualifier().makeTemporary();
- node = intermediate.addConversion(EOpConstructInt, TType(EbtInt, EvqTemporary, 4), rangeConverted);
- node->setLoc(loc);
- node->setType(TType(EbtInt, EvqTemporary, 4));
- break;
- }
- case EOpIsFinite:
- {
- // Since OPIsFinite in SPIR-V is only supported with the Kernel capability, we translate
- // it to !isnan && !isinf
- TIntermTyped* arg0 = node->getAsUnaryNode()->getOperand();
- // We'll make a temporary in case the RHS is cmoplex
- TVariable* tempArg = makeInternalVariable("@finitetmp", arg0->getType());
- tempArg->getWritableType().getQualifier().makeTemporary();
- TIntermTyped* tmpArgAssign = intermediate.addAssign(EOpAssign,
- intermediate.addSymbol(*tempArg, loc),
- arg0, loc);
- TIntermAggregate* compoundStatement = intermediate.makeAggregate(tmpArgAssign, loc);
- const TType boolType(EbtBool, EvqTemporary, arg0->getVectorSize(), arg0->getMatrixCols(),
- arg0->getMatrixRows());
- TIntermTyped* isnan = handleUnaryMath(loc, "isnan", EOpIsNan, intermediate.addSymbol(*tempArg, loc));
- isnan->setType(boolType);
- TIntermTyped* notnan = handleUnaryMath(loc, "!", EOpLogicalNot, isnan);
- notnan->setType(boolType);
- TIntermTyped* isinf = handleUnaryMath(loc, "isinf", EOpIsInf, intermediate.addSymbol(*tempArg, loc));
- isinf->setType(boolType);
- TIntermTyped* notinf = handleUnaryMath(loc, "!", EOpLogicalNot, isinf);
- notinf->setType(boolType);
- TIntermTyped* andNode = handleBinaryMath(loc, "and", EOpLogicalAnd, notnan, notinf);
- andNode->setType(boolType);
- compoundStatement = intermediate.growAggregate(compoundStatement, andNode);
- compoundStatement->setOperator(EOpSequence);
- compoundStatement->setLoc(loc);
- compoundStatement->setType(boolType);
- node = compoundStatement;
- break;
- }
- case EOpWaveGetLaneCount:
- {
- // Mapped to gl_SubgroupSize builtin (We preprend @ to the symbol
- // so that it inhabits the symbol table, but has a user-invalid name
- // in-case some source HLSL defined the symbol also).
- TType type(EbtUint, EvqVaryingIn);
- node = lookupBuiltinVariable("@gl_SubgroupSize", EbvSubgroupSize2, type);
- break;
- }
- case EOpWaveGetLaneIndex:
- {
- // Mapped to gl_SubgroupInvocationID builtin (We preprend @ to the
- // symbol so that it inhabits the symbol table, but has a
- // user-invalid name in-case some source HLSL defined the symbol
- // also).
- TType type(EbtUint, EvqVaryingIn);
- node = lookupBuiltinVariable("@gl_SubgroupInvocationID", EbvSubgroupInvocation2, type);
- break;
- }
- case EOpWaveActiveCountBits:
- {
- // Mapped to subgroupBallotBitCount(subgroupBallot()) builtin
- // uvec4 type.
- TType uvec4Type(EbtUint, EvqTemporary, 4);
- // Get the uvec4 return from subgroupBallot().
- TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
- EOpSubgroupBallot, true, arguments, uvec4Type);
- // uint type.
- TType uintType(EbtUint, EvqTemporary);
- node = intermediate.addBuiltInFunctionCall(loc,
- EOpSubgroupBallotBitCount, true, res, uintType);
- break;
- }
- case EOpWavePrefixCountBits:
- {
- // Mapped to subgroupBallotInclusiveBitCount(subgroupBallot())
- // builtin
- // uvec4 type.
- TType uvec4Type(EbtUint, EvqTemporary, 4);
- // Get the uvec4 return from subgroupBallot().
- TIntermTyped* res = intermediate.addBuiltInFunctionCall(loc,
- EOpSubgroupBallot, true, arguments, uvec4Type);
- // uint type.
- TType uintType(EbtUint, EvqTemporary);
- node = intermediate.addBuiltInFunctionCall(loc,
- EOpSubgroupBallotInclusiveBitCount, true, res, uintType);
- break;
- }
- default:
- break; // most pass through unchanged
- }
- }
- //
- // Handle seeing function call syntax in the grammar, which could be any of
- // - .length() method
- // - constructor
- // - a call to a built-in function mapped to an operator
- // - a call to a built-in function that will remain a function call (e.g., texturing)
- // - user function
- // - subroutine call (not implemented yet)
- //
- TIntermTyped* HlslParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermTyped* arguments)
- {
- TIntermTyped* result = nullptr;
- TOperator op = function->getBuiltInOp();
- if (op != EOpNull) {
- //
- // Then this should be a constructor.
- // Don't go through the symbol table for constructors.
- // Their parameters will be verified algorithmically.
- //
- TType type(EbtVoid); // use this to get the type back
- if (! constructorError(loc, arguments, *function, op, type)) {
- //
- // It's a constructor, of type 'type'.
- //
- result = handleConstructor(loc, arguments, type);
- if (result == nullptr) {
- error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), "");
- return nullptr;
- }
- }
- } else {
- //
- // Find it in the symbol table.
- //
- const TFunction* fnCandidate = nullptr;
- bool builtIn = false;
- int thisDepth = 0;
- // For mat mul, the situation is unusual: we have to compare vector sizes to mat row or col sizes,
- // and clamp the opposite arg. Since that's complex, we farm it off to a separate method.
- // It doesn't naturally fall out of processing an argument at a time in isolation.
- if (function->getName() == "mul")
- addGenMulArgumentConversion(loc, *function, arguments);
- TIntermAggregate* aggregate = arguments ? arguments->getAsAggregate() : nullptr;
- // TODO: this needs improvement: there's no way at present to look up a signature in
- // the symbol table for an arbitrary type. This is a temporary hack until that ability exists.
- // It will have false positives, since it doesn't check arg counts or types.
- if (arguments) {
- // Check if first argument is struct buffer type. It may be an aggregate or a symbol, so we
- // look for either case.
- TIntermTyped* arg0 = nullptr;
- if (aggregate && aggregate->getSequence().size() > 0 && aggregate->getSequence()[0])
- arg0 = aggregate->getSequence()[0]->getAsTyped();
- else if (arguments->getAsSymbolNode())
- arg0 = arguments->getAsSymbolNode();
- if (arg0 != nullptr && isStructBufferType(arg0->getType())) {
- static const int methodPrefixSize = sizeof(BUILTIN_PREFIX)-1;
- if (function->getName().length() > methodPrefixSize &&
- isStructBufferMethod(function->getName().substr(methodPrefixSize))) {
- const TString mangle = function->getName() + "(";
- TSymbol* symbol = symbolTable.find(mangle, &builtIn);
- if (symbol)
- fnCandidate = symbol->getAsFunction();
- }
- }
- }
- if (fnCandidate == nullptr)
- fnCandidate = findFunction(loc, *function, builtIn, thisDepth, arguments);
- if (fnCandidate) {
- // This is a declared function that might map to
- // - a built-in operator,
- // - a built-in function not mapped to an operator, or
- // - a user function.
- // turn an implicit member-function resolution into an explicit call
- TString callerName;
- if (thisDepth == 0)
- callerName = fnCandidate->getMangledName();
- else {
- // get the explicit (full) name of the function
- callerName = currentTypePrefix[currentTypePrefix.size() - thisDepth];
- callerName += fnCandidate->getMangledName();
- // insert the implicit calling argument
- pushFrontArguments(intermediate.addSymbol(*getImplicitThis(thisDepth)), arguments);
- }
- // Convert 'in' arguments, so that types match.
- // However, skip those that need expansion, that is covered next.
- if (arguments)
- addInputArgumentConversions(*fnCandidate, arguments);
- // Expand arguments. Some arguments must physically expand to a different set
- // than what the shader declared and passes.
- if (arguments && !builtIn)
- expandArguments(loc, *fnCandidate, arguments);
- // Expansion may have changed the form of arguments
- aggregate = arguments ? arguments->getAsAggregate() : nullptr;
- op = fnCandidate->getBuiltInOp();
- if (builtIn && op != EOpNull) {
- // SM 4.0 and above guarantees roundEven semantics for round()
- if (!hlslDX9Compatible() && op == EOpRound)
- op = EOpRoundEven;
- // A function call mapped to a built-in operation.
- result = intermediate.addBuiltInFunctionCall(loc, op, fnCandidate->getParamCount() == 1, arguments,
- fnCandidate->getType());
- if (result == nullptr) {
- error(arguments->getLoc(), " wrong operand type", "Internal Error",
- "built in unary operator function. Type: %s",
- static_cast<TIntermTyped*>(arguments)->getCompleteString().c_str());
- } else if (result->getAsOperator()) {
- builtInOpCheck(loc, *fnCandidate, *result->getAsOperator());
- }
- } else {
- // This is a function call not mapped to built-in operator.
- // It could still be a built-in function, but only if PureOperatorBuiltins == false.
- result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc);
- TIntermAggregate* call = result->getAsAggregate();
- call->setName(callerName);
- // this is how we know whether the given function is a built-in function or a user-defined function
- // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also
- // if builtIn == true, it's definitely a built-in function with EOpNull
- if (! builtIn) {
- call->setUserDefined();
- intermediate.addToCallGraph(infoSink, currentCaller, callerName);
- }
- }
- // for decompositions, since we want to operate on the function node, not the aggregate holding
- // output conversions.
- const TIntermTyped* fnNode = result;
- decomposeStructBufferMethods(loc, result, arguments); // HLSL->AST struct buffer method decompositions
- decomposeIntrinsic(loc, result, arguments); // HLSL->AST intrinsic decompositions
- decomposeSampleMethods(loc, result, arguments); // HLSL->AST sample method decompositions
- decomposeGeometryMethods(loc, result, arguments); // HLSL->AST geometry method decompositions
- // Create the qualifier list, carried in the AST for the call.
- // Because some arguments expand to multiple arguments, the qualifier list will
- // be longer than the formal parameter list.
- if (result == fnNode && result->getAsAggregate()) {
- TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList();
- for (int i = 0; i < fnCandidate->getParamCount(); ++i) {
- TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage;
- if (hasStructBuffCounter(*(*fnCandidate)[i].type)) {
- // add buffer and counter buffer argument qualifier
- qualifierList.push_back(qual);
- qualifierList.push_back(qual);
- } else if (shouldFlatten(*(*fnCandidate)[i].type, (*fnCandidate)[i].type->getQualifier().storage,
- true)) {
- // add structure member expansion
- for (int memb = 0; memb < (int)(*fnCandidate)[i].type->getStruct()->size(); ++memb)
- qualifierList.push_back(qual);
- } else {
- // Normal 1:1 case
- qualifierList.push_back(qual);
- }
- }
- }
- // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore.
- // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output.
- // Also, build the qualifier list for user function calls, which are always called with an aggregate.
- // We don't do this is if there has been a decomposition, which will have added its own conversions
- // for output parameters.
- if (result == fnNode && result->getAsAggregate())
- result = addOutputArgumentConversions(*fnCandidate, *result->getAsOperator());
- }
- }
- // generic error recovery
- // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to
- // reduce cascades
- if (result == nullptr)
- result = intermediate.addConstantUnion(0.0, EbtFloat, loc);
- return result;
- }
- // An initial argument list is difficult: it can be null, or a single node,
- // or an aggregate if more than one argument. Add one to the front, maintaining
- // this lack of uniformity.
- void HlslParseContext::pushFrontArguments(TIntermTyped* front, TIntermTyped*& arguments)
- {
- if (arguments == nullptr)
- arguments = front;
- else if (arguments->getAsAggregate() != nullptr)
- arguments->getAsAggregate()->getSequence().insert(arguments->getAsAggregate()->getSequence().begin(), front);
- else
- arguments = intermediate.growAggregate(front, arguments);
- }
- //
- // HLSL allows mismatched dimensions on vec*mat, mat*vec, vec*vec, and mat*mat. This is a
- // situation not well suited to resolution in intrinsic selection, but we can do so here, since we
- // can look at both arguments insert explicit shape changes if required.
- //
- void HlslParseContext::addGenMulArgumentConversion(const TSourceLoc& loc, TFunction& call, TIntermTyped*& args)
- {
- TIntermAggregate* argAggregate = args ? args->getAsAggregate() : nullptr;
- if (argAggregate == nullptr || argAggregate->getSequence().size() != 2) {
- // It really ought to have two arguments.
- error(loc, "expected: mul arguments", "", "");
- return;
- }
- TIntermTyped* arg0 = argAggregate->getSequence()[0]->getAsTyped();
- TIntermTyped* arg1 = argAggregate->getSequence()[1]->getAsTyped();
- if (arg0->isVector() && arg1->isVector()) {
- // For:
- // vec * vec: it's handled during intrinsic selection, so while we could do it here,
- // we can also ignore it, which is easier.
- } else if (arg0->isVector() && arg1->isMatrix()) {
- // vec * mat: we clamp the vec if the mat col is smaller, else clamp the mat col.
- if (arg0->getVectorSize() < arg1->getMatrixCols()) {
- // vec is smaller, so truncate larger mat dimension
- const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
- 0, arg0->getVectorSize(), arg1->getMatrixRows());
- arg1 = addConstructor(loc, arg1, truncType);
- } else if (arg0->getVectorSize() > arg1->getMatrixCols()) {
- // vec is larger, so truncate vec to mat size
- const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
- arg1->getMatrixCols());
- arg0 = addConstructor(loc, arg0, truncType);
- }
- } else if (arg0->isMatrix() && arg1->isVector()) {
- // mat * vec: we clamp the vec if the mat col is smaller, else clamp the mat col.
- if (arg1->getVectorSize() < arg0->getMatrixRows()) {
- // vec is smaller, so truncate larger mat dimension
- const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
- 0, arg0->getMatrixCols(), arg1->getVectorSize());
- arg0 = addConstructor(loc, arg0, truncType);
- } else if (arg1->getVectorSize() > arg0->getMatrixRows()) {
- // vec is larger, so truncate vec to mat size
- const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
- arg0->getMatrixRows());
- arg1 = addConstructor(loc, arg1, truncType);
- }
- } else if (arg0->isMatrix() && arg1->isMatrix()) {
- // mat * mat: we clamp the smaller inner dimension to match the other matrix size.
- // Remember, HLSL Mrc = GLSL/SPIRV Mcr.
- if (arg0->getMatrixRows() > arg1->getMatrixCols()) {
- const TType truncType(arg0->getBasicType(), arg0->getQualifier().storage, arg0->getQualifier().precision,
- 0, arg0->getMatrixCols(), arg1->getMatrixCols());
- arg0 = addConstructor(loc, arg0, truncType);
- } else if (arg0->getMatrixRows() < arg1->getMatrixCols()) {
- const TType truncType(arg1->getBasicType(), arg1->getQualifier().storage, arg1->getQualifier().precision,
- 0, arg0->getMatrixRows(), arg1->getMatrixRows());
- arg1 = addConstructor(loc, arg1, truncType);
- }
- } else {
- // It's something with scalars: we'll just leave it alone. Function selection will handle it
- // downstream.
- }
- // Warn if we altered one of the arguments
- if (arg0 != argAggregate->getSequence()[0] || arg1 != argAggregate->getSequence()[1])
- warn(loc, "mul() matrix size mismatch", "", "");
- // Put arguments back. (They might be unchanged, in which case this is harmless).
- argAggregate->getSequence()[0] = arg0;
- argAggregate->getSequence()[1] = arg1;
- call[0].type = &arg0->getWritableType();
- call[1].type = &arg1->getWritableType();
- }
- //
- // Add any needed implicit conversions for function-call arguments to input parameters.
- //
- void HlslParseContext::addInputArgumentConversions(const TFunction& function, TIntermTyped*& arguments)
- {
- TIntermAggregate* aggregate = arguments->getAsAggregate();
- // Replace a single argument with a single argument.
- const auto setArg = [&](int paramNum, TIntermTyped* arg) {
- if (function.getParamCount() == 1)
- arguments = arg;
- else {
- if (aggregate == nullptr)
- arguments = arg;
- else
- aggregate->getSequence()[paramNum] = arg;
- }
- };
- // Process each argument's conversion
- for (int param = 0; param < function.getParamCount(); ++param) {
- if (! function[param].type->getQualifier().isParamInput())
- continue;
- // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
- // is the single argument itself or its children are the arguments. Only one argument
- // means take 'arguments' itself as the one argument.
- TIntermTyped* arg = function.getParamCount() == 1
- ? arguments->getAsTyped()
- : (aggregate ?
- aggregate->getSequence()[param]->getAsTyped() :
- arguments->getAsTyped());
- if (*function[param].type != arg->getType()) {
- // In-qualified arguments just need an extra node added above the argument to
- // convert to the correct type.
- TIntermTyped* convArg = intermediate.addConversion(EOpFunctionCall, *function[param].type, arg);
- if (convArg != nullptr)
- convArg = intermediate.addUniShapeConversion(EOpFunctionCall, *function[param].type, convArg);
- if (convArg != nullptr)
- setArg(param, convArg);
- else
- error(arg->getLoc(), "cannot convert input argument, argument", "", "%d", param);
- } else {
- if (wasFlattened(arg)) {
- // If both formal and calling arg are to be flattened, leave that to argument
- // expansion, not conversion.
- if (!shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
- // Will make a two-level subtree.
- // The deepest will copy member-by-member to build the structure to pass.
- // The level above that will be a two-operand EOpComma sequence that follows the copy by the
- // object itself.
- TVariable* internalAggregate = makeInternalVariable("aggShadow", *function[param].type);
- internalAggregate->getWritableType().getQualifier().makeTemporary();
- TIntermSymbol* internalSymbolNode = new TIntermSymbol(internalAggregate->getUniqueId(),
- internalAggregate->getName(),
- internalAggregate->getType());
- internalSymbolNode->setLoc(arg->getLoc());
- // This makes the deepest level, the member-wise copy
- TIntermAggregate* assignAgg = handleAssign(arg->getLoc(), EOpAssign,
- internalSymbolNode, arg)->getAsAggregate();
- // Now, pair that with the resulting aggregate.
- assignAgg = intermediate.growAggregate(assignAgg, internalSymbolNode, arg->getLoc());
- assignAgg->setOperator(EOpComma);
- assignAgg->setType(internalAggregate->getType());
- setArg(param, assignAgg);
- }
- }
- }
- }
- }
- //
- // Add any needed implicit expansion of calling arguments from what the shader listed to what's
- // internally needed for the AST (given the constraints downstream).
- //
- void HlslParseContext::expandArguments(const TSourceLoc& loc, const TFunction& function, TIntermTyped*& arguments)
- {
- TIntermAggregate* aggregate = arguments->getAsAggregate();
- int functionParamNumberOffset = 0;
- // Replace a single argument with a single argument.
- const auto setArg = [&](int paramNum, TIntermTyped* arg) {
- if (function.getParamCount() + functionParamNumberOffset == 1)
- arguments = arg;
- else {
- if (aggregate == nullptr)
- arguments = arg;
- else
- aggregate->getSequence()[paramNum] = arg;
- }
- };
- // Replace a single argument with a list of arguments
- const auto setArgList = [&](int paramNum, const TVector<TIntermTyped*>& args) {
- if (args.size() == 1)
- setArg(paramNum, args.front());
- else if (args.size() > 1) {
- if (function.getParamCount() + functionParamNumberOffset == 1) {
- arguments = intermediate.makeAggregate(args.front());
- std::for_each(args.begin() + 1, args.end(),
- [&](TIntermTyped* arg) {
- arguments = intermediate.growAggregate(arguments, arg);
- });
- } else {
- auto it = aggregate->getSequence().erase(aggregate->getSequence().begin() + paramNum);
- aggregate->getSequence().insert(it, args.begin(), args.end());
- }
- functionParamNumberOffset += (int)(args.size() - 1);
- }
- };
- // Process each argument's conversion
- for (int param = 0; param < function.getParamCount(); ++param) {
- // At this early point there is a slight ambiguity between whether an aggregate 'arguments'
- // is the single argument itself or its children are the arguments. Only one argument
- // means take 'arguments' itself as the one argument.
- TIntermTyped* arg = function.getParamCount() == 1
- ? arguments->getAsTyped()
- : (aggregate ?
- aggregate->getSequence()[param + functionParamNumberOffset]->getAsTyped() :
- arguments->getAsTyped());
- if (wasFlattened(arg) && shouldFlatten(*function[param].type, function[param].type->getQualifier().storage, true)) {
- // Need to pass the structure members instead of the structure.
- TVector<TIntermTyped*> memberArgs;
- for (int memb = 0; memb < (int)arg->getType().getStruct()->size(); ++memb)
- memberArgs.push_back(flattenAccess(arg, memb));
- setArgList(param + functionParamNumberOffset, memberArgs);
- }
- }
- // TODO: if we need both hidden counter args (below) and struct expansion (above)
- // the two algorithms need to be merged: Each assumes the list starts out 1:1 between
- // parameters and arguments.
- // If any argument is a pass-by-reference struct buffer with an associated counter
- // buffer, we have to add another hidden parameter for that counter.
- if (aggregate)
- addStructBuffArguments(loc, aggregate);
- }
- //
- // Add any needed implicit output conversions for function-call arguments. This
- // can require a new tree topology, complicated further by whether the function
- // has a return value.
- //
- // Returns a node of a subtree that evaluates to the return value of the function.
- //
- TIntermTyped* HlslParseContext::addOutputArgumentConversions(const TFunction& function, TIntermOperator& intermNode)
- {
- assert (intermNode.getAsAggregate() != nullptr || intermNode.getAsUnaryNode() != nullptr);
- const TSourceLoc& loc = intermNode.getLoc();
- TIntermSequence argSequence; // temp sequence for unary node args
- if (intermNode.getAsUnaryNode())
- argSequence.push_back(intermNode.getAsUnaryNode()->getOperand());
- TIntermSequence& arguments = argSequence.empty() ? intermNode.getAsAggregate()->getSequence() : argSequence;
- const auto needsConversion = [&](int argNum) {
- return function[argNum].type->getQualifier().isParamOutput() &&
- (*function[argNum].type != arguments[argNum]->getAsTyped()->getType() ||
- shouldConvertLValue(arguments[argNum]) ||
- wasFlattened(arguments[argNum]->getAsTyped()));
- };
- // Will there be any output conversions?
- bool outputConversions = false;
- for (int i = 0; i < function.getParamCount(); ++i) {
- if (needsConversion(i)) {
- outputConversions = true;
- break;
- }
- }
- if (! outputConversions)
- return &intermNode;
- // Setup for the new tree, if needed:
- //
- // Output conversions need a different tree topology.
- // Out-qualified arguments need a temporary of the correct type, with the call
- // followed by an assignment of the temporary to the original argument:
- // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...)
- // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet)
- // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment.
- TIntermTyped* conversionTree = nullptr;
- TVariable* tempRet = nullptr;
- if (intermNode.getBasicType() != EbtVoid) {
- // do the "tempRet = function(...), " bit from above
- tempRet = makeInternalVariable("tempReturn", intermNode.getType());
- TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
- conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, loc);
- } else
- conversionTree = &intermNode;
- conversionTree = intermediate.makeAggregate(conversionTree);
- // Process each argument's conversion
- for (int i = 0; i < function.getParamCount(); ++i) {
- if (needsConversion(i)) {
- // Out-qualified arguments needing conversion need to use the topology setup above.
- // Do the " ...(tempArg, ...), arg = tempArg" bit from above.
- // Make a temporary for what the function expects the argument to look like.
- TVariable* tempArg = makeInternalVariable("tempArg", *function[i].type);
- tempArg->getWritableType().getQualifier().makeTemporary();
- TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, loc);
- // This makes the deepest level, the member-wise copy
- TIntermTyped* tempAssign = handleAssign(arguments[i]->getLoc(), EOpAssign, arguments[i]->getAsTyped(),
- tempArgNode);
- tempAssign = handleLvalue(arguments[i]->getLoc(), "assign", tempAssign);
- conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc());
- // replace the argument with another node for the same tempArg variable
- arguments[i] = intermediate.addSymbol(*tempArg, loc);
- }
- }
- // Finalize the tree topology (see bigger comment above).
- if (tempRet) {
- // do the "..., tempRet" bit from above
- TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, loc);
- conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, loc);
- }
- conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), loc);
- return conversionTree;
- }
- //
- // Add any needed "hidden" counter buffer arguments for function calls.
- //
- // Modifies the 'aggregate' argument if needed. Otherwise, is no-op.
- //
- void HlslParseContext::addStructBuffArguments(const TSourceLoc& loc, TIntermAggregate*& aggregate)
- {
- // See if there are any SB types with counters.
- const bool hasStructBuffArg =
- std::any_of(aggregate->getSequence().begin(),
- aggregate->getSequence().end(),
- [this](const TIntermNode* node) {
- return (node && node->getAsTyped() != nullptr) && hasStructBuffCounter(node->getAsTyped()->getType());
- });
- // Nothing to do, if we didn't find one.
- if (! hasStructBuffArg)
- return;
- TIntermSequence argsWithCounterBuffers;
- for (int param = 0; param < int(aggregate->getSequence().size()); ++param) {
- argsWithCounterBuffers.push_back(aggregate->getSequence()[param]);
- if (hasStructBuffCounter(aggregate->getSequence()[param]->getAsTyped()->getType())) {
- const TIntermSymbol* blockSym = aggregate->getSequence()[param]->getAsSymbolNode();
- if (blockSym != nullptr) {
- TType counterType;
- counterBufferType(loc, counterType);
- const TString counterBlockName(intermediate.addCounterBufferName(blockSym->getName()));
- TVariable* variable = makeInternalVariable(counterBlockName, counterType);
- // Mark this buffer's counter block as being in use
- structBufferCounter[counterBlockName] = true;
- TIntermSymbol* sym = intermediate.addSymbol(*variable, loc);
- argsWithCounterBuffers.push_back(sym);
- }
- }
- }
- // Swap with the temp list we've built up.
- aggregate->getSequence().swap(argsWithCounterBuffers);
- }
- //
- // Do additional checking of built-in function calls that is not caught
- // by normal semantic checks on argument type, extension tagging, etc.
- //
- // Assumes there has been a semantically correct match to a built-in function prototype.
- //
- void HlslParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode)
- {
- // Set up convenience accessors to the argument(s). There is almost always
- // multiple arguments for the cases below, but when there might be one,
- // check the unaryArg first.
- const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference
- const TIntermTyped* unaryArg = nullptr;
- const TIntermTyped* arg0 = nullptr;
- if (callNode.getAsAggregate()) {
- argp = &callNode.getAsAggregate()->getSequence();
- if (argp->size() > 0)
- arg0 = (*argp)[0]->getAsTyped();
- } else {
- assert(callNode.getAsUnaryNode());
- unaryArg = callNode.getAsUnaryNode()->getOperand();
- arg0 = unaryArg;
- }
- const TIntermSequence& aggArgs = *argp; // only valid when unaryArg is nullptr
- switch (callNode.getOp()) {
- case EOpTextureGather:
- case EOpTextureGatherOffset:
- case EOpTextureGatherOffsets:
- {
- // Figure out which variants are allowed by what extensions,
- // and what arguments must be constant for which situations.
- TString featureString = fnCandidate.getName() + "(...)";
- const char* feature = featureString.c_str();
- int compArg = -1; // track which argument, if any, is the constant component argument
- switch (callNode.getOp()) {
- case EOpTextureGather:
- // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5,
- // otherwise, need GL_ARB_texture_gather.
- if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect ||
- fnCandidate[0].type->getSampler().shadow) {
- if (! fnCandidate[0].type->getSampler().shadow)
- compArg = 2;
- }
- break;
- case EOpTextureGatherOffset:
- // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument
- if (! fnCandidate[0].type->getSampler().shadow)
- compArg = 3;
- break;
- case EOpTextureGatherOffsets:
- if (! fnCandidate[0].type->getSampler().shadow)
- compArg = 3;
- break;
- default:
- break;
- }
- if (compArg > 0 && compArg < fnCandidate.getParamCount()) {
- if (aggArgs[compArg]->getAsConstantUnion()) {
- int value = aggArgs[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst();
- if (value < 0 || value > 3)
- error(loc, "must be 0, 1, 2, or 3:", feature, "component argument");
- } else
- error(loc, "must be a compile-time constant:", feature, "component argument");
- }
- break;
- }
- case EOpTextureOffset:
- case EOpTextureFetchOffset:
- case EOpTextureProjOffset:
- case EOpTextureLodOffset:
- case EOpTextureProjLodOffset:
- case EOpTextureGradOffset:
- case EOpTextureProjGradOffset:
- {
- // Handle texture-offset limits checking
- // Pick which argument has to hold constant offsets
- int arg = -1;
- switch (callNode.getOp()) {
- case EOpTextureOffset: arg = 2; break;
- case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().dim != EsdRect) ? 3 : 2; break;
- case EOpTextureProjOffset: arg = 2; break;
- case EOpTextureLodOffset: arg = 3; break;
- case EOpTextureProjLodOffset: arg = 3; break;
- case EOpTextureGradOffset: arg = 4; break;
- case EOpTextureProjGradOffset: arg = 4; break;
- default:
- assert(0);
- break;
- }
- if (arg > 0) {
- if (aggArgs[arg]->getAsConstantUnion() == nullptr)
- error(loc, "argument must be compile-time constant", "texel offset", "");
- else {
- const TType& type = aggArgs[arg]->getAsTyped()->getType();
- for (int c = 0; c < type.getVectorSize(); ++c) {
- int offset = aggArgs[arg]->getAsConstantUnion()->getConstArray()[c].getIConst();
- if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset)
- error(loc, "value is out of range:", "texel offset",
- "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]");
- }
- }
- }
- break;
- }
- case EOpTextureQuerySamples:
- case EOpImageQuerySamples:
- break;
- case EOpImageAtomicAdd:
- case EOpImageAtomicMin:
- case EOpImageAtomicMax:
- case EOpImageAtomicAnd:
- case EOpImageAtomicOr:
- case EOpImageAtomicXor:
- case EOpImageAtomicExchange:
- case EOpImageAtomicCompSwap:
- break;
- case EOpInterpolateAtCentroid:
- case EOpInterpolateAtSample:
- case EOpInterpolateAtOffset:
- // Make sure the first argument is an interpolant, or an array element of an interpolant
- if (arg0->getType().getQualifier().storage != EvqVaryingIn) {
- // It might still be an array element.
- //
- // We could check more, but the semantics of the first argument are already met; the
- // only way to turn an array into a float/vec* is array dereference and swizzle.
- //
- // ES and desktop 4.3 and earlier: swizzles may not be used
- // desktop 4.4 and later: swizzles may be used
- const TIntermTyped* base = TIntermediate::findLValueBase(arg0, true);
- if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn)
- error(loc, "first argument must be an interpolant, or interpolant-array element",
- fnCandidate.getName().c_str(), "");
- }
- break;
- default:
- break;
- }
- }
- //
- // Handle seeing something in a grammar production that can be done by calling
- // a constructor.
- //
- // The constructor still must be "handled" by handleFunctionCall(), which will
- // then call handleConstructor().
- //
- TFunction* HlslParseContext::makeConstructorCall(const TSourceLoc& loc, const TType& type)
- {
- TOperator op = intermediate.mapTypeToConstructorOp(type);
- if (op == EOpNull) {
- error(loc, "cannot construct this type", type.getBasicString(), "");
- return nullptr;
- }
- TString empty("");
- return new TFunction(&empty, type, op);
- }
- //
- // Handle seeing a "COLON semantic" at the end of a type declaration,
- // by updating the type according to the semantic.
- //
- void HlslParseContext::handleSemantic(TSourceLoc loc, TQualifier& qualifier, TBuiltInVariable builtIn,
- const TString& upperCase)
- {
- // Parse and return semantic number. If limit is 0, it will be ignored. Otherwise, if the parsed
- // semantic number is >= limit, errorMsg is issued and 0 is returned.
- // TODO: it would be nicer if limit and errorMsg had default parameters, but some compilers don't yet
- // accept those in lambda functions.
- const auto getSemanticNumber = [this, loc](const TString& semantic, unsigned int limit, const char* errorMsg) -> unsigned int {
- size_t pos = semantic.find_last_not_of("0123456789");
- if (pos == std::string::npos)
- return 0u;
- unsigned int semanticNum = (unsigned int)atoi(semantic.c_str() + pos + 1);
- if (limit != 0 && semanticNum >= limit) {
- error(loc, errorMsg, semantic.c_str(), "");
- return 0u;
- }
- return semanticNum;
- };
- if (builtIn == EbvNone && hlslDX9Compatible()) {
- if (language == EShLangVertex) {
- if (qualifier.isParamOutput()) {
- if (upperCase == "POSITION") {
- builtIn = EbvPosition;
- }
- if (upperCase == "PSIZE") {
- builtIn = EbvPointSize;
- }
- }
- } else if (language == EShLangFragment) {
- if (qualifier.isParamInput() && upperCase == "VPOS") {
- builtIn = EbvFragCoord;
- }
- if (qualifier.isParamOutput()) {
- if (upperCase.compare(0, 5, "COLOR") == 0) {
- qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
- nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
- }
- if (upperCase == "DEPTH") {
- builtIn = EbvFragDepth;
- }
- }
- }
- }
- switch(builtIn) {
- case EbvNone:
- // Get location numbers from fragment outputs, instead of
- // auto-assigning them.
- if (language == EShLangFragment && upperCase.compare(0, 9, "SV_TARGET") == 0) {
- qualifier.layoutLocation = getSemanticNumber(upperCase, 0, nullptr);
- nextOutLocation = std::max(nextOutLocation, qualifier.layoutLocation + 1u);
- } else if (upperCase.compare(0, 15, "SV_CLIPDISTANCE") == 0) {
- builtIn = EbvClipDistance;
- qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid clip semantic");
- } else if (upperCase.compare(0, 15, "SV_CULLDISTANCE") == 0) {
- builtIn = EbvCullDistance;
- qualifier.layoutLocation = getSemanticNumber(upperCase, maxClipCullRegs, "invalid cull semantic");
- }
- break;
- case EbvPosition:
- // adjust for stage in/out
- if (language == EShLangFragment)
- builtIn = EbvFragCoord;
- break;
- case EbvFragStencilRef:
- error(loc, "unimplemented; need ARB_shader_stencil_export", "SV_STENCILREF", "");
- break;
- case EbvTessLevelInner:
- case EbvTessLevelOuter:
- qualifier.patch = true;
- break;
- default:
- break;
- }
- if (qualifier.builtIn == EbvNone)
- qualifier.builtIn = builtIn;
- qualifier.semanticName = intermediate.addSemanticName(upperCase);
- }
- //
- // Handle seeing something like "PACKOFFSET LEFT_PAREN c[Subcomponent][.component] RIGHT_PAREN"
- //
- // 'location' has the "c[Subcomponent]" part.
- // 'component' points to the "component" part, or nullptr if not present.
- //
- void HlslParseContext::handlePackOffset(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString& location,
- const glslang::TString* component)
- {
- if (location.size() == 0 || location[0] != 'c') {
- error(loc, "expected 'c'", "packoffset", "");
- return;
- }
- if (location.size() == 1)
- return;
- if (! isdigit(location[1])) {
- error(loc, "expected number after 'c'", "packoffset", "");
- return;
- }
- qualifier.layoutOffset = 16 * atoi(location.substr(1, location.size()).c_str());
- if (component != nullptr) {
- int componentOffset = 0;
- switch ((*component)[0]) {
- case 'x': componentOffset = 0; break;
- case 'y': componentOffset = 4; break;
- case 'z': componentOffset = 8; break;
- case 'w': componentOffset = 12; break;
- default:
- componentOffset = -1;
- break;
- }
- if (componentOffset < 0 || component->size() > 1) {
- error(loc, "expected {x, y, z, w} for component", "packoffset", "");
- return;
- }
- qualifier.layoutOffset += componentOffset;
- }
- }
- //
- // Handle seeing something like "REGISTER LEFT_PAREN [shader_profile,] Type# RIGHT_PAREN"
- //
- // 'profile' points to the shader_profile part, or nullptr if not present.
- // 'desc' is the type# part.
- //
- void HlslParseContext::handleRegister(const TSourceLoc& loc, TQualifier& qualifier, const glslang::TString* profile,
- const glslang::TString& desc, int subComponent, const glslang::TString* spaceDesc)
- {
- if (profile != nullptr)
- warn(loc, "ignoring shader_profile", "register", "");
- if (desc.size() < 1) {
- error(loc, "expected register type", "register", "");
- return;
- }
- int regNumber = 0;
- if (desc.size() > 1) {
- if (isdigit(desc[1]))
- regNumber = atoi(desc.substr(1, desc.size()).c_str());
- else {
- error(loc, "expected register number after register type", "register", "");
- return;
- }
- }
- // more information about register types see
- // https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/dx-graphics-hlsl-variable-register
- const std::vector<std::string>& resourceInfo = intermediate.getResourceSetBinding();
- switch (std::tolower(desc[0])) {
- case 'c':
- // c register is the register slot in the global const buffer
- // each slot is a vector of 4 32 bit components
- qualifier.layoutOffset = regNumber * 4 * 4;
- break;
- // const buffer register slot
- case 'b':
- // textrues and structured buffers
- case 't':
- // samplers
- case 's':
- // uav resources
- case 'u':
- // if nothing else has set the binding, do so now
- // (other mechanisms override this one)
- if (!qualifier.hasBinding())
- qualifier.layoutBinding = regNumber + subComponent;
- // This handles per-register layout sets numbers. For the global mode which sets
- // every symbol to the same value, see setLinkageLayoutSets().
- if ((resourceInfo.size() % 3) == 0) {
- // Apply per-symbol resource set and binding.
- for (auto it = resourceInfo.cbegin(); it != resourceInfo.cend(); it = it + 3) {
- if (strcmp(desc.c_str(), it[0].c_str()) == 0) {
- qualifier.layoutSet = atoi(it[1].c_str());
- qualifier.layoutBinding = atoi(it[2].c_str()) + subComponent;
- break;
- }
- }
- }
- break;
- default:
- warn(loc, "ignoring unrecognized register type", "register", "%c", desc[0]);
- break;
- }
- // space
- unsigned int setNumber;
- const auto crackSpace = [&]() -> bool {
- const int spaceLen = 5;
- if (spaceDesc->size() < spaceLen + 1)
- return false;
- if (spaceDesc->compare(0, spaceLen, "space") != 0)
- return false;
- if (! isdigit((*spaceDesc)[spaceLen]))
- return false;
- setNumber = atoi(spaceDesc->substr(spaceLen, spaceDesc->size()).c_str());
- return true;
- };
- // if nothing else has set the set, do so now
- // (other mechanisms override this one)
- if (spaceDesc && !qualifier.hasSet()) {
- if (! crackSpace()) {
- error(loc, "expected spaceN", "register", "");
- return;
- }
- qualifier.layoutSet = setNumber;
- }
- }
- // Convert to a scalar boolean, or if not allowed by HLSL semantics,
- // report an error and return nullptr.
- TIntermTyped* HlslParseContext::convertConditionalExpression(const TSourceLoc& loc, TIntermTyped* condition,
- bool mustBeScalar)
- {
- if (mustBeScalar && !condition->getType().isScalarOrVec1()) {
- error(loc, "requires a scalar", "conditional expression", "");
- return nullptr;
- }
- return intermediate.addConversion(EOpConstructBool, TType(EbtBool, EvqTemporary, condition->getVectorSize()),
- condition);
- }
- //
- // Same error message for all places assignments don't work.
- //
- void HlslParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right)
- {
- error(loc, "", op, "cannot convert from '%s' to '%s'",
- right.c_str(), left.c_str());
- }
- //
- // Same error message for all places unary operations don't work.
- //
- void HlslParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand)
- {
- error(loc, " wrong operand type", op,
- "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)",
- op, operand.c_str());
- }
- //
- // Same error message for all binary operations don't work.
- //
- void HlslParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right)
- {
- error(loc, " wrong operand types:", op,
- "no operation '%s' exists that takes a left-hand operand of type '%s' and "
- "a right operand of type '%s' (or there is no acceptable conversion)",
- op, left.c_str(), right.c_str());
- }
- //
- // A basic type of EbtVoid is a key that the name string was seen in the source, but
- // it was not found as a variable in the symbol table. If so, give the error
- // message and insert a dummy variable in the symbol table to prevent future errors.
- //
- void HlslParseContext::variableCheck(TIntermTyped*& nodePtr)
- {
- TIntermSymbol* symbol = nodePtr->getAsSymbolNode();
- if (! symbol)
- return;
- if (symbol->getType().getBasicType() == EbtVoid) {
- error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), "");
- // Add to symbol table to prevent future error messages on the same name
- if (symbol->getName().size() > 0) {
- TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat));
- symbolTable.insert(*fakeVariable);
- // substitute a symbol node for this new variable
- nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc());
- }
- }
- }
- //
- // Both test, and if necessary spit out an error, to see if the node is really
- // a constant.
- //
- void HlslParseContext::constantValueCheck(TIntermTyped* node, const char* token)
- {
- if (node->getQualifier().storage != EvqConst)
- error(node->getLoc(), "constant expression required", token, "");
- }
- //
- // Both test, and if necessary spit out an error, to see if the node is really
- // an integer.
- //
- void HlslParseContext::integerCheck(const TIntermTyped* node, const char* token)
- {
- if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar())
- return;
- error(node->getLoc(), "scalar integer expression required", token, "");
- }
- //
- // Both test, and if necessary spit out an error, to see if we are currently
- // globally scoped.
- //
- void HlslParseContext::globalCheck(const TSourceLoc& loc, const char* token)
- {
- if (! symbolTable.atGlobalLevel())
- error(loc, "not allowed in nested scope", token, "");
- }
- bool HlslParseContext::builtInName(const TString& /*identifier*/)
- {
- return false;
- }
- //
- // Make sure there is enough data and not too many arguments provided to the
- // constructor to build something of the type of the constructor. Also returns
- // the type of the constructor.
- //
- // Returns true if there was an error in construction.
- //
- bool HlslParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function,
- TOperator op, TType& type)
- {
- type.shallowCopy(function.getType());
- bool constructingMatrix = false;
- switch (op) {
- case EOpConstructTextureSampler:
- error(loc, "unhandled texture constructor", "constructor", "");
- return true;
- case EOpConstructMat2x2:
- case EOpConstructMat2x3:
- case EOpConstructMat2x4:
- case EOpConstructMat3x2:
- case EOpConstructMat3x3:
- case EOpConstructMat3x4:
- case EOpConstructMat4x2:
- case EOpConstructMat4x3:
- case EOpConstructMat4x4:
- case EOpConstructDMat2x2:
- case EOpConstructDMat2x3:
- case EOpConstructDMat2x4:
- case EOpConstructDMat3x2:
- case EOpConstructDMat3x3:
- case EOpConstructDMat3x4:
- case EOpConstructDMat4x2:
- case EOpConstructDMat4x3:
- case EOpConstructDMat4x4:
- case EOpConstructIMat2x2:
- case EOpConstructIMat2x3:
- case EOpConstructIMat2x4:
- case EOpConstructIMat3x2:
- case EOpConstructIMat3x3:
- case EOpConstructIMat3x4:
- case EOpConstructIMat4x2:
- case EOpConstructIMat4x3:
- case EOpConstructIMat4x4:
- case EOpConstructUMat2x2:
- case EOpConstructUMat2x3:
- case EOpConstructUMat2x4:
- case EOpConstructUMat3x2:
- case EOpConstructUMat3x3:
- case EOpConstructUMat3x4:
- case EOpConstructUMat4x2:
- case EOpConstructUMat4x3:
- case EOpConstructUMat4x4:
- case EOpConstructBMat2x2:
- case EOpConstructBMat2x3:
- case EOpConstructBMat2x4:
- case EOpConstructBMat3x2:
- case EOpConstructBMat3x3:
- case EOpConstructBMat3x4:
- case EOpConstructBMat4x2:
- case EOpConstructBMat4x3:
- case EOpConstructBMat4x4:
- constructingMatrix = true;
- break;
- default:
- break;
- }
- //
- // Walk the arguments for first-pass checks and collection of information.
- //
- int size = 0;
- bool constType = true;
- bool full = false;
- bool overFull = false;
- bool matrixInMatrix = false;
- bool arrayArg = false;
- for (int arg = 0; arg < function.getParamCount(); ++arg) {
- if (function[arg].type->isArray()) {
- if (function[arg].type->isUnsizedArray()) {
- // Can't construct from an unsized array.
- error(loc, "array argument must be sized", "constructor", "");
- return true;
- }
- arrayArg = true;
- }
- if (constructingMatrix && function[arg].type->isMatrix())
- matrixInMatrix = true;
- // 'full' will go to true when enough args have been seen. If we loop
- // again, there is an extra argument.
- if (full) {
- // For vectors and matrices, it's okay to have too many components
- // available, but not okay to have unused arguments.
- overFull = true;
- }
- size += function[arg].type->computeNumComponents();
- if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents())
- full = true;
- if (function[arg].type->getQualifier().storage != EvqConst)
- constType = false;
- }
- if (constType)
- type.getQualifier().storage = EvqConst;
- if (type.isArray()) {
- if (function.getParamCount() == 0) {
- error(loc, "array constructor must have at least one argument", "constructor", "");
- return true;
- }
- if (type.isUnsizedArray()) {
- // auto adapt the constructor type to the number of arguments
- type.changeOuterArraySize(function.getParamCount());
- } else if (type.getOuterArraySize() != function.getParamCount() && type.computeNumComponents() > size) {
- error(loc, "array constructor needs one argument per array element", "constructor", "");
- return true;
- }
- if (type.isArrayOfArrays()) {
- // Types have to match, but we're still making the type.
- // Finish making the type, and the comparison is done later
- // when checking for conversion.
- TArraySizes& arraySizes = *type.getArraySizes();
- // At least the dimensionalities have to match.
- if (! function[0].type->isArray() ||
- arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) {
- error(loc, "array constructor argument not correct type to construct array element", "constructor", "");
- return true;
- }
- if (arraySizes.isInnerUnsized()) {
- // "Arrays of arrays ..., and the size for any dimension is optional"
- // That means we need to adopt (from the first argument) the other array sizes into the type.
- for (int d = 1; d < arraySizes.getNumDims(); ++d) {
- if (arraySizes.getDimSize(d) == UnsizedArraySize) {
- arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1));
- }
- }
- }
- }
- }
- // Some array -> array type casts are okay
- if (arrayArg && function.getParamCount() == 1 && op != EOpConstructStruct && type.isArray() &&
- !type.isArrayOfArrays() && !function[0].type->isArrayOfArrays() &&
- type.getVectorSize() >= 1 && function[0].type->getVectorSize() >= 1)
- return false;
- if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) {
- error(loc, "constructing non-array constituent from array argument", "constructor", "");
- return true;
- }
- if (matrixInMatrix && ! type.isArray()) {
- return false;
- }
- if (overFull) {
- error(loc, "too many arguments", "constructor", "");
- return true;
- }
- if (op == EOpConstructStruct && ! type.isArray()) {
- if (isScalarConstructor(node))
- return false;
- // Self-type construction: e.g, we can construct a struct from a single identically typed object.
- if (function.getParamCount() == 1 && type == *function[0].type)
- return false;
- if ((int)type.getStruct()->size() != function.getParamCount()) {
- error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", "");
- return true;
- }
- }
- if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) ||
- (op == EOpConstructStruct && size < type.computeNumComponents())) {
- error(loc, "not enough data provided for construction", "constructor", "");
- return true;
- }
- return false;
- }
- // See if 'node', in the context of constructing aggregates, is a scalar argument
- // to a constructor.
- //
- bool HlslParseContext::isScalarConstructor(const TIntermNode* node)
- {
- // Obviously, it must be a scalar, but an aggregate node might not be fully
- // completed yet: holding a sequence of initializers under an aggregate
- // would not yet be typed, so don't check it's type. This corresponds to
- // the aggregate operator also not being set yet. (An aggregate operation
- // that legitimately yields a scalar will have a getOp() of that operator,
- // not EOpNull.)
- return node->getAsTyped() != nullptr &&
- node->getAsTyped()->isScalar() &&
- (node->getAsAggregate() == nullptr || node->getAsAggregate()->getOp() != EOpNull);
- }
- // Checks to see if a void variable has been declared and raise an error message for such a case
- //
- // returns true in case of an error
- //
- bool HlslParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType)
- {
- if (basicType == EbtVoid) {
- error(loc, "illegal use of type 'void'", identifier.c_str(), "");
- return true;
- }
- return false;
- }
- //
- // Fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level.
- //
- void HlslParseContext::globalQualifierFix(const TSourceLoc&, TQualifier& qualifier)
- {
- // move from parameter/unknown qualifiers to pipeline in/out qualifiers
- switch (qualifier.storage) {
- case EvqIn:
- qualifier.storage = EvqVaryingIn;
- break;
- case EvqOut:
- qualifier.storage = EvqVaryingOut;
- break;
- default:
- break;
- }
- }
- //
- // Merge characteristics of the 'src' qualifier into the 'dst'.
- // If there is duplication, issue error messages, unless 'force'
- // is specified, which means to just override default settings.
- //
- // Also, when force is false, it will be assumed that 'src' follows
- // 'dst', for the purpose of error checking order for versions
- // that require specific orderings of qualifiers.
- //
- void HlslParseContext::mergeQualifiers(TQualifier& dst, const TQualifier& src)
- {
- // Storage qualification
- if (dst.storage == EvqTemporary || dst.storage == EvqGlobal)
- dst.storage = src.storage;
- else if ((dst.storage == EvqIn && src.storage == EvqOut) ||
- (dst.storage == EvqOut && src.storage == EvqIn))
- dst.storage = EvqInOut;
- else if ((dst.storage == EvqIn && src.storage == EvqConst) ||
- (dst.storage == EvqConst && src.storage == EvqIn))
- dst.storage = EvqConstReadOnly;
- // Layout qualifiers
- mergeObjectLayoutQualifiers(dst, src, false);
- // individual qualifiers
- bool repeated = false;
- #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field;
- MERGE_SINGLETON(invariant);
- MERGE_SINGLETON(noContraction);
- MERGE_SINGLETON(centroid);
- MERGE_SINGLETON(smooth);
- MERGE_SINGLETON(flat);
- MERGE_SINGLETON(nopersp);
- MERGE_SINGLETON(patch);
- MERGE_SINGLETON(sample);
- MERGE_SINGLETON(coherent);
- MERGE_SINGLETON(volatil);
- MERGE_SINGLETON(restrict);
- MERGE_SINGLETON(readonly);
- MERGE_SINGLETON(writeonly);
- MERGE_SINGLETON(specConstant);
- MERGE_SINGLETON(nonUniform);
- }
- // used to flatten the sampler type space into a single dimension
- // correlates with the declaration of defaultSamplerPrecision[]
- int HlslParseContext::computeSamplerTypeIndex(TSampler& sampler)
- {
- int arrayIndex = sampler.arrayed ? 1 : 0;
- int shadowIndex = sampler.shadow ? 1 : 0;
- int externalIndex = sampler.external ? 1 : 0;
- return EsdNumDims *
- (EbtNumTypes * (2 * (2 * arrayIndex + shadowIndex) + externalIndex) + sampler.type) + sampler.dim;
- }
- //
- // Do size checking for an array type's size.
- //
- void HlslParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair)
- {
- bool isConst = false;
- sizePair.size = 1;
- sizePair.node = nullptr;
- TIntermConstantUnion* constant = expr->getAsConstantUnion();
- if (constant) {
- // handle true (non-specialization) constant
- sizePair.size = constant->getConstArray()[0].getIConst();
- isConst = true;
- } else {
- // see if it's a specialization constant instead
- if (expr->getQualifier().isSpecConstant()) {
- isConst = true;
- sizePair.node = expr;
- TIntermSymbol* symbol = expr->getAsSymbolNode();
- if (symbol && symbol->getConstArray().size() > 0)
- sizePair.size = symbol->getConstArray()[0].getIConst();
- }
- }
- if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) {
- error(loc, "array size must be a constant integer expression", "", "");
- return;
- }
- if (sizePair.size <= 0) {
- error(loc, "array size must be a positive integer", "", "");
- return;
- }
- }
- //
- // Require array to be completely sized
- //
- void HlslParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes)
- {
- if (arraySizes.hasUnsized())
- error(loc, "array size required", "", "");
- }
- void HlslParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type)
- {
- const TTypeList& structure = *type.getStruct();
- for (int m = 0; m < (int)structure.size(); ++m) {
- const TType& member = *structure[m].type;
- if (member.isArray())
- arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes());
- }
- }
- //
- // Do all the semantic checking for declaring or redeclaring an array, with and
- // without a size, and make the right changes to the symbol table.
- //
- void HlslParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
- TSymbol*& symbol, bool track)
- {
- if (symbol == nullptr) {
- bool currentScope;
- symbol = symbolTable.find(identifier, nullptr, ¤tScope);
- if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) {
- // bad shader (errors already reported) trying to redeclare a built-in name as an array
- return;
- }
- if (symbol == nullptr || ! currentScope) {
- //
- // Successfully process a new definition.
- // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations)
- //
- symbol = new TVariable(&identifier, type);
- symbolTable.insert(*symbol);
- if (track && symbolTable.atGlobalLevel())
- trackLinkage(*symbol);
- return;
- }
- if (symbol->getAsAnonMember()) {
- error(loc, "cannot redeclare a user-block member array", identifier.c_str(), "");
- symbol = nullptr;
- return;
- }
- }
- //
- // Process a redeclaration.
- //
- if (symbol == nullptr) {
- error(loc, "array variable name expected", identifier.c_str(), "");
- return;
- }
- // redeclareBuiltinVariable() should have already done the copyUp()
- TType& existingType = symbol->getWritableType();
- if (existingType.isSizedArray()) {
- // be more lenient for input arrays to geometry shaders and tessellation control outputs,
- // where the redeclaration is the same size
- return;
- }
- existingType.updateArraySizes(type);
- }
- //
- // Enforce non-initializer type/qualifier rules.
- //
- void HlslParseContext::fixConstInit(const TSourceLoc& loc, const TString& identifier, TType& type,
- TIntermTyped*& initializer)
- {
- //
- // Make the qualifier make sense, given that there is an initializer.
- //
- if (initializer == nullptr) {
- if (type.getQualifier().storage == EvqConst ||
- type.getQualifier().storage == EvqConstReadOnly) {
- initializer = intermediate.makeAggregate(loc);
- warn(loc, "variable with qualifier 'const' not initialized; zero initializing", identifier.c_str(), "");
- }
- }
- }
- //
- // See if the identifier is a built-in symbol that can be redeclared, and if so,
- // copy the symbol table's read-only built-in variable to the current
- // global level, where it can be modified based on the passed in type.
- //
- // Returns nullptr if no redeclaration took place; meaning a normal declaration still
- // needs to occur for it, not necessarily an error.
- //
- // Returns a redeclared and type-modified variable if a redeclared occurred.
- //
- TSymbol* HlslParseContext::redeclareBuiltinVariable(const TSourceLoc& /*loc*/, const TString& identifier,
- const TQualifier& /*qualifier*/,
- const TShaderQualifiers& /*publicType*/)
- {
- if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel())
- return nullptr;
- return nullptr;
- }
- //
- // Generate index to the array element in a structure buffer (SSBO)
- //
- TIntermTyped* HlslParseContext::indexStructBufferContent(const TSourceLoc& loc, TIntermTyped* buffer) const
- {
- // Bail out if not a struct buffer
- if (buffer == nullptr || ! isStructBufferType(buffer->getType()))
- return nullptr;
- // Runtime sized array is always the last element.
- const TTypeList* bufferStruct = buffer->getType().getStruct();
- TIntermTyped* arrayPosition = intermediate.addConstantUnion(unsigned(bufferStruct->size()-1), loc);
- TIntermTyped* argArray = intermediate.addIndex(EOpIndexDirectStruct, buffer, arrayPosition, loc);
- argArray->setType(*(*bufferStruct)[bufferStruct->size()-1].type);
- return argArray;
- }
- //
- // IFF type is a structuredbuffer/byteaddressbuffer type, return the content
- // (template) type. E.g, StructuredBuffer<MyType> -> MyType. Else return nullptr.
- //
- TType* HlslParseContext::getStructBufferContentType(const TType& type) const
- {
- if (type.getBasicType() != EbtBlock || type.getQualifier().storage != EvqBuffer)
- return nullptr;
- const int memberCount = (int)type.getStruct()->size();
- assert(memberCount > 0);
- TType* contentType = (*type.getStruct())[memberCount-1].type;
- return contentType->isUnsizedArray() ? contentType : nullptr;
- }
- //
- // If an existing struct buffer has a sharable type, then share it.
- //
- void HlslParseContext::shareStructBufferType(TType& type)
- {
- // PackOffset must be equivalent to share types on a per-member basis.
- // Note: cannot use auto type due to recursion. Thus, this is a std::function.
- const std::function<bool(TType& lhs, TType& rhs)>
- compareQualifiers = [&](TType& lhs, TType& rhs) -> bool {
- if (lhs.getQualifier().layoutOffset != rhs.getQualifier().layoutOffset)
- return false;
- if (lhs.isStruct() != rhs.isStruct())
- return false;
- if (lhs.isStruct() && rhs.isStruct()) {
- if (lhs.getStruct()->size() != rhs.getStruct()->size())
- return false;
- for (int i = 0; i < int(lhs.getStruct()->size()); ++i)
- if (!compareQualifiers(*(*lhs.getStruct())[i].type, *(*rhs.getStruct())[i].type))
- return false;
- }
- return true;
- };
- // We need to compare certain qualifiers in addition to the type.
- const auto typeEqual = [compareQualifiers](TType& lhs, TType& rhs) -> bool {
- if (lhs.getQualifier().readonly != rhs.getQualifier().readonly)
- return false;
- // If both are structures, recursively look for packOffset equality
- // as well as type equality.
- return compareQualifiers(lhs, rhs) && lhs == rhs;
- };
- // This is an exhaustive O(N) search, but real world shaders have
- // only a small number of these.
- for (int idx = 0; idx < int(structBufferTypes.size()); ++idx) {
- // If the deep structure matches, modulo qualifiers, use it
- if (typeEqual(*structBufferTypes[idx], type)) {
- type.shallowCopy(*structBufferTypes[idx]);
- return;
- }
- }
- // Otherwise, remember it:
- TType* typeCopy = new TType;
- typeCopy->shallowCopy(type);
- structBufferTypes.push_back(typeCopy);
- }
- void HlslParseContext::paramFix(TType& type)
- {
- switch (type.getQualifier().storage) {
- case EvqConst:
- type.getQualifier().storage = EvqConstReadOnly;
- break;
- case EvqGlobal:
- case EvqTemporary:
- type.getQualifier().storage = EvqIn;
- break;
- case EvqBuffer:
- {
- // SSBO parameter. These do not go through the declareBlock path since they are fn parameters.
- correctUniform(type.getQualifier());
- TQualifier bufferQualifier = globalBufferDefaults;
- mergeObjectLayoutQualifiers(bufferQualifier, type.getQualifier(), true);
- bufferQualifier.storage = type.getQualifier().storage;
- bufferQualifier.readonly = type.getQualifier().readonly;
- bufferQualifier.coherent = type.getQualifier().coherent;
- bufferQualifier.declaredBuiltIn = type.getQualifier().declaredBuiltIn;
- type.getQualifier() = bufferQualifier;
- break;
- }
- default:
- break;
- }
- }
- void HlslParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op)
- {
- if (type.containsSpecializationSize())
- error(loc, "can't use with types containing arrays sized with a specialization constant", op, "");
- }
- //
- // Layout qualifier stuff.
- //
- // Put the id's layout qualification into the public type, for qualifiers not having a number set.
- // This is before we know any type information for error checking.
- void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id)
- {
- std::transform(id.begin(), id.end(), id.begin(), ::tolower);
- if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) {
- qualifier.layoutMatrix = ElmRowMajor;
- return;
- }
- if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) {
- qualifier.layoutMatrix = ElmColumnMajor;
- return;
- }
- if (id == "push_constant") {
- requireVulkan(loc, "push_constant");
- qualifier.layoutPushConstant = true;
- return;
- }
- if (language == EShLangGeometry || language == EShLangTessEvaluation) {
- if (id == TQualifier::getGeometryString(ElgTriangles)) {
- // publicType.shaderQualifiers.geometry = ElgTriangles;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (language == EShLangGeometry) {
- if (id == TQualifier::getGeometryString(ElgPoints)) {
- // publicType.shaderQualifiers.geometry = ElgPoints;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgLineStrip)) {
- // publicType.shaderQualifiers.geometry = ElgLineStrip;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgLines)) {
- // publicType.shaderQualifiers.geometry = ElgLines;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) {
- // publicType.shaderQualifiers.geometry = ElgLinesAdjacency;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) {
- // publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgTriangleStrip)) {
- // publicType.shaderQualifiers.geometry = ElgTriangleStrip;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- } else {
- assert(language == EShLangTessEvaluation);
- // input primitive
- if (id == TQualifier::getGeometryString(ElgTriangles)) {
- // publicType.shaderQualifiers.geometry = ElgTriangles;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgQuads)) {
- // publicType.shaderQualifiers.geometry = ElgQuads;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getGeometryString(ElgIsolines)) {
- // publicType.shaderQualifiers.geometry = ElgIsolines;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- // vertex spacing
- if (id == TQualifier::getVertexSpacingString(EvsEqual)) {
- // publicType.shaderQualifiers.spacing = EvsEqual;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) {
- // publicType.shaderQualifiers.spacing = EvsFractionalEven;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) {
- // publicType.shaderQualifiers.spacing = EvsFractionalOdd;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- // triangle order
- if (id == TQualifier::getVertexOrderString(EvoCw)) {
- // publicType.shaderQualifiers.order = EvoCw;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == TQualifier::getVertexOrderString(EvoCcw)) {
- // publicType.shaderQualifiers.order = EvoCcw;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- // point mode
- if (id == "point_mode") {
- // publicType.shaderQualifiers.pointMode = true;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- }
- }
- if (language == EShLangFragment) {
- if (id == "origin_upper_left") {
- // publicType.shaderQualifiers.originUpperLeft = true;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "pixel_center_integer") {
- // publicType.shaderQualifiers.pixelCenterInteger = true;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "early_fragment_tests") {
- // publicType.shaderQualifiers.earlyFragmentTests = true;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth + 1)) {
- if (id == TQualifier::getLayoutDepthString(depth)) {
- // publicType.shaderQualifiers.layoutDepth = depth;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- }
- if (id.compare(0, 13, "blend_support") == 0) {
- bool found = false;
- for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) {
- if (id == TQualifier::getBlendEquationString(be)) {
- requireExtensions(loc, 1, &E_GL_KHR_blend_equation_advanced, "blend equation");
- intermediate.addBlendEquation(be);
- // publicType.shaderQualifiers.blendEquation = true;
- warn(loc, "ignored", id.c_str(), "");
- found = true;
- break;
- }
- }
- if (! found)
- error(loc, "unknown blend equation", "blend_support", "");
- return;
- }
- }
- error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), "");
- }
- // Put the id's layout qualifier value into the public type, for qualifiers having a number set.
- // This is before we know any type information for error checking.
- void HlslParseContext::setLayoutQualifier(const TSourceLoc& loc, TQualifier& qualifier, TString& id,
- const TIntermTyped* node)
- {
- const char* feature = "layout-id value";
- // const char* nonLiteralFeature = "non-literal layout-id value";
- integerCheck(node, feature);
- const TIntermConstantUnion* constUnion = node->getAsConstantUnion();
- int value = 0;
- if (constUnion) {
- value = constUnion->getConstArray()[0].getIConst();
- }
- std::transform(id.begin(), id.end(), id.begin(), ::tolower);
- if (id == "offset") {
- qualifier.layoutOffset = value;
- return;
- } else if (id == "align") {
- // "The specified alignment must be a power of 2, or a compile-time error results."
- if (! IsPow2(value))
- error(loc, "must be a power of 2", "align", "");
- else
- qualifier.layoutAlign = value;
- return;
- } else if (id == "location") {
- if ((unsigned int)value >= TQualifier::layoutLocationEnd)
- error(loc, "location is too large", id.c_str(), "");
- else
- qualifier.layoutLocation = value;
- return;
- } else if (id == "set") {
- if ((unsigned int)value >= TQualifier::layoutSetEnd)
- error(loc, "set is too large", id.c_str(), "");
- else
- qualifier.layoutSet = value;
- return;
- } else if (id == "binding") {
- if ((unsigned int)value >= TQualifier::layoutBindingEnd)
- error(loc, "binding is too large", id.c_str(), "");
- else
- qualifier.layoutBinding = value;
- return;
- } else if (id == "component") {
- if ((unsigned)value >= TQualifier::layoutComponentEnd)
- error(loc, "component is too large", id.c_str(), "");
- else
- qualifier.layoutComponent = value;
- return;
- } else if (id.compare(0, 4, "xfb_") == 0) {
- // "Any shader making any static use (after preprocessing) of any of these
- // *xfb_* qualifiers will cause the shader to be in a transform feedback
- // capturing mode and hence responsible for describing the transform feedback
- // setup."
- intermediate.setXfbMode();
- if (id == "xfb_buffer") {
- // "It is a compile-time error to specify an *xfb_buffer* that is greater than
- // the implementation-dependent constant gl_MaxTransformFeedbackBuffers."
- if (value >= resources.maxTransformFeedbackBuffers)
- error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d",
- resources.maxTransformFeedbackBuffers);
- if (value >= (int)TQualifier::layoutXfbBufferEnd)
- error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd - 1);
- else
- qualifier.layoutXfbBuffer = value;
- return;
- } else if (id == "xfb_offset") {
- if (value >= (int)TQualifier::layoutXfbOffsetEnd)
- error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd - 1);
- else
- qualifier.layoutXfbOffset = value;
- return;
- } else if (id == "xfb_stride") {
- // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
- // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
- if (value > 4 * resources.maxTransformFeedbackInterleavedComponents)
- error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d",
- resources.maxTransformFeedbackInterleavedComponents);
- else if (value >= (int)TQualifier::layoutXfbStrideEnd)
- error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd - 1);
- if (value < (int)TQualifier::layoutXfbStrideEnd)
- qualifier.layoutXfbStride = value;
- return;
- }
- }
- if (id == "input_attachment_index") {
- requireVulkan(loc, "input_attachment_index");
- if (value >= (int)TQualifier::layoutAttachmentEnd)
- error(loc, "attachment index is too large", id.c_str(), "");
- else
- qualifier.layoutAttachment = value;
- return;
- }
- if (id == "constant_id") {
- setSpecConstantId(loc, qualifier, value);
- return;
- }
- switch (language) {
- case EShLangVertex:
- break;
- case EShLangTessControl:
- if (id == "vertices") {
- if (value == 0)
- error(loc, "must be greater than 0", "vertices", "");
- else
- // publicType.shaderQualifiers.vertices = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- break;
- case EShLangTessEvaluation:
- break;
- case EShLangGeometry:
- if (id == "invocations") {
- if (value == 0)
- error(loc, "must be at least 1", "invocations", "");
- else
- // publicType.shaderQualifiers.invocations = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "max_vertices") {
- // publicType.shaderQualifiers.vertices = value;
- warn(loc, "ignored", id.c_str(), "");
- if (value > resources.maxGeometryOutputVertices)
- error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", "");
- return;
- }
- if (id == "stream") {
- qualifier.layoutStream = value;
- return;
- }
- break;
- case EShLangFragment:
- if (id == "index") {
- qualifier.layoutIndex = value;
- return;
- }
- break;
- case EShLangCompute:
- if (id.compare(0, 11, "local_size_") == 0) {
- if (id == "local_size_x") {
- // publicType.shaderQualifiers.localSize[0] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "local_size_y") {
- // publicType.shaderQualifiers.localSize[1] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "local_size_z") {
- // publicType.shaderQualifiers.localSize[2] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (spvVersion.spv != 0) {
- if (id == "local_size_x_id") {
- // publicType.shaderQualifiers.localSizeSpecId[0] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "local_size_y_id") {
- // publicType.shaderQualifiers.localSizeSpecId[1] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- if (id == "local_size_z_id") {
- // publicType.shaderQualifiers.localSizeSpecId[2] = value;
- warn(loc, "ignored", id.c_str(), "");
- return;
- }
- }
- }
- break;
- default:
- break;
- }
- error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), "");
- }
- void HlslParseContext::setSpecConstantId(const TSourceLoc& loc, TQualifier& qualifier, int value)
- {
- if (value >= (int)TQualifier::layoutSpecConstantIdEnd) {
- error(loc, "specialization-constant id is too large", "constant_id", "");
- } else {
- qualifier.layoutSpecConstantId = value;
- qualifier.specConstant = true;
- if (! intermediate.addUsedConstantId(value))
- error(loc, "specialization-constant id already used", "constant_id", "");
- }
- return;
- }
- // Merge any layout qualifier information from src into dst, leaving everything else in dst alone
- //
- // "More than one layout qualifier may appear in a single declaration.
- // Additionally, the same layout-qualifier-name can occur multiple times
- // within a layout qualifier or across multiple layout qualifiers in the
- // same declaration. When the same layout-qualifier-name occurs
- // multiple times, in a single declaration, the last occurrence overrides
- // the former occurrence(s). Further, if such a layout-qualifier-name
- // will effect subsequent declarations or other observable behavior, it
- // is only the last occurrence that will have any effect, behaving as if
- // the earlier occurrence(s) within the declaration are not present.
- // This is also true for overriding layout-qualifier-names, where one
- // overrides the other (e.g., row_major vs. column_major); only the last
- // occurrence has any effect."
- //
- void HlslParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly)
- {
- if (src.hasMatrix())
- dst.layoutMatrix = src.layoutMatrix;
- if (src.hasPacking())
- dst.layoutPacking = src.layoutPacking;
- if (src.hasStream())
- dst.layoutStream = src.layoutStream;
- if (src.hasFormat())
- dst.layoutFormat = src.layoutFormat;
- if (src.hasXfbBuffer())
- dst.layoutXfbBuffer = src.layoutXfbBuffer;
- if (src.hasAlign())
- dst.layoutAlign = src.layoutAlign;
- if (! inheritOnly) {
- if (src.hasLocation())
- dst.layoutLocation = src.layoutLocation;
- if (src.hasComponent())
- dst.layoutComponent = src.layoutComponent;
- if (src.hasIndex())
- dst.layoutIndex = src.layoutIndex;
- if (src.hasOffset())
- dst.layoutOffset = src.layoutOffset;
- if (src.hasSet())
- dst.layoutSet = src.layoutSet;
- if (src.layoutBinding != TQualifier::layoutBindingEnd)
- dst.layoutBinding = src.layoutBinding;
- if (src.hasXfbStride())
- dst.layoutXfbStride = src.layoutXfbStride;
- if (src.hasXfbOffset())
- dst.layoutXfbOffset = src.layoutXfbOffset;
- if (src.hasAttachment())
- dst.layoutAttachment = src.layoutAttachment;
- if (src.hasSpecConstantId())
- dst.layoutSpecConstantId = src.layoutSpecConstantId;
- if (src.layoutPushConstant)
- dst.layoutPushConstant = true;
- }
- }
- //
- // Look up a function name in the symbol table, and make sure it is a function.
- //
- // First, look for an exact match. If there is none, use the generic selector
- // TParseContextBase::selectFunction() to find one, parameterized by the
- // convertible() and better() predicates defined below.
- //
- // Return the function symbol if found, otherwise nullptr.
- //
- const TFunction* HlslParseContext::findFunction(const TSourceLoc& loc, TFunction& call, bool& builtIn, int& thisDepth,
- TIntermTyped*& args)
- {
- if (symbolTable.isFunctionNameVariable(call.getName())) {
- error(loc, "can't use function syntax on variable", call.getName().c_str(), "");
- return nullptr;
- }
- // first, look for an exact match
- bool dummyScope;
- TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn, &dummyScope, &thisDepth);
- if (symbol)
- return symbol->getAsFunction();
- // no exact match, use the generic selector, parameterized by the GLSL rules
- // create list of candidates to send
- TVector<const TFunction*> candidateList;
- symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn);
- // These built-in ops can accept any type, so we bypass the argument selection
- if (candidateList.size() == 1 && builtIn &&
- (candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
- candidateList[0]->getBuiltInOp() == EOpMethodRestartStrip ||
- candidateList[0]->getBuiltInOp() == EOpMethodIncrementCounter ||
- candidateList[0]->getBuiltInOp() == EOpMethodDecrementCounter ||
- candidateList[0]->getBuiltInOp() == EOpMethodAppend ||
- candidateList[0]->getBuiltInOp() == EOpMethodConsume)) {
- return candidateList[0];
- }
- bool allowOnlyUpConversions = true;
- // can 'from' convert to 'to'?
- const auto convertible = [&](const TType& from, const TType& to, TOperator op, int arg) -> bool {
- if (from == to)
- return true;
- // no aggregate conversions
- if (from.isArray() || to.isArray() ||
- from.isStruct() || to.isStruct())
- return false;
- switch (op) {
- case EOpInterlockedAdd:
- case EOpInterlockedAnd:
- case EOpInterlockedCompareExchange:
- case EOpInterlockedCompareStore:
- case EOpInterlockedExchange:
- case EOpInterlockedMax:
- case EOpInterlockedMin:
- case EOpInterlockedOr:
- case EOpInterlockedXor:
- // We do not promote the texture or image type for these ocodes. Normally that would not
- // be an issue because it's a buffer, but we haven't decomposed the opcode yet, and at this
- // stage it's merely e.g, a basic integer type.
- //
- // Instead, we want to promote other arguments, but stay within the same family. In other
- // words, InterlockedAdd(RWBuffer<int>, ...) will always use the int flavor, never the uint flavor,
- // but it is allowed to promote its other arguments.
- if (arg == 0)
- return false;
- break;
- case EOpMethodSample:
- case EOpMethodSampleBias:
- case EOpMethodSampleCmp:
- case EOpMethodSampleCmpLevelZero:
- case EOpMethodSampleGrad:
- case EOpMethodSampleLevel:
- case EOpMethodLoad:
- case EOpMethodGetDimensions:
- case EOpMethodGetSamplePosition:
- case EOpMethodGather:
- case EOpMethodCalculateLevelOfDetail:
- case EOpMethodCalculateLevelOfDetailUnclamped:
- case EOpMethodGatherRed:
- case EOpMethodGatherGreen:
- case EOpMethodGatherBlue:
- case EOpMethodGatherAlpha:
- case EOpMethodGatherCmp:
- case EOpMethodGatherCmpRed:
- case EOpMethodGatherCmpGreen:
- case EOpMethodGatherCmpBlue:
- case EOpMethodGatherCmpAlpha:
- case EOpMethodAppend:
- case EOpMethodRestartStrip:
- // those are method calls, the object type can not be changed
- // they are equal if the dim and type match (is dim sufficient?)
- if (arg == 0)
- return from.getSampler().type == to.getSampler().type &&
- from.getSampler().arrayed == to.getSampler().arrayed &&
- from.getSampler().shadow == to.getSampler().shadow &&
- from.getSampler().ms == to.getSampler().ms &&
- from.getSampler().dim == to.getSampler().dim;
- break;
- default:
- break;
- }
- // basic types have to be convertible
- if (allowOnlyUpConversions)
- if (! intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType(), EOpFunctionCall))
- return false;
- // shapes have to be convertible
- if ((from.isScalarOrVec1() && to.isScalarOrVec1()) ||
- (from.isScalarOrVec1() && to.isVector()) ||
- (from.isScalarOrVec1() && to.isMatrix()) ||
- (from.isVector() && to.isVector() && from.getVectorSize() >= to.getVectorSize()))
- return true;
- // TODO: what are the matrix rules? they go here
- return false;
- };
- // Is 'to2' a better conversion than 'to1'?
- // Ties should not be considered as better.
- // Assumes 'convertible' already said true.
- const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool {
- // exact match is always better than mismatch
- if (from == to2)
- return from != to1;
- if (from == to1)
- return false;
- // shape changes are always worse
- if (from.isScalar() || from.isVector()) {
- if (from.getVectorSize() == to2.getVectorSize() &&
- from.getVectorSize() != to1.getVectorSize())
- return true;
- if (from.getVectorSize() == to1.getVectorSize() &&
- from.getVectorSize() != to2.getVectorSize())
- return false;
- }
- // Handle sampler betterness: An exact sampler match beats a non-exact match.
- // (If we just looked at basic type, all EbtSamplers would look the same).
- // If any type is not a sampler, just use the linearize function below.
- if (from.getBasicType() == EbtSampler && to1.getBasicType() == EbtSampler && to2.getBasicType() == EbtSampler) {
- // We can ignore the vector size in the comparison.
- TSampler to1Sampler = to1.getSampler();
- TSampler to2Sampler = to2.getSampler();
- to1Sampler.vectorSize = to2Sampler.vectorSize = from.getSampler().vectorSize;
- if (from.getSampler() == to2Sampler)
- return from.getSampler() != to1Sampler;
- if (from.getSampler() == to1Sampler)
- return false;
- }
- // Might or might not be changing shape, which means basic type might
- // or might not match, so within that, the question is how big a
- // basic-type conversion is being done.
- //
- // Use a hierarchy of domains, translated to order of magnitude
- // in a linearized view:
- // - floating-point vs. integer
- // - 32 vs. 64 bit (or width in general)
- // - bool vs. non bool
- // - signed vs. not signed
- const auto linearize = [](const TBasicType& basicType) -> int {
- switch (basicType) {
- case EbtBool: return 1;
- case EbtInt: return 10;
- case EbtUint: return 11;
- case EbtInt64: return 20;
- case EbtUint64: return 21;
- case EbtFloat: return 100;
- case EbtDouble: return 110;
- default: return 0;
- }
- };
- return abs(linearize(to2.getBasicType()) - linearize(from.getBasicType())) <
- abs(linearize(to1.getBasicType()) - linearize(from.getBasicType()));
- };
- // for ambiguity reporting
- bool tie = false;
- // send to the generic selector
- const TFunction* bestMatch = nullptr;
- // printf has var args and is in the symbol table as "printf()",
- // mangled to "printf("
- if (call.getName() == "printf") {
- TSymbol* symbol = symbolTable.find("printf(", &builtIn);
- if (symbol)
- return symbol->getAsFunction();
- }
- bestMatch = selectFunction(candidateList, call, convertible, better, tie);
- if (bestMatch == nullptr) {
- // If there is nothing selected by allowing only up-conversions (to a larger linearize() value),
- // we instead try down-conversions, which are valid in HLSL, but not preferred if there are any
- // upconversions possible.
- allowOnlyUpConversions = false;
- bestMatch = selectFunction(candidateList, call, convertible, better, tie);
- }
- if (bestMatch == nullptr) {
- error(loc, "no matching overloaded function found", call.getName().c_str(), "");
- return nullptr;
- }
- // For built-ins, we can convert across the arguments. This will happen in several steps:
- // Step 1: If there's an exact match, use it.
- // Step 2a: Otherwise, get the operator from the best match and promote arguments:
- // Step 2b: reconstruct the TFunction based on the new arg types
- // Step 3: Re-select after type promotion is applied, to find proper candidate.
- if (builtIn) {
- // Step 1: If there's an exact match, use it.
- if (call.getMangledName() == bestMatch->getMangledName())
- return bestMatch;
- // Step 2a: Otherwise, get the operator from the best match and promote arguments as if we
- // are that kind of operator.
- if (args != nullptr) {
- // The arg list can be a unary node, or an aggregate. We have to handle both.
- // We will use the normal promote() facilities, which require an interm node.
- TIntermOperator* promote = nullptr;
- if (call.getParamCount() == 1) {
- promote = new TIntermUnary(bestMatch->getBuiltInOp());
- promote->getAsUnaryNode()->setOperand(args->getAsTyped());
- } else {
- promote = new TIntermAggregate(bestMatch->getBuiltInOp());
- promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
- }
- if (! intermediate.promote(promote))
- return nullptr;
- // Obtain the promoted arg list.
- if (call.getParamCount() == 1) {
- args = promote->getAsUnaryNode()->getOperand();
- } else {
- promote->getAsAggregate()->getSequence().swap(args->getAsAggregate()->getSequence());
- }
- }
- // Step 2b: reconstruct the TFunction based on the new arg types
- TFunction convertedCall(&call.getName(), call.getType(), call.getBuiltInOp());
- if (args->getAsAggregate()) {
- // Handle aggregates: put all args into the new function call
- for (int arg = 0; arg < int(args->getAsAggregate()->getSequence().size()); ++arg) {
- // TODO: But for constness, we could avoid the new & shallowCopy, and use the pointer directly.
- TParameter param = { 0, new TType, nullptr };
- param.type->shallowCopy(args->getAsAggregate()->getSequence()[arg]->getAsTyped()->getType());
- convertedCall.addParameter(param);
- }
- } else if (args->getAsUnaryNode()) {
- // Handle unaries: put all args into the new function call
- TParameter param = { 0, new TType, nullptr };
- param.type->shallowCopy(args->getAsUnaryNode()->getOperand()->getAsTyped()->getType());
- convertedCall.addParameter(param);
- } else if (args->getAsTyped()) {
- // Handle bare e.g, floats, not in an aggregate.
- TParameter param = { 0, new TType, nullptr };
- param.type->shallowCopy(args->getAsTyped()->getType());
- convertedCall.addParameter(param);
- } else {
- assert(0); // unknown argument list.
- return nullptr;
- }
- // Step 3: Re-select after type promotion, to find proper candidate
- // send to the generic selector
- bestMatch = selectFunction(candidateList, convertedCall, convertible, better, tie);
- // At this point, there should be no tie.
- }
- if (tie)
- error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), "");
- // Append default parameter values if needed
- if (!tie && bestMatch != nullptr) {
- for (int defParam = call.getParamCount(); defParam < bestMatch->getParamCount(); ++defParam) {
- handleFunctionArgument(&call, args, (*bestMatch)[defParam].defaultValue);
- }
- }
- return bestMatch;
- }
- //
- // Do everything necessary to handle a typedef declaration, for a single symbol.
- //
- // 'parseType' is the type part of the declaration (to the left)
- // 'arraySizes' is the arrayness tagged on the identifier (to the right)
- //
- void HlslParseContext::declareTypedef(const TSourceLoc& loc, const TString& identifier, const TType& parseType)
- {
- TVariable* typeSymbol = new TVariable(&identifier, parseType, true);
- if (! symbolTable.insert(*typeSymbol))
- error(loc, "name already defined", "typedef", identifier.c_str());
- }
- // Do everything necessary to handle a struct declaration, including
- // making IO aliases because HLSL allows mixed IO in a struct that specializes
- // based on the usage (input, output, uniform, none).
- void HlslParseContext::declareStruct(const TSourceLoc& loc, TString& structName, TType& type)
- {
- // If it was named, which means the type can be reused later, add
- // it to the symbol table. (Unless it's a block, in which
- // case the name is not a type.)
- if (type.getBasicType() == EbtBlock || structName.size() == 0)
- return;
- TVariable* userTypeDef = new TVariable(&structName, type, true);
- if (! symbolTable.insert(*userTypeDef)) {
- error(loc, "redefinition", structName.c_str(), "struct");
- return;
- }
- // See if we need IO aliases for the structure typeList
- const auto condAlloc = [](bool pred, TTypeList*& list) {
- if (pred && list == nullptr)
- list = new TTypeList;
- };
- tIoKinds newLists = { nullptr, nullptr, nullptr }; // allocate for each kind found
- for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
- condAlloc(hasUniform(member->type->getQualifier()), newLists.uniform);
- condAlloc( hasInput(member->type->getQualifier()), newLists.input);
- condAlloc( hasOutput(member->type->getQualifier()), newLists.output);
- if (member->type->isStruct()) {
- auto it = ioTypeMap.find(member->type->getStruct());
- if (it != ioTypeMap.end()) {
- condAlloc(it->second.uniform != nullptr, newLists.uniform);
- condAlloc(it->second.input != nullptr, newLists.input);
- condAlloc(it->second.output != nullptr, newLists.output);
- }
- }
- }
- if (newLists.uniform == nullptr &&
- newLists.input == nullptr &&
- newLists.output == nullptr) {
- // Won't do any IO caching, clear up the type and get out now.
- for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member)
- clearUniformInputOutput(member->type->getQualifier());
- return;
- }
- // We have IO involved.
- // Make a pure typeList for the symbol table, and cache side copies of IO versions.
- for (auto member = type.getStruct()->begin(); member != type.getStruct()->end(); ++member) {
- const auto inheritStruct = [&](TTypeList* s, TTypeLoc& ioMember) {
- if (s != nullptr) {
- ioMember.type = new TType;
- ioMember.type->shallowCopy(*member->type);
- ioMember.type->setStruct(s);
- }
- };
- const auto newMember = [&](TTypeLoc& m) {
- if (m.type == nullptr) {
- m.type = new TType;
- m.type->shallowCopy(*member->type);
- }
- };
- TTypeLoc newUniformMember = { nullptr, member->loc };
- TTypeLoc newInputMember = { nullptr, member->loc };
- TTypeLoc newOutputMember = { nullptr, member->loc };
- if (member->type->isStruct()) {
- // swap in an IO child if there is one
- auto it = ioTypeMap.find(member->type->getStruct());
- if (it != ioTypeMap.end()) {
- inheritStruct(it->second.uniform, newUniformMember);
- inheritStruct(it->second.input, newInputMember);
- inheritStruct(it->second.output, newOutputMember);
- }
- }
- if (newLists.uniform) {
- newMember(newUniformMember);
- // inherit default matrix layout (changeable via #pragma pack_matrix), if none given.
- if (member->type->isMatrix() && member->type->getQualifier().layoutMatrix == ElmNone)
- newUniformMember.type->getQualifier().layoutMatrix = globalUniformDefaults.layoutMatrix;
- correctUniform(newUniformMember.type->getQualifier());
- newLists.uniform->push_back(newUniformMember);
- }
- if (newLists.input) {
- newMember(newInputMember);
- correctInput(newInputMember.type->getQualifier());
- newLists.input->push_back(newInputMember);
- }
- if (newLists.output) {
- newMember(newOutputMember);
- correctOutput(newOutputMember.type->getQualifier());
- newLists.output->push_back(newOutputMember);
- }
- // make original pure
- clearUniformInputOutput(member->type->getQualifier());
- }
- ioTypeMap[type.getStruct()] = newLists;
- }
- // Lookup a user-type by name.
- // If found, fill in the type and return the defining symbol.
- // If not found, return nullptr.
- TSymbol* HlslParseContext::lookupUserType(const TString& typeName, TType& type)
- {
- TSymbol* symbol = symbolTable.find(typeName);
- if (symbol && symbol->getAsVariable() && symbol->getAsVariable()->isUserType()) {
- type.shallowCopy(symbol->getType());
- return symbol;
- } else
- return nullptr;
- }
- //
- // Do everything necessary to handle a variable (non-block) declaration.
- // Either redeclaring a variable, or making a new one, updating the symbol
- // table, and all error checking.
- //
- // Returns a subtree node that computes an initializer, if needed.
- // Returns nullptr if there is no code to execute for initialization.
- //
- // 'parseType' is the type part of the declaration (to the left)
- // 'arraySizes' is the arrayness tagged on the identifier (to the right)
- //
- TIntermNode* HlslParseContext::declareVariable(const TSourceLoc& loc, const TString& identifier, TType& type,
- TIntermTyped* initializer)
- {
- if (voidErrorCheck(loc, identifier, type.getBasicType()))
- return nullptr;
- // Global consts with initializers that are non-const act like EvqGlobal in HLSL.
- // This test is implicitly recursive, because initializers propagate constness
- // up the aggregate node tree during creation. E.g, for:
- // { { 1, 2 }, { 3, 4 } }
- // the initializer list is marked EvqConst at the top node, and remains so here. However:
- // { 1, { myvar, 2 }, 3 }
- // is not a const intializer, and still becomes EvqGlobal here.
- const bool nonConstInitializer = (initializer != nullptr && initializer->getQualifier().storage != EvqConst);
- if (type.getQualifier().storage == EvqConst && symbolTable.atGlobalLevel() && nonConstInitializer) {
- // Force to global
- type.getQualifier().storage = EvqGlobal;
- }
- // make const and initialization consistent
- fixConstInit(loc, identifier, type, initializer);
- // Check for redeclaration of built-ins and/or attempting to declare a reserved name
- TSymbol* symbol = nullptr;
- inheritGlobalDefaults(type.getQualifier());
- const bool flattenVar = shouldFlatten(type, type.getQualifier().storage, true);
- // correct IO in the type
- switch (type.getQualifier().storage) {
- case EvqGlobal:
- case EvqTemporary:
- clearUniformInputOutput(type.getQualifier());
- break;
- case EvqUniform:
- case EvqBuffer:
- correctUniform(type.getQualifier());
- if (type.isStruct()) {
- auto it = ioTypeMap.find(type.getStruct());
- if (it != ioTypeMap.end())
- type.setStruct(it->second.uniform);
- }
- break;
- default:
- break;
- }
- // Declare the variable
- if (type.isArray()) {
- // array case
- declareArray(loc, identifier, type, symbol, !flattenVar);
- } else {
- // non-array case
- if (symbol == nullptr)
- symbol = declareNonArray(loc, identifier, type, !flattenVar);
- else if (type != symbol->getType())
- error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str());
- }
- if (symbol == nullptr)
- return nullptr;
- if (flattenVar)
- flatten(*symbol->getAsVariable(), symbolTable.atGlobalLevel());
- if (initializer == nullptr)
- return nullptr;
- // Deal with initializer
- TVariable* variable = symbol->getAsVariable();
- if (variable == nullptr) {
- error(loc, "initializer requires a variable, not a member", identifier.c_str(), "");
- return nullptr;
- }
- return executeInitializer(loc, initializer, variable);
- }
- // Pick up global defaults from the provide global defaults into dst.
- void HlslParseContext::inheritGlobalDefaults(TQualifier& dst) const
- {
- if (dst.storage == EvqVaryingOut) {
- if (! dst.hasStream() && language == EShLangGeometry)
- dst.layoutStream = globalOutputDefaults.layoutStream;
- if (! dst.hasXfbBuffer())
- dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer;
- }
- }
- //
- // Make an internal-only variable whose name is for debug purposes only
- // and won't be searched for. Callers will only use the return value to use
- // the variable, not the name to look it up. It is okay if the name
- // is the same as other names; there won't be any conflict.
- //
- TVariable* HlslParseContext::makeInternalVariable(const char* name, const TType& type) const
- {
- TString* nameString = NewPoolTString(name);
- TVariable* variable = new TVariable(nameString, type);
- symbolTable.makeInternalVariable(*variable);
- return variable;
- }
- // Make a symbol node holding a new internal temporary variable.
- TIntermSymbol* HlslParseContext::makeInternalVariableNode(const TSourceLoc& loc, const char* name,
- const TType& type) const
- {
- TVariable* tmpVar = makeInternalVariable(name, type);
- tmpVar->getWritableType().getQualifier().makeTemporary();
- return intermediate.addSymbol(*tmpVar, loc);
- }
- //
- // Declare a non-array variable, the main point being there is no redeclaration
- // for resizing allowed.
- //
- // Return the successfully declared variable.
- //
- TVariable* HlslParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type,
- bool track)
- {
- // make a new variable
- TVariable* variable = new TVariable(&identifier, type);
- // add variable to symbol table
- if (symbolTable.insert(*variable)) {
- if (track && symbolTable.atGlobalLevel())
- trackLinkage(*variable);
- return variable;
- }
- error(loc, "redefinition", variable->getName().c_str(), "");
- return nullptr;
- }
- //
- // Handle all types of initializers from the grammar.
- //
- // Returning nullptr just means there is no code to execute to handle the
- // initializer, which will, for example, be the case for constant initializers.
- //
- // Returns a subtree that accomplished the initialization.
- //
- TIntermNode* HlslParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable)
- {
- //
- // Identifier must be of type constant, a global, or a temporary, and
- // starting at version 120, desktop allows uniforms to have initializers.
- //
- TStorageQualifier qualifier = variable->getType().getQualifier().storage;
- //
- // If the initializer was from braces { ... }, we convert the whole subtree to a
- // constructor-style subtree, allowing the rest of the code to operate
- // identically for both kinds of initializers.
- //
- //
- // Type can't be deduced from the initializer list, so a skeletal type to
- // follow has to be passed in. Constness and specialization-constness
- // should be deduced bottom up, not dictated by the skeletal type.
- //
- TType skeletalType;
- skeletalType.shallowCopy(variable->getType());
- skeletalType.getQualifier().makeTemporary();
- if (initializer->getAsAggregate() && initializer->getAsAggregate()->getOp() == EOpNull)
- initializer = convertInitializerList(loc, skeletalType, initializer, nullptr);
- if (initializer == nullptr) {
- // error recovery; don't leave const without constant values
- if (qualifier == EvqConst)
- variable->getWritableType().getQualifier().storage = EvqTemporary;
- return nullptr;
- }
- // Fix outer arrayness if variable is unsized, getting size from the initializer
- if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray())
- variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize());
- // Inner arrayness can also get set by an initializer
- if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() &&
- initializer->getType().getArraySizes()->getNumDims() ==
- variable->getType().getArraySizes()->getNumDims()) {
- // adopt unsized sizes from the initializer's sizes
- for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) {
- if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) {
- variable->getWritableType().getArraySizes()->setDimSize(d,
- initializer->getType().getArraySizes()->getDimSize(d));
- }
- }
- }
- // Uniform and global consts require a constant initializer
- if (qualifier == EvqUniform && initializer->getType().getQualifier().storage != EvqConst) {
- error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str());
- variable->getWritableType().getQualifier().storage = EvqTemporary;
- return nullptr;
- }
- // Const variables require a constant initializer
- if (qualifier == EvqConst) {
- if (initializer->getType().getQualifier().storage != EvqConst) {
- variable->getWritableType().getQualifier().storage = EvqConstReadOnly;
- qualifier = EvqConstReadOnly;
- }
- }
- if (qualifier == EvqConst || qualifier == EvqUniform) {
- // Compile-time tagging of the variable with its constant value...
- initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer);
- if (initializer != nullptr && variable->getType() != initializer->getType())
- initializer = intermediate.addUniShapeConversion(EOpAssign, variable->getType(), initializer);
- if (initializer == nullptr || !initializer->getAsConstantUnion() ||
- variable->getType() != initializer->getType()) {
- error(loc, "non-matching or non-convertible constant type for const initializer",
- variable->getType().getStorageQualifierString(), "");
- variable->getWritableType().getQualifier().storage = EvqTemporary;
- return nullptr;
- }
- variable->setConstArray(initializer->getAsConstantUnion()->getConstArray());
- } else {
- // normal assigning of a value to a variable...
- specializationCheck(loc, initializer->getType(), "initializer");
- TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc);
- TIntermNode* initNode = handleAssign(loc, EOpAssign, intermSymbol, initializer);
- if (initNode == nullptr)
- assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
- return initNode;
- }
- return nullptr;
- }
- //
- // Reprocess any initializer-list { ... } parts of the initializer.
- // Need to hierarchically assign correct types and implicit
- // conversions. Will do this mimicking the same process used for
- // creating a constructor-style initializer, ensuring we get the
- // same form.
- //
- // Returns a node representing an expression for the initializer list expressed
- // as the correct type.
- //
- // Returns nullptr if there is an error.
- //
- TIntermTyped* HlslParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type,
- TIntermTyped* initializer, TIntermTyped* scalarInit)
- {
- // Will operate recursively. Once a subtree is found that is constructor style,
- // everything below it is already good: Only the "top part" of the initializer
- // can be an initializer list, where "top part" can extend for several (or all) levels.
- // see if we have bottomed out in the tree within the initializer-list part
- TIntermAggregate* initList = initializer->getAsAggregate();
- if (initList == nullptr || initList->getOp() != EOpNull) {
- // We don't have a list, but if it's a scalar and the 'type' is a
- // composite, we need to lengthen below to make it useful.
- // Otherwise, this is an already formed object to initialize with.
- if (type.isScalar() || !initializer->getType().isScalar())
- return initializer;
- else
- initList = intermediate.makeAggregate(initializer);
- }
- // Of the initializer-list set of nodes, need to process bottom up,
- // so recurse deep, then process on the way up.
- // Go down the tree here...
- if (type.isArray()) {
- // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate.
- // Later on, initializer execution code will deal with array size logic.
- TType arrayType;
- arrayType.shallowCopy(type); // sharing struct stuff is fine
- arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below
- // edit array sizes to fill in unsized dimensions
- if (type.isUnsizedArray())
- arrayType.changeOuterArraySize((int)initList->getSequence().size());
- // set unsized array dimensions that can be derived from the initializer's first element
- if (arrayType.isArrayOfArrays() && initList->getSequence().size() > 0) {
- TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped();
- if (firstInit->getType().isArray() &&
- arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) {
- for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) {
- if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize)
- arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1));
- }
- }
- }
- // lengthen list to be long enough
- lengthenList(loc, initList->getSequence(), arrayType.getOuterArraySize(), scalarInit);
- // recursively process each element
- TType elementType(arrayType, 0); // dereferenced type
- for (int i = 0; i < arrayType.getOuterArraySize(); ++i) {
- initList->getSequence()[i] = convertInitializerList(loc, elementType,
- initList->getSequence()[i]->getAsTyped(), scalarInit);
- if (initList->getSequence()[i] == nullptr)
- return nullptr;
- }
- return addConstructor(loc, initList, arrayType);
- } else if (type.isStruct()) {
- // do we have implicit assignments to opaques?
- for (size_t i = initList->getSequence().size(); i < type.getStruct()->size(); ++i) {
- if ((*type.getStruct())[i].type->containsOpaque()) {
- error(loc, "cannot implicitly initialize opaque members", "initializer list", "");
- return nullptr;
- }
- }
- // lengthen list to be long enough
- lengthenList(loc, initList->getSequence(), static_cast<int>(type.getStruct()->size()), scalarInit);
- if (type.getStruct()->size() != initList->getSequence().size()) {
- error(loc, "wrong number of structure members", "initializer list", "");
- return nullptr;
- }
- for (size_t i = 0; i < type.getStruct()->size(); ++i) {
- initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type,
- initList->getSequence()[i]->getAsTyped(), scalarInit);
- if (initList->getSequence()[i] == nullptr)
- return nullptr;
- }
- } else if (type.isMatrix()) {
- if (type.computeNumComponents() == (int)initList->getSequence().size()) {
- // This means the matrix is initialized component-wise, rather than as
- // a series of rows and columns. We can just use the list directly as
- // a constructor; no further processing needed.
- } else {
- // lengthen list to be long enough
- lengthenList(loc, initList->getSequence(), type.getMatrixCols(), scalarInit);
- if (type.getMatrixCols() != (int)initList->getSequence().size()) {
- error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str());
- return nullptr;
- }
- TType vectorType(type, 0); // dereferenced type
- for (int i = 0; i < type.getMatrixCols(); ++i) {
- initList->getSequence()[i] = convertInitializerList(loc, vectorType,
- initList->getSequence()[i]->getAsTyped(), scalarInit);
- if (initList->getSequence()[i] == nullptr)
- return nullptr;
- }
- }
- } else if (type.isVector()) {
- // lengthen list to be long enough
- lengthenList(loc, initList->getSequence(), type.getVectorSize(), scalarInit);
- // error check; we're at bottom, so work is finished below
- if (type.getVectorSize() != (int)initList->getSequence().size()) {
- error(loc, "wrong vector size (or rows in a matrix column):", "initializer list",
- type.getCompleteString().c_str());
- return nullptr;
- }
- } else if (type.isScalar()) {
- // lengthen list to be long enough
- lengthenList(loc, initList->getSequence(), 1, scalarInit);
- if ((int)initList->getSequence().size() != 1) {
- error(loc, "scalar expected one element:", "initializer list", type.getCompleteString().c_str());
- return nullptr;
- }
- } else {
- error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str());
- return nullptr;
- }
- // Now that the subtree is processed, process this node as if the
- // initializer list is a set of arguments to a constructor.
- TIntermTyped* emulatedConstructorArguments;
- if (initList->getSequence().size() == 1)
- emulatedConstructorArguments = initList->getSequence()[0]->getAsTyped();
- else
- emulatedConstructorArguments = initList;
- return addConstructor(loc, emulatedConstructorArguments, type);
- }
- // Lengthen list to be long enough to cover any gap from the current list size
- // to 'size'. If the list is longer, do nothing.
- // The value to lengthen with is the default for short lists.
- //
- // By default, lists that are too short due to lack of initializers initialize to zero.
- // Alternatively, it could be a scalar initializer for a structure. Both cases are handled,
- // based on whether something is passed in as 'scalarInit'.
- //
- // 'scalarInit' must be safe to use each time this is called (no side effects replication).
- //
- void HlslParseContext::lengthenList(const TSourceLoc& loc, TIntermSequence& list, int size, TIntermTyped* scalarInit)
- {
- for (int c = (int)list.size(); c < size; ++c) {
- if (scalarInit == nullptr)
- list.push_back(intermediate.addConstantUnion(0, loc));
- else
- list.push_back(scalarInit);
- }
- }
- //
- // Test for the correctness of the parameters passed to various constructor functions
- // and also convert them to the right data type, if allowed and required.
- //
- // Returns nullptr for an error or the constructed node (aggregate or typed) for no error.
- //
- TIntermTyped* HlslParseContext::handleConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
- {
- if (node == nullptr)
- return nullptr;
- // Construct identical type
- if (type == node->getType())
- return node;
- // Handle the idiom "(struct type)<scalar value>"
- if (type.isStruct() && isScalarConstructor(node)) {
- // 'node' will almost always get used multiple times, so should not be used directly,
- // it would create a DAG instead of a tree, which might be okay (would
- // like to formalize that for constants and symbols), but if it has
- // side effects, they would get executed multiple times, which is not okay.
- if (node->getAsConstantUnion() == nullptr && node->getAsSymbolNode() == nullptr) {
- TIntermAggregate* seq = intermediate.makeAggregate(loc);
- TIntermSymbol* copy = makeInternalVariableNode(loc, "scalarCopy", node->getType());
- seq = intermediate.growAggregate(seq, intermediate.addBinaryNode(EOpAssign, copy, node, loc));
- seq = intermediate.growAggregate(seq, convertInitializerList(loc, type, intermediate.makeAggregate(loc), copy));
- seq->setOp(EOpComma);
- seq->setType(type);
- return seq;
- } else
- return convertInitializerList(loc, type, intermediate.makeAggregate(loc), node);
- }
- return addConstructor(loc, node, type);
- }
- // Add a constructor, either from the grammar, or other programmatic reasons.
- //
- // 'node' is what to construct from.
- // 'type' is what type to construct.
- //
- // Returns the constructed object.
- // Return nullptr if it can't be done.
- //
- TIntermTyped* HlslParseContext::addConstructor(const TSourceLoc& loc, TIntermTyped* node, const TType& type)
- {
- TIntermAggregate* aggrNode = node->getAsAggregate();
- TOperator op = intermediate.mapTypeToConstructorOp(type);
- if (op == EOpConstructTextureSampler)
- return intermediate.setAggregateOperator(aggrNode, op, type, loc);
- TTypeList::const_iterator memberTypes;
- if (op == EOpConstructStruct)
- memberTypes = type.getStruct()->begin();
- TType elementType;
- if (type.isArray()) {
- TType dereferenced(type, 0);
- elementType.shallowCopy(dereferenced);
- } else
- elementType.shallowCopy(type);
- bool singleArg;
- if (aggrNode != nullptr) {
- if (aggrNode->getOp() != EOpNull)
- singleArg = true;
- else
- singleArg = false;
- } else
- singleArg = true;
- TIntermTyped *newNode;
- if (singleArg) {
- // Handle array -> array conversion
- // Constructing an array of one type from an array of another type is allowed,
- // assuming there are enough components available (semantic-checked earlier).
- if (type.isArray() && node->isArray())
- newNode = convertArray(node, type);
- // If structure constructor or array constructor is being called
- // for only one parameter inside the aggregate, we need to call constructAggregate function once.
- else if (type.isArray())
- newNode = constructAggregate(node, elementType, 1, node->getLoc());
- else if (op == EOpConstructStruct)
- newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc());
- else {
- // shape conversion for matrix constructor from scalar. HLSL semantics are: scalar
- // is replicated into every element of the matrix (not just the diagnonal), so
- // that is handled specially here.
- if (type.isMatrix() && node->getType().isScalarOrVec1())
- node = intermediate.addShapeConversion(type, node);
- newNode = constructBuiltIn(type, op, node, node->getLoc(), false);
- }
- if (newNode && (type.isArray() || op == EOpConstructStruct))
- newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc);
- return newNode;
- }
- //
- // Handle list of arguments.
- //
- TIntermSequence& sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor
- // if the structure constructor contains more than one parameter, then construct
- // each parameter
- int paramCount = 0; // keeps a track of the constructor parameter number being checked
- // for each parameter to the constructor call, check to see if the right type is passed or convert them
- // to the right type if possible (and allowed).
- // for structure constructors, just check if the right type is passed, no conversion is allowed.
- for (TIntermSequence::iterator p = sequenceVector.begin();
- p != sequenceVector.end(); p++, paramCount++) {
- if (type.isArray())
- newNode = constructAggregate(*p, elementType, paramCount + 1, node->getLoc());
- else if (op == EOpConstructStruct)
- newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount + 1, node->getLoc());
- else
- newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true);
- if (newNode)
- *p = newNode;
- else
- return nullptr;
- }
- TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, type, loc);
- return constructor;
- }
- // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
- // for the parameter to the constructor (passed to this function). Essentially, it converts
- // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
- // float, then float is converted to int.
- //
- // Returns nullptr for an error or the constructed node.
- //
- TIntermTyped* HlslParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node,
- const TSourceLoc& loc, bool subset)
- {
- TIntermTyped* newNode;
- TOperator basicOp;
- //
- // First, convert types as needed.
- //
- switch (op) {
- case EOpConstructF16Vec2:
- case EOpConstructF16Vec3:
- case EOpConstructF16Vec4:
- case EOpConstructF16Mat2x2:
- case EOpConstructF16Mat2x3:
- case EOpConstructF16Mat2x4:
- case EOpConstructF16Mat3x2:
- case EOpConstructF16Mat3x3:
- case EOpConstructF16Mat3x4:
- case EOpConstructF16Mat4x2:
- case EOpConstructF16Mat4x3:
- case EOpConstructF16Mat4x4:
- case EOpConstructFloat16:
- basicOp = EOpConstructFloat16;
- break;
- case EOpConstructVec2:
- case EOpConstructVec3:
- case EOpConstructVec4:
- case EOpConstructMat2x2:
- case EOpConstructMat2x3:
- case EOpConstructMat2x4:
- case EOpConstructMat3x2:
- case EOpConstructMat3x3:
- case EOpConstructMat3x4:
- case EOpConstructMat4x2:
- case EOpConstructMat4x3:
- case EOpConstructMat4x4:
- case EOpConstructFloat:
- basicOp = EOpConstructFloat;
- break;
- case EOpConstructDVec2:
- case EOpConstructDVec3:
- case EOpConstructDVec4:
- case EOpConstructDMat2x2:
- case EOpConstructDMat2x3:
- case EOpConstructDMat2x4:
- case EOpConstructDMat3x2:
- case EOpConstructDMat3x3:
- case EOpConstructDMat3x4:
- case EOpConstructDMat4x2:
- case EOpConstructDMat4x3:
- case EOpConstructDMat4x4:
- case EOpConstructDouble:
- basicOp = EOpConstructDouble;
- break;
- case EOpConstructI16Vec2:
- case EOpConstructI16Vec3:
- case EOpConstructI16Vec4:
- case EOpConstructInt16:
- basicOp = EOpConstructInt16;
- break;
- case EOpConstructIVec2:
- case EOpConstructIVec3:
- case EOpConstructIVec4:
- case EOpConstructIMat2x2:
- case EOpConstructIMat2x3:
- case EOpConstructIMat2x4:
- case EOpConstructIMat3x2:
- case EOpConstructIMat3x3:
- case EOpConstructIMat3x4:
- case EOpConstructIMat4x2:
- case EOpConstructIMat4x3:
- case EOpConstructIMat4x4:
- case EOpConstructInt:
- basicOp = EOpConstructInt;
- break;
- case EOpConstructU16Vec2:
- case EOpConstructU16Vec3:
- case EOpConstructU16Vec4:
- case EOpConstructUint16:
- basicOp = EOpConstructUint16;
- break;
- case EOpConstructUVec2:
- case EOpConstructUVec3:
- case EOpConstructUVec4:
- case EOpConstructUMat2x2:
- case EOpConstructUMat2x3:
- case EOpConstructUMat2x4:
- case EOpConstructUMat3x2:
- case EOpConstructUMat3x3:
- case EOpConstructUMat3x4:
- case EOpConstructUMat4x2:
- case EOpConstructUMat4x3:
- case EOpConstructUMat4x4:
- case EOpConstructUint:
- basicOp = EOpConstructUint;
- break;
- case EOpConstructBVec2:
- case EOpConstructBVec3:
- case EOpConstructBVec4:
- case EOpConstructBMat2x2:
- case EOpConstructBMat2x3:
- case EOpConstructBMat2x4:
- case EOpConstructBMat3x2:
- case EOpConstructBMat3x3:
- case EOpConstructBMat3x4:
- case EOpConstructBMat4x2:
- case EOpConstructBMat4x3:
- case EOpConstructBMat4x4:
- case EOpConstructBool:
- basicOp = EOpConstructBool;
- break;
- default:
- error(loc, "unsupported construction", "", "");
- return nullptr;
- }
- newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc());
- if (newNode == nullptr) {
- error(loc, "can't convert", "constructor", "");
- return nullptr;
- }
- //
- // Now, if there still isn't an operation to do the construction, and we need one, add one.
- //
- // Otherwise, skip out early.
- if (subset || (newNode != node && newNode->getType() == type))
- return newNode;
- // setAggregateOperator will insert a new node for the constructor, as needed.
- return intermediate.setAggregateOperator(newNode, op, type, loc);
- }
- // Convert the array in node to the requested type, which is also an array.
- // Returns nullptr on failure, otherwise returns aggregate holding the list of
- // elements needed to construct the array.
- TIntermTyped* HlslParseContext::convertArray(TIntermTyped* node, const TType& type)
- {
- assert(node->isArray() && type.isArray());
- if (node->getType().computeNumComponents() < type.computeNumComponents())
- return nullptr;
- // TODO: write an argument replicator, for the case the argument should not be
- // executed multiple times, yet multiple copies are needed.
- TIntermTyped* constructee = node->getAsTyped();
- // track where we are in consuming the argument
- int constructeeElement = 0;
- int constructeeComponent = 0;
- // bump up to the next component to consume
- const auto getNextComponent = [&]() {
- TIntermTyped* component;
- component = handleBracketDereference(node->getLoc(), constructee,
- intermediate.addConstantUnion(constructeeElement, node->getLoc()));
- if (component->isVector())
- component = handleBracketDereference(node->getLoc(), component,
- intermediate.addConstantUnion(constructeeComponent, node->getLoc()));
- // bump component pointer up
- ++constructeeComponent;
- if (constructeeComponent == constructee->getVectorSize()) {
- constructeeComponent = 0;
- ++constructeeElement;
- }
- return component;
- };
- // make one subnode per constructed array element
- TIntermAggregate* constructor = nullptr;
- TType derefType(type, 0);
- TType speculativeComponentType(derefType, 0);
- TType* componentType = derefType.isVector() ? &speculativeComponentType : &derefType;
- TOperator componentOp = intermediate.mapTypeToConstructorOp(*componentType);
- TType crossType(node->getBasicType(), EvqTemporary, type.getVectorSize());
- for (int e = 0; e < type.getOuterArraySize(); ++e) {
- // construct an element
- TIntermTyped* elementArg;
- if (type.getVectorSize() == constructee->getVectorSize()) {
- // same element shape
- elementArg = handleBracketDereference(node->getLoc(), constructee,
- intermediate.addConstantUnion(e, node->getLoc()));
- } else {
- // mismatched element shapes
- if (type.getVectorSize() == 1)
- elementArg = getNextComponent();
- else {
- // make a vector
- TIntermAggregate* elementConstructee = nullptr;
- for (int c = 0; c < type.getVectorSize(); ++c)
- elementConstructee = intermediate.growAggregate(elementConstructee, getNextComponent());
- elementArg = addConstructor(node->getLoc(), elementConstructee, crossType);
- }
- }
- // convert basic types
- elementArg = intermediate.addConversion(componentOp, derefType, elementArg);
- if (elementArg == nullptr)
- return nullptr;
- // combine with top-level constructor
- constructor = intermediate.growAggregate(constructor, elementArg);
- }
- return constructor;
- }
- // This function tests for the type of the parameters to the structure or array constructor. Raises
- // an error message if the expected type does not match the parameter passed to the constructor.
- //
- // Returns nullptr for an error or the input node itself if the expected and the given parameter types match.
- //
- TIntermTyped* HlslParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount,
- const TSourceLoc& loc)
- {
- // Handle cases that map more 1:1 between constructor arguments and constructed.
- TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped());
- if (converted == nullptr || converted->getType() != type) {
- error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount,
- node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str());
- return nullptr;
- }
- return converted;
- }
- //
- // Do everything needed to add an interface block.
- //
- void HlslParseContext::declareBlock(const TSourceLoc& loc, TType& type, const TString* instanceName)
- {
- assert(type.getWritableStruct() != nullptr);
- // Clean up top-level decorations that don't belong.
- switch (type.getQualifier().storage) {
- case EvqUniform:
- case EvqBuffer:
- correctUniform(type.getQualifier());
- break;
- case EvqVaryingIn:
- correctInput(type.getQualifier());
- break;
- case EvqVaryingOut:
- correctOutput(type.getQualifier());
- break;
- default:
- break;
- }
- TTypeList& typeList = *type.getWritableStruct();
- // fix and check for member storage qualifiers and types that don't belong within a block
- for (unsigned int member = 0; member < typeList.size(); ++member) {
- TType& memberType = *typeList[member].type;
- TQualifier& memberQualifier = memberType.getQualifier();
- const TSourceLoc& memberLoc = typeList[member].loc;
- globalQualifierFix(memberLoc, memberQualifier);
- memberQualifier.storage = type.getQualifier().storage;
- if (memberType.isStruct()) {
- // clean up and pick up the right set of decorations
- auto it = ioTypeMap.find(memberType.getStruct());
- switch (type.getQualifier().storage) {
- case EvqUniform:
- case EvqBuffer:
- correctUniform(type.getQualifier());
- if (it != ioTypeMap.end() && it->second.uniform)
- memberType.setStruct(it->second.uniform);
- break;
- case EvqVaryingIn:
- correctInput(type.getQualifier());
- if (it != ioTypeMap.end() && it->second.input)
- memberType.setStruct(it->second.input);
- break;
- case EvqVaryingOut:
- correctOutput(type.getQualifier());
- if (it != ioTypeMap.end() && it->second.output)
- memberType.setStruct(it->second.output);
- break;
- default:
- break;
- }
- }
- }
- // Make default block qualification, and adjust the member qualifications
- TQualifier defaultQualification;
- switch (type.getQualifier().storage) {
- case EvqUniform: defaultQualification = globalUniformDefaults; break;
- case EvqBuffer: defaultQualification = globalBufferDefaults; break;
- case EvqVaryingIn: defaultQualification = globalInputDefaults; break;
- case EvqVaryingOut: defaultQualification = globalOutputDefaults; break;
- default: defaultQualification.clear(); break;
- }
- // Special case for "push_constant uniform", which has a default of std430,
- // contrary to normal uniform defaults, and can't have a default tracked for it.
- if (type.getQualifier().layoutPushConstant && ! type.getQualifier().hasPacking())
- type.getQualifier().layoutPacking = ElpStd430;
- // fix and check for member layout qualifiers
- mergeObjectLayoutQualifiers(defaultQualification, type.getQualifier(), true);
- bool memberWithLocation = false;
- bool memberWithoutLocation = false;
- for (unsigned int member = 0; member < typeList.size(); ++member) {
- TQualifier& memberQualifier = typeList[member].type->getQualifier();
- const TSourceLoc& memberLoc = typeList[member].loc;
- if (memberQualifier.hasStream()) {
- if (defaultQualification.layoutStream != memberQualifier.layoutStream)
- error(memberLoc, "member cannot contradict block", "stream", "");
- }
- // "This includes a block's inheritance of the
- // current global default buffer, a block member's inheritance of the block's
- // buffer, and the requirement that any *xfb_buffer* declared on a block
- // member must match the buffer inherited from the block."
- if (memberQualifier.hasXfbBuffer()) {
- if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer)
- error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", "");
- }
- if (memberQualifier.hasLocation()) {
- switch (type.getQualifier().storage) {
- case EvqVaryingIn:
- case EvqVaryingOut:
- memberWithLocation = true;
- break;
- default:
- break;
- }
- } else
- memberWithoutLocation = true;
- TQualifier newMemberQualification = defaultQualification;
- mergeQualifiers(newMemberQualification, memberQualifier);
- memberQualifier = newMemberQualification;
- }
- // Process the members
- fixBlockLocations(loc, type.getQualifier(), typeList, memberWithLocation, memberWithoutLocation);
- fixXfbOffsets(type.getQualifier(), typeList);
- fixBlockUniformOffsets(type.getQualifier(), typeList);
- // reverse merge, so that currentBlockQualifier now has all layout information
- // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers)
- mergeObjectLayoutQualifiers(type.getQualifier(), defaultQualification, true);
- //
- // Build and add the interface block as a new type named 'blockName'
- //
- // Use the instance name as the interface name if one exists, else the block name.
- const TString& interfaceName = (instanceName && !instanceName->empty()) ? *instanceName : type.getTypeName();
- TType blockType(&typeList, interfaceName, type.getQualifier());
- if (type.isArray())
- blockType.transferArraySizes(type.getArraySizes());
- // Add the variable, as anonymous or named instanceName.
- // Make an anonymous variable if no name was provided.
- if (instanceName == nullptr)
- instanceName = NewPoolTString("");
- TVariable& variable = *new TVariable(instanceName, blockType);
- if (! symbolTable.insert(variable)) {
- if (*instanceName == "")
- error(loc, "nameless block contains a member that already has a name at global scope",
- "" /* blockName->c_str() */, "");
- else
- error(loc, "block instance name redefinition", variable.getName().c_str(), "");
- return;
- }
- // Save it in the AST for linker use.
- if (symbolTable.atGlobalLevel())
- trackLinkage(variable);
- }
- //
- // "For a block, this process applies to the entire block, or until the first member
- // is reached that has a location layout qualifier. When a block member is declared with a location
- // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level
- // declaration. Subsequent members are again assigned consecutive locations, based on the newest location,
- // until the next member declared with a location qualifier. The values used for locations do not have to be
- // declared in increasing order."
- void HlslParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation)
- {
- // "If a block has no block-level location layout qualifier, it is required that either all or none of its members
- // have a location layout qualifier, or a compile-time error results."
- if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation)
- error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", "");
- else {
- if (memberWithLocation) {
- // remove any block-level location and make it per *every* member
- int nextLocation = 0; // by the rule above, initial value is not relevant
- if (qualifier.hasAnyLocation()) {
- nextLocation = qualifier.layoutLocation;
- qualifier.layoutLocation = TQualifier::layoutLocationEnd;
- if (qualifier.hasComponent()) {
- // "It is a compile-time error to apply the *component* qualifier to a ... block"
- error(loc, "cannot apply to a block", "component", "");
- }
- if (qualifier.hasIndex()) {
- error(loc, "cannot apply to a block", "index", "");
- }
- }
- for (unsigned int member = 0; member < typeList.size(); ++member) {
- TQualifier& memberQualifier = typeList[member].type->getQualifier();
- const TSourceLoc& memberLoc = typeList[member].loc;
- if (! memberQualifier.hasLocation()) {
- if (nextLocation >= (int)TQualifier::layoutLocationEnd)
- error(memberLoc, "location is too large", "location", "");
- memberQualifier.layoutLocation = nextLocation;
- memberQualifier.layoutComponent = 0;
- }
- nextLocation = memberQualifier.layoutLocation +
- intermediate.computeTypeLocationSize(*typeList[member].type, language);
- }
- }
- }
- }
- void HlslParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList)
- {
- // "If a block is qualified with xfb_offset, all its
- // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any
- // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer
- // offsets."
- if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset())
- return;
- int nextOffset = qualifier.layoutXfbOffset;
- for (unsigned int member = 0; member < typeList.size(); ++member) {
- TQualifier& memberQualifier = typeList[member].type->getQualifier();
- bool contains64BitType = false;
- bool contains32BitType = false;
- bool contains16BitType = false;
- int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType);
- // see if we need to auto-assign an offset to this member
- if (! memberQualifier.hasXfbOffset()) {
- // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8"
- if (contains64BitType)
- RoundToPow2(nextOffset, 8);
- else if (contains32BitType)
- RoundToPow2(nextOffset, 4);
- // "if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2"
- else if (contains16BitType)
- RoundToPow2(nextOffset, 2);
- memberQualifier.layoutXfbOffset = nextOffset;
- } else
- nextOffset = memberQualifier.layoutXfbOffset;
- nextOffset += memberSize;
- }
- // The above gave all block members an offset, so we can take it off the block now,
- // which will avoid double counting the offset usage.
- qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd;
- }
- // Calculate and save the offset of each block member, using the recursively
- // defined block offset rules and the user-provided offset and align.
- //
- // Also, compute and save the total size of the block. For the block's size, arrayness
- // is not taken into account, as each element is backed by a separate buffer.
- //
- void HlslParseContext::fixBlockUniformOffsets(const TQualifier& qualifier, TTypeList& typeList)
- {
- if (! qualifier.isUniformOrBuffer())
- return;
- if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar)
- return;
- int offset = 0;
- int memberSize;
- for (unsigned int member = 0; member < typeList.size(); ++member) {
- TQualifier& memberQualifier = typeList[member].type->getQualifier();
- const TSourceLoc& memberLoc = typeList[member].loc;
- // "When align is applied to an array, it effects only the start of the array, not the array's internal stride."
- // modify just the children's view of matrix layout, if there is one for this member
- TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix;
- int dummyStride;
- int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride,
- qualifier.layoutPacking,
- subMatrixLayout != ElmNone
- ? subMatrixLayout == ElmRowMajor
- : qualifier.layoutMatrix == ElmRowMajor);
- if (memberQualifier.hasOffset()) {
- // "The specified offset must be a multiple
- // of the base alignment of the type of the block member it qualifies, or a compile-time error results."
- if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment))
- error(memberLoc, "must be a multiple of the member's alignment", "offset", "");
- // "The offset qualifier forces the qualified member to start at or after the specified
- // integral-constant expression, which will be its byte offset from the beginning of the buffer.
- // "The actual offset of a member is computed as
- // follows: If offset was declared, start with that offset, otherwise start with the next available offset."
- offset = std::max(offset, memberQualifier.layoutOffset);
- }
- // "The actual alignment of a member will be the greater of the specified align alignment and the standard
- // (e.g., std140) base alignment for the member's type."
- if (memberQualifier.hasAlign())
- memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign);
- // "If the resulting offset is not a multiple of the actual alignment,
- // increase it to the first offset that is a multiple of
- // the actual alignment."
- RoundToPow2(offset, memberAlignment);
- typeList[member].type->getQualifier().layoutOffset = offset;
- offset += memberSize;
- }
- }
- // For an identifier that is already declared, add more qualification to it.
- void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier)
- {
- TSymbol* symbol = symbolTable.find(identifier);
- if (symbol == nullptr) {
- error(loc, "identifier not previously declared", identifier.c_str(), "");
- return;
- }
- if (symbol->getAsFunction()) {
- error(loc, "cannot re-qualify a function name", identifier.c_str(), "");
- return;
- }
- if (qualifier.isAuxiliary() ||
- qualifier.isMemory() ||
- qualifier.isInterpolation() ||
- qualifier.hasLayout() ||
- qualifier.storage != EvqTemporary ||
- qualifier.precision != EpqNone) {
- error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), "");
- return;
- }
- // For read-only built-ins, add a new symbol for holding the modified qualifier.
- // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block)
- if (symbol->isReadOnly())
- symbol = symbolTable.copyUp(symbol);
- if (qualifier.invariant) {
- if (intermediate.inIoAccessed(identifier))
- error(loc, "cannot change qualification after use", "invariant", "");
- symbol->getWritableType().getQualifier().invariant = true;
- } else if (qualifier.noContraction) {
- if (intermediate.inIoAccessed(identifier))
- error(loc, "cannot change qualification after use", "precise", "");
- symbol->getWritableType().getQualifier().noContraction = true;
- } else if (qualifier.specConstant) {
- symbol->getWritableType().getQualifier().makeSpecConstant();
- if (qualifier.hasSpecConstantId())
- symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId;
- } else
- warn(loc, "unknown requalification", "", "");
- }
- void HlslParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers)
- {
- for (unsigned int i = 0; i < identifiers.size(); ++i)
- addQualifierToExisting(loc, qualifier, *identifiers[i]);
- }
- //
- // Update the intermediate for the given input geometry
- //
- bool HlslParseContext::handleInputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
- {
- // these can be declared on non-entry-points, in which case they lose their meaning
- if (! parsingEntrypointParameters)
- return true;
- switch (geometry) {
- case ElgPoints: // fall through
- case ElgLines: // ...
- case ElgTriangles: // ...
- case ElgLinesAdjacency: // ...
- case ElgTrianglesAdjacency: // ...
- if (! intermediate.setInputPrimitive(geometry)) {
- error(loc, "input primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
- return false;
- }
- break;
- default:
- error(loc, "cannot apply to 'in'", TQualifier::getGeometryString(geometry), "");
- return false;
- }
- return true;
- }
- //
- // Update the intermediate for the given output geometry
- //
- bool HlslParseContext::handleOutputGeometry(const TSourceLoc& loc, const TLayoutGeometry& geometry)
- {
- // If this is not a geometry shader, ignore. It might be a mixed shader including several stages.
- // Since that's an OK situation, return true for success.
- if (language != EShLangGeometry)
- return true;
- // these can be declared on non-entry-points, in which case they lose their meaning
- if (! parsingEntrypointParameters)
- return true;
- switch (geometry) {
- case ElgPoints:
- case ElgLineStrip:
- case ElgTriangleStrip:
- if (! intermediate.setOutputPrimitive(geometry)) {
- error(loc, "output primitive geometry redefinition", TQualifier::getGeometryString(geometry), "");
- return false;
- }
- break;
- default:
- error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(geometry), "");
- return false;
- }
- return true;
- }
- //
- // Selection attributes
- //
- void HlslParseContext::handleSelectionAttributes(const TSourceLoc& loc, TIntermSelection* selection,
- const TAttributes& attributes)
- {
- if (selection == nullptr)
- return;
- for (auto it = attributes.begin(); it != attributes.end(); ++it) {
- switch (it->name) {
- case EatFlatten:
- selection->setFlatten();
- break;
- case EatBranch:
- selection->setDontFlatten();
- break;
- default:
- warn(loc, "attribute does not apply to a selection", "", "");
- break;
- }
- }
- }
- //
- // Switch attributes
- //
- void HlslParseContext::handleSwitchAttributes(const TSourceLoc& loc, TIntermSwitch* selection,
- const TAttributes& attributes)
- {
- if (selection == nullptr)
- return;
- for (auto it = attributes.begin(); it != attributes.end(); ++it) {
- switch (it->name) {
- case EatFlatten:
- selection->setFlatten();
- break;
- case EatBranch:
- selection->setDontFlatten();
- break;
- default:
- warn(loc, "attribute does not apply to a switch", "", "");
- break;
- }
- }
- }
- //
- // Loop attributes
- //
- void HlslParseContext::handleLoopAttributes(const TSourceLoc& loc, TIntermLoop* loop,
- const TAttributes& attributes)
- {
- if (loop == nullptr)
- return;
- for (auto it = attributes.begin(); it != attributes.end(); ++it) {
- switch (it->name) {
- case EatUnroll:
- loop->setUnroll();
- break;
- case EatLoop:
- loop->setDontUnroll();
- break;
- default:
- warn(loc, "attribute does not apply to a loop", "", "");
- break;
- }
- }
- }
- //
- // Updating default qualifier for the case of a declaration with just a qualifier,
- // no type, block, or identifier.
- //
- void HlslParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType)
- {
- if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) {
- assert(language == EShLangTessControl || language == EShLangGeometry);
- // const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices";
- }
- if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) {
- if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations))
- error(loc, "cannot change previously set layout value", "invocations", "");
- }
- if (publicType.shaderQualifiers.geometry != ElgNone) {
- if (publicType.qualifier.storage == EvqVaryingIn) {
- switch (publicType.shaderQualifiers.geometry) {
- case ElgPoints:
- case ElgLines:
- case ElgLinesAdjacency:
- case ElgTriangles:
- case ElgTrianglesAdjacency:
- case ElgQuads:
- case ElgIsolines:
- break;
- default:
- error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
- "");
- }
- } else if (publicType.qualifier.storage == EvqVaryingOut) {
- handleOutputGeometry(loc, publicType.shaderQualifiers.geometry);
- } else
- error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry),
- GetStorageQualifierString(publicType.qualifier.storage));
- }
- if (publicType.shaderQualifiers.spacing != EvsNone)
- intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing);
- if (publicType.shaderQualifiers.order != EvoNone)
- intermediate.setVertexOrder(publicType.shaderQualifiers.order);
- if (publicType.shaderQualifiers.pointMode)
- intermediate.setPointMode();
- for (int i = 0; i < 3; ++i) {
- if (publicType.shaderQualifiers.localSize[i] > 1) {
- int max = 0;
- switch (i) {
- case 0: max = resources.maxComputeWorkGroupSizeX; break;
- case 1: max = resources.maxComputeWorkGroupSizeY; break;
- case 2: max = resources.maxComputeWorkGroupSizeZ; break;
- default: break;
- }
- if (intermediate.getLocalSize(i) > (unsigned int)max)
- error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", "");
- // Fix the existing constant gl_WorkGroupSize with this new information.
- TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
- workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i));
- }
- if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) {
- intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i]);
- // Set the workgroup built-in variable as a specialization constant
- TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize");
- workGroupSize->getWritableType().getQualifier().specConstant = true;
- }
- }
- if (publicType.shaderQualifiers.earlyFragmentTests)
- intermediate.setEarlyFragmentTests();
- const TQualifier& qualifier = publicType.qualifier;
- switch (qualifier.storage) {
- case EvqUniform:
- if (qualifier.hasMatrix())
- globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix;
- if (qualifier.hasPacking())
- globalUniformDefaults.layoutPacking = qualifier.layoutPacking;
- break;
- case EvqBuffer:
- if (qualifier.hasMatrix())
- globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix;
- if (qualifier.hasPacking())
- globalBufferDefaults.layoutPacking = qualifier.layoutPacking;
- break;
- case EvqVaryingIn:
- break;
- case EvqVaryingOut:
- if (qualifier.hasStream())
- globalOutputDefaults.layoutStream = qualifier.layoutStream;
- if (qualifier.hasXfbBuffer())
- globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer;
- if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) {
- if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride))
- error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d",
- qualifier.layoutXfbBuffer);
- }
- break;
- default:
- error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", "");
- return;
- }
- }
- //
- // Take the sequence of statements that has been built up since the last case/default,
- // put it on the list of top-level nodes for the current (inner-most) switch statement,
- // and follow that by the case/default we are on now. (See switch topology comment on
- // TIntermSwitch.)
- //
- void HlslParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode)
- {
- TIntermSequence* switchSequence = switchSequenceStack.back();
- if (statements) {
- statements->setOperator(EOpSequence);
- switchSequence->push_back(statements);
- }
- if (branchNode) {
- // check all previous cases for the same label (or both are 'default')
- for (unsigned int s = 0; s < switchSequence->size(); ++s) {
- TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode();
- if (prevBranch) {
- TIntermTyped* prevExpression = prevBranch->getExpression();
- TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression();
- if (prevExpression == nullptr && newExpression == nullptr)
- error(branchNode->getLoc(), "duplicate label", "default", "");
- else if (prevExpression != nullptr &&
- newExpression != nullptr &&
- prevExpression->getAsConstantUnion() &&
- newExpression->getAsConstantUnion() &&
- prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() ==
- newExpression->getAsConstantUnion()->getConstArray()[0].getIConst())
- error(branchNode->getLoc(), "duplicated value", "case", "");
- }
- }
- switchSequence->push_back(branchNode);
- }
- }
- //
- // Turn the top-level node sequence built up of wrapupSwitchSubsequence
- // into a switch node.
- //
- TIntermNode* HlslParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression,
- TIntermAggregate* lastStatements, const TAttributes& attributes)
- {
- wrapupSwitchSubsequence(lastStatements, nullptr);
- if (expression == nullptr ||
- (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) ||
- expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector())
- error(loc, "condition must be a scalar integer expression", "switch", "");
- // If there is nothing to do, drop the switch but still execute the expression
- TIntermSequence* switchSequence = switchSequenceStack.back();
- if (switchSequence->size() == 0)
- return expression;
- if (lastStatements == nullptr) {
- // emulate a break for error recovery
- lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc));
- lastStatements->setOperator(EOpSequence);
- switchSequence->push_back(lastStatements);
- }
- TIntermAggregate* body = new TIntermAggregate(EOpSequence);
- body->getSequence() = *switchSequenceStack.back();
- body->setLoc(loc);
- TIntermSwitch* switchNode = new TIntermSwitch(expression, body);
- switchNode->setLoc(loc);
- handleSwitchAttributes(loc, switchNode, attributes);
- return switchNode;
- }
- // Make a new symbol-table level that is made out of the members of a structure.
- // This should be done as an anonymous struct (name is "") so that the symbol table
- // finds the members with no explicit reference to a 'this' variable.
- void HlslParseContext::pushThisScope(const TType& thisStruct, const TVector<TFunctionDeclarator>& functionDeclarators)
- {
- // member variables
- TVariable& thisVariable = *new TVariable(NewPoolTString(""), thisStruct);
- symbolTable.pushThis(thisVariable);
- // member functions
- for (auto it = functionDeclarators.begin(); it != functionDeclarators.end(); ++it) {
- // member should have a prefix matching currentTypePrefix.back()
- // but, symbol lookup within the class scope will just use the
- // unprefixed name. Hence, there are two: one fully prefixed and
- // one with no prefix.
- TFunction& member = *it->function->clone();
- member.removePrefix(currentTypePrefix.back());
- symbolTable.insert(member);
- }
- }
- // Track levels of class/struct/namespace nesting with a prefix string using
- // the type names separated by the scoping operator. E.g., two levels
- // would look like:
- //
- // outer::inner
- //
- // The string is empty when at normal global level.
- //
- void HlslParseContext::pushNamespace(const TString& typeName)
- {
- // make new type prefix
- TString newPrefix;
- if (currentTypePrefix.size() > 0)
- newPrefix = currentTypePrefix.back();
- newPrefix.append(typeName);
- newPrefix.append(scopeMangler);
- currentTypePrefix.push_back(newPrefix);
- }
- // Opposite of pushNamespace(), see above
- void HlslParseContext::popNamespace()
- {
- currentTypePrefix.pop_back();
- }
- // Use the class/struct nesting string to create a global name for
- // a member of a class/struct.
- void HlslParseContext::getFullNamespaceName(TString*& name) const
- {
- if (currentTypePrefix.size() == 0)
- return;
- TString* fullName = NewPoolTString(currentTypePrefix.back().c_str());
- fullName->append(*name);
- name = fullName;
- }
- // Helper function to add the namespace scope mangling syntax to a string.
- void HlslParseContext::addScopeMangler(TString& name)
- {
- name.append(scopeMangler);
- }
- // Return true if this has uniform-interface like decorations.
- bool HlslParseContext::hasUniform(const TQualifier& qualifier) const
- {
- return qualifier.hasUniformLayout() ||
- qualifier.layoutPushConstant;
- }
- // Potentially not the opposite of hasUniform(), as if some characteristic is
- // ever used for more than one thing (e.g., uniform or input), hasUniform() should
- // say it exists, but clearUniform() should leave it in place.
- void HlslParseContext::clearUniform(TQualifier& qualifier)
- {
- qualifier.clearUniformLayout();
- qualifier.layoutPushConstant = false;
- }
- // Return false if builtIn by itself doesn't force this qualifier to be an input qualifier.
- bool HlslParseContext::isInputBuiltIn(const TQualifier& qualifier) const
- {
- switch (qualifier.builtIn) {
- case EbvPosition:
- case EbvPointSize:
- return language != EShLangVertex && language != EShLangCompute && language != EShLangFragment;
- case EbvClipDistance:
- case EbvCullDistance:
- return language != EShLangVertex && language != EShLangCompute;
- case EbvFragCoord:
- case EbvFace:
- case EbvHelperInvocation:
- case EbvLayer:
- case EbvPointCoord:
- case EbvSampleId:
- case EbvSampleMask:
- case EbvSamplePosition:
- case EbvViewportIndex:
- return language == EShLangFragment;
- case EbvGlobalInvocationId:
- case EbvLocalInvocationIndex:
- case EbvLocalInvocationId:
- case EbvNumWorkGroups:
- case EbvWorkGroupId:
- case EbvWorkGroupSize:
- return language == EShLangCompute;
- case EbvInvocationId:
- return language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry;
- case EbvPatchVertices:
- return language == EShLangTessControl || language == EShLangTessEvaluation;
- case EbvInstanceId:
- case EbvInstanceIndex:
- case EbvVertexId:
- case EbvVertexIndex:
- return language == EShLangVertex;
- case EbvPrimitiveId:
- return language == EShLangGeometry || language == EShLangFragment || language == EShLangTessControl;
- case EbvTessLevelInner:
- case EbvTessLevelOuter:
- return language == EShLangTessEvaluation;
- case EbvTessCoord:
- return language == EShLangTessEvaluation;
- default:
- return false;
- }
- }
- // Return true if there are decorations to preserve for input-like storage.
- bool HlslParseContext::hasInput(const TQualifier& qualifier) const
- {
- if (qualifier.hasAnyLocation())
- return true;
- if (language == EShLangFragment && (qualifier.isInterpolation() || qualifier.centroid || qualifier.sample))
- return true;
- if (language == EShLangTessEvaluation && qualifier.patch)
- return true;
- if (isInputBuiltIn(qualifier))
- return true;
- return false;
- }
- // Return false if builtIn by itself doesn't force this qualifier to be an output qualifier.
- bool HlslParseContext::isOutputBuiltIn(const TQualifier& qualifier) const
- {
- switch (qualifier.builtIn) {
- case EbvPosition:
- case EbvPointSize:
- case EbvClipVertex:
- case EbvClipDistance:
- case EbvCullDistance:
- return language != EShLangFragment && language != EShLangCompute;
- case EbvFragDepth:
- case EbvFragDepthGreater:
- case EbvFragDepthLesser:
- case EbvSampleMask:
- return language == EShLangFragment;
- case EbvLayer:
- case EbvViewportIndex:
- return language == EShLangGeometry || language == EShLangVertex;
- case EbvPrimitiveId:
- return language == EShLangGeometry;
- case EbvTessLevelInner:
- case EbvTessLevelOuter:
- return language == EShLangTessControl;
- default:
- return false;
- }
- }
- // Return true if there are decorations to preserve for output-like storage.
- bool HlslParseContext::hasOutput(const TQualifier& qualifier) const
- {
- if (qualifier.hasAnyLocation())
- return true;
- if (language != EShLangFragment && language != EShLangCompute && qualifier.hasXfb())
- return true;
- if (language == EShLangTessControl && qualifier.patch)
- return true;
- if (language == EShLangGeometry && qualifier.hasStream())
- return true;
- if (isOutputBuiltIn(qualifier))
- return true;
- return false;
- }
- // Make the IO decorations etc. be appropriate only for an input interface.
- void HlslParseContext::correctInput(TQualifier& qualifier)
- {
- clearUniform(qualifier);
- if (language == EShLangVertex)
- qualifier.clearInterstage();
- if (language != EShLangTessEvaluation)
- qualifier.patch = false;
- if (language != EShLangFragment) {
- qualifier.clearInterpolation();
- qualifier.sample = false;
- }
- qualifier.clearStreamLayout();
- qualifier.clearXfbLayout();
- if (! isInputBuiltIn(qualifier))
- qualifier.builtIn = EbvNone;
- }
- // Make the IO decorations etc. be appropriate only for an output interface.
- void HlslParseContext::correctOutput(TQualifier& qualifier)
- {
- clearUniform(qualifier);
- if (language == EShLangFragment)
- qualifier.clearInterstage();
- if (language != EShLangGeometry)
- qualifier.clearStreamLayout();
- if (language == EShLangFragment)
- qualifier.clearXfbLayout();
- if (language != EShLangTessControl)
- qualifier.patch = false;
- switch (qualifier.builtIn) {
- case EbvFragDepth:
- intermediate.setDepthReplacing();
- intermediate.setDepth(EldAny);
- break;
- case EbvFragDepthGreater:
- intermediate.setDepthReplacing();
- intermediate.setDepth(EldGreater);
- qualifier.builtIn = EbvFragDepth;
- break;
- case EbvFragDepthLesser:
- intermediate.setDepthReplacing();
- intermediate.setDepth(EldLess);
- qualifier.builtIn = EbvFragDepth;
- break;
- default:
- break;
- }
- if (! isOutputBuiltIn(qualifier))
- qualifier.builtIn = EbvNone;
- }
- // Make the IO decorations etc. be appropriate only for uniform type interfaces.
- void HlslParseContext::correctUniform(TQualifier& qualifier)
- {
- if (qualifier.declaredBuiltIn == EbvNone)
- qualifier.declaredBuiltIn = qualifier.builtIn;
- qualifier.builtIn = EbvNone;
- qualifier.clearInterstage();
- qualifier.clearInterstageLayout();
- }
- // Clear out all IO/Uniform stuff, so this has nothing to do with being an IO interface.
- void HlslParseContext::clearUniformInputOutput(TQualifier& qualifier)
- {
- clearUniform(qualifier);
- correctUniform(qualifier);
- }
- // Set texture return type. Returns success (not all types are valid).
- bool HlslParseContext::setTextureReturnType(TSampler& sampler, const TType& retType, const TSourceLoc& loc)
- {
- // Seed the output with an invalid index. We will set it to a valid one if we can.
- sampler.structReturnIndex = TSampler::noReturnStruct;
- // Arrays aren't supported.
- if (retType.isArray()) {
- error(loc, "Arrays not supported in texture template types", "", "");
- return false;
- }
- // If return type is a vector, remember the vector size in the sampler, and return.
- if (retType.isVector() || retType.isScalar()) {
- sampler.vectorSize = retType.getVectorSize();
- return true;
- }
- // If it wasn't a vector, it must be a struct meeting certain requirements. The requirements
- // are checked below: just check for struct-ness here.
- if (!retType.isStruct()) {
- error(loc, "Invalid texture template type", "", "");
- return false;
- }
- // TODO: Subpass doesn't handle struct returns, due to some oddities with fn overloading.
- if (sampler.isSubpass()) {
- error(loc, "Unimplemented: structure template type in subpass input", "", "");
- return false;
- }
- TTypeList* members = retType.getWritableStruct();
- // Check for too many or not enough structure members.
- if (members->size() > 4 || members->size() == 0) {
- error(loc, "Invalid member count in texture template structure", "", "");
- return false;
- }
- // Error checking: We must have <= 4 total components, all of the same basic type.
- unsigned totalComponents = 0;
- for (unsigned m = 0; m < members->size(); ++m) {
- // Check for bad member types
- if (!(*members)[m].type->isScalar() && !(*members)[m].type->isVector()) {
- error(loc, "Invalid texture template struct member type", "", "");
- return false;
- }
- const unsigned memberVectorSize = (*members)[m].type->getVectorSize();
- totalComponents += memberVectorSize;
- // too many total member components
- if (totalComponents > 4) {
- error(loc, "Too many components in texture template structure type", "", "");
- return false;
- }
- // All members must be of a common basic type
- if ((*members)[m].type->getBasicType() != (*members)[0].type->getBasicType()) {
- error(loc, "Texture template structure members must same basic type", "", "");
- return false;
- }
- }
- // If the structure in the return type already exists in the table, we'll use it. Otherwise, we'll make
- // a new entry. This is a linear search, but it hardly ever happens, and the list cannot be very large.
- for (unsigned int idx = 0; idx < textureReturnStruct.size(); ++idx) {
- if (textureReturnStruct[idx] == members) {
- sampler.structReturnIndex = idx;
- return true;
- }
- }
- // It wasn't found as an existing entry. See if we have room for a new one.
- if (textureReturnStruct.size() >= TSampler::structReturnSlots) {
- error(loc, "Texture template struct return slots exceeded", "", "");
- return false;
- }
- // Insert it in the vector that tracks struct return types.
- sampler.structReturnIndex = unsigned(textureReturnStruct.size());
- textureReturnStruct.push_back(members);
- // Success!
- return true;
- }
- // Return the sampler return type in retType.
- void HlslParseContext::getTextureReturnType(const TSampler& sampler, TType& retType) const
- {
- if (sampler.hasReturnStruct()) {
- assert(textureReturnStruct.size() >= sampler.structReturnIndex);
- // We land here if the texture return is a structure.
- TTypeList* blockStruct = textureReturnStruct[sampler.structReturnIndex];
- const TType resultType(blockStruct, "");
- retType.shallowCopy(resultType);
- } else {
- // We land here if the texture return is a vector or scalar.
- const TType resultType(sampler.type, EvqTemporary, sampler.getVectorSize());
- retType.shallowCopy(resultType);
- }
- }
- // Return a symbol for the tessellation linkage variable of the given TBuiltInVariable type
- TIntermSymbol* HlslParseContext::findTessLinkageSymbol(TBuiltInVariable biType) const
- {
- const auto it = builtInTessLinkageSymbols.find(biType);
- if (it == builtInTessLinkageSymbols.end()) // if it wasn't declared by the user, return nullptr
- return nullptr;
- return intermediate.addSymbol(*it->second->getAsVariable());
- }
- // Find the patch constant function (issues error, returns nullptr if not found)
- const TFunction* HlslParseContext::findPatchConstantFunction(const TSourceLoc& loc)
- {
- if (symbolTable.isFunctionNameVariable(patchConstantFunctionName)) {
- error(loc, "can't use variable in patch constant function", patchConstantFunctionName.c_str(), "");
- return nullptr;
- }
- const TString mangledName = patchConstantFunctionName + "(";
- // create list of PCF candidates
- TVector<const TFunction*> candidateList;
- bool builtIn;
- symbolTable.findFunctionNameList(mangledName, candidateList, builtIn);
- // We have to have one and only one, or we don't know which to pick: the patchconstantfunc does not
- // allow any disambiguation of overloads.
- if (candidateList.empty()) {
- error(loc, "patch constant function not found", patchConstantFunctionName.c_str(), "");
- return nullptr;
- }
- // Based on directed experiments, it appears that if there are overloaded patchconstantfunctions,
- // HLSL picks the last one in shader source order. Since that isn't yet implemented here, error
- // out if there is more than one candidate.
- if (candidateList.size() > 1) {
- error(loc, "ambiguous patch constant function", patchConstantFunctionName.c_str(), "");
- return nullptr;
- }
- return candidateList[0];
- }
- // Finalization step: Add patch constant function invocation
- void HlslParseContext::addPatchConstantInvocation()
- {
- TSourceLoc loc;
- loc.init();
- // If there's no patch constant function, or we're not a HS, do nothing.
- if (patchConstantFunctionName.empty() || language != EShLangTessControl)
- return;
- // Look for built-in variables in a function's parameter list.
- const auto findBuiltIns = [&](const TFunction& function, std::set<tInterstageIoData>& builtIns) {
- for (int p=0; p<function.getParamCount(); ++p) {
- TStorageQualifier storage = function[p].type->getQualifier().storage;
- if (storage == EvqConstReadOnly) // treated identically to input
- storage = EvqIn;
- if (function[p].getDeclaredBuiltIn() != EbvNone)
- builtIns.insert(HlslParseContext::tInterstageIoData(function[p].getDeclaredBuiltIn(), storage));
- else
- builtIns.insert(HlslParseContext::tInterstageIoData(function[p].type->getQualifier().builtIn, storage));
- }
- };
- // If we synthesize a built-in interface variable, we must add it to the linkage.
- const auto addToLinkage = [&](const TType& type, const TString* name, TIntermSymbol** symbolNode) {
- if (name == nullptr) {
- error(loc, "unable to locate patch function parameter name", "", "");
- return;
- } else {
- TVariable& variable = *new TVariable(name, type);
- if (! symbolTable.insert(variable)) {
- error(loc, "unable to declare patch constant function interface variable", name->c_str(), "");
- return;
- }
- globalQualifierFix(loc, variable.getWritableType().getQualifier());
- if (symbolNode != nullptr)
- *symbolNode = intermediate.addSymbol(variable);
- trackLinkage(variable);
- }
- };
- const auto isOutputPatch = [](TFunction& patchConstantFunction, int param) {
- const TType& type = *patchConstantFunction[param].type;
- const TBuiltInVariable biType = patchConstantFunction[param].getDeclaredBuiltIn();
- return type.isSizedArray() && biType == EbvOutputPatch;
- };
- // We will perform these steps. Each is in a scoped block for separation: they could
- // become separate functions to make addPatchConstantInvocation shorter.
- //
- // 1. Union the interfaces, and create built-ins for anything present in the PCF and
- // declared as a built-in variable that isn't present in the entry point's signature.
- //
- // 2. Synthesizes a call to the patchconstfunction using built-in variables from either main,
- // or the ones we created. Matching is based on built-in type. We may use synthesized
- // variables from (1) above.
- //
- // 2B: Synthesize per control point invocations of wrapped entry point if the PCF requires them.
- //
- // 3. Create a return sequence: copy the return value (if any) from the PCF to a
- // (non-sanitized) output variable. In case this may involve multiple copies, such as for
- // an arrayed variable, a temporary copy of the PCF output is created to avoid multiple
- // indirections into a complex R-value coming from the call to the PCF.
- //
- // 4. Create a barrier.
- //
- // 5/5B. Call the PCF inside an if test for (invocation id == 0).
- TFunction* patchConstantFunctionPtr = const_cast<TFunction*>(findPatchConstantFunction(loc));
- if (patchConstantFunctionPtr == nullptr)
- return;
- TFunction& patchConstantFunction = *patchConstantFunctionPtr;
- const int pcfParamCount = patchConstantFunction.getParamCount();
- TIntermSymbol* invocationIdSym = findTessLinkageSymbol(EbvInvocationId);
- TIntermSequence& epBodySeq = entryPointFunctionBody->getAsAggregate()->getSequence();
- int outPatchParam = -1; // -1 means there isn't one.
- // ================ Step 1A: Union Interfaces ================
- // Our patch constant function.
- {
- std::set<tInterstageIoData> pcfBuiltIns; // patch constant function built-ins
- std::set<tInterstageIoData> epfBuiltIns; // entry point function built-ins
- assert(entryPointFunction);
- assert(entryPointFunctionBody);
- findBuiltIns(patchConstantFunction, pcfBuiltIns);
- findBuiltIns(*entryPointFunction, epfBuiltIns);
- // Find the set of built-ins in the PCF that are not present in the entry point.
- std::set<tInterstageIoData> notInEntryPoint;
- notInEntryPoint = pcfBuiltIns;
- // std::set_difference not usable on unordered containers
- for (auto bi = epfBuiltIns.begin(); bi != epfBuiltIns.end(); ++bi)
- notInEntryPoint.erase(*bi);
- // Now we'll add those to the entry and to the linkage.
- for (int p=0; p<pcfParamCount; ++p) {
- const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
- TStorageQualifier storage = patchConstantFunction[p].type->getQualifier().storage;
- // Track whether there is an output patch param
- if (isOutputPatch(patchConstantFunction, p)) {
- if (outPatchParam >= 0) {
- // Presently we only support one per ctrl pt input.
- error(loc, "unimplemented: multiple output patches in patch constant function", "", "");
- return;
- }
- outPatchParam = p;
- }
- if (biType != EbvNone) {
- TType* paramType = patchConstantFunction[p].type->clone();
- if (storage == EvqConstReadOnly) // treated identically to input
- storage = EvqIn;
- // Presently, the only non-built-in we support is InputPatch, which is treated as
- // a pseudo-built-in.
- if (biType == EbvInputPatch) {
- builtInTessLinkageSymbols[biType] = inputPatch;
- } else if (biType == EbvOutputPatch) {
- // Nothing...
- } else {
- // Use the original declaration type for the linkage
- paramType->getQualifier().builtIn = biType;
- if (biType == EbvTessLevelInner || biType == EbvTessLevelOuter)
- paramType->getQualifier().patch = true;
- if (notInEntryPoint.count(tInterstageIoData(biType, storage)) == 1)
- addToLinkage(*paramType, patchConstantFunction[p].name, nullptr);
- }
- }
- }
- // If we didn't find it because the shader made one, add our own.
- if (invocationIdSym == nullptr) {
- TType invocationIdType(EbtUint, EvqIn, 1);
- TString* invocationIdName = NewPoolTString("InvocationId");
- invocationIdType.getQualifier().builtIn = EbvInvocationId;
- addToLinkage(invocationIdType, invocationIdName, &invocationIdSym);
- }
- assert(invocationIdSym);
- }
- TIntermTyped* pcfArguments = nullptr;
- TVariable* perCtrlPtVar = nullptr;
- // ================ Step 1B: Argument synthesis ================
- // Create pcfArguments for synthesis of patchconstantfunction invocation
- {
- for (int p=0; p<pcfParamCount; ++p) {
- TIntermTyped* inputArg = nullptr;
- if (p == outPatchParam) {
- if (perCtrlPtVar == nullptr) {
- perCtrlPtVar = makeInternalVariable(*patchConstantFunction[outPatchParam].name,
- *patchConstantFunction[outPatchParam].type);
- perCtrlPtVar->getWritableType().getQualifier().makeTemporary();
- }
- inputArg = intermediate.addSymbol(*perCtrlPtVar, loc);
- } else {
- // find which built-in it is
- const TBuiltInVariable biType = patchConstantFunction[p].getDeclaredBuiltIn();
- if (biType == EbvInputPatch && inputPatch == nullptr) {
- error(loc, "unimplemented: PCF input patch without entry point input patch parameter", "", "");
- return;
- }
- inputArg = findTessLinkageSymbol(biType);
- if (inputArg == nullptr) {
- error(loc, "unable to find patch constant function built-in variable", "", "");
- return;
- }
- }
- if (pcfParamCount == 1)
- pcfArguments = inputArg;
- else
- pcfArguments = intermediate.growAggregate(pcfArguments, inputArg);
- }
- }
- // ================ Step 2: Synthesize call to PCF ================
- TIntermAggregate* pcfCallSequence = nullptr;
- TIntermTyped* pcfCall = nullptr;
- {
- // Create a function call to the patchconstantfunction
- if (pcfArguments)
- addInputArgumentConversions(patchConstantFunction, pcfArguments);
- // Synthetic call.
- pcfCall = intermediate.setAggregateOperator(pcfArguments, EOpFunctionCall, patchConstantFunction.getType(), loc);
- pcfCall->getAsAggregate()->setUserDefined();
- pcfCall->getAsAggregate()->setName(patchConstantFunction.getMangledName());
- intermediate.addToCallGraph(infoSink, intermediate.getEntryPointMangledName().c_str(),
- patchConstantFunction.getMangledName());
- if (pcfCall->getAsAggregate()) {
- TQualifierList& qualifierList = pcfCall->getAsAggregate()->getQualifierList();
- for (int i = 0; i < patchConstantFunction.getParamCount(); ++i) {
- TStorageQualifier qual = patchConstantFunction[i].type->getQualifier().storage;
- qualifierList.push_back(qual);
- }
- pcfCall = addOutputArgumentConversions(patchConstantFunction, *pcfCall->getAsOperator());
- }
- }
- // ================ Step 2B: Per Control Point synthesis ================
- // If there is per control point data, we must either emulate that with multiple
- // invocations of the entry point to build up an array, or (TODO:) use a yet
- // unavailable extension to look across the SIMD lanes. This is the former
- // as a placeholder for the latter.
- if (outPatchParam >= 0) {
- // We must introduce a local temp variable of the type wanted by the PCF input.
- const int arraySize = patchConstantFunction[outPatchParam].type->getOuterArraySize();
- if (entryPointFunction->getType().getBasicType() == EbtVoid) {
- error(loc, "entry point must return a value for use with patch constant function", "", "");
- return;
- }
- // Create calls to wrapped main to fill in the array. We will substitute fixed values
- // of invocation ID when calling the wrapped main.
- // This is the type of the each member of the per ctrl point array.
- const TType derefType(perCtrlPtVar->getType(), 0);
- for (int cpt = 0; cpt < arraySize; ++cpt) {
- // TODO: improve. substr(1) here is to avoid the '@' that was grafted on but isn't in the symtab
- // for this function.
- const TString origName = entryPointFunction->getName().substr(1);
- TFunction callee(&origName, TType(EbtVoid));
- TIntermTyped* callingArgs = nullptr;
- for (int i = 0; i < entryPointFunction->getParamCount(); i++) {
- TParameter& param = (*entryPointFunction)[i];
- TType& paramType = *param.type;
- if (paramType.getQualifier().isParamOutput()) {
- error(loc, "unimplemented: entry point outputs in patch constant function invocation", "", "");
- return;
- }
- if (paramType.getQualifier().isParamInput()) {
- TIntermTyped* arg = nullptr;
- if ((*entryPointFunction)[i].getDeclaredBuiltIn() == EbvInvocationId) {
- // substitute invocation ID with the array element ID
- arg = intermediate.addConstantUnion(cpt, loc);
- } else {
- TVariable* argVar = makeInternalVariable(*param.name, *param.type);
- argVar->getWritableType().getQualifier().makeTemporary();
- arg = intermediate.addSymbol(*argVar);
- }
- handleFunctionArgument(&callee, callingArgs, arg);
- }
- }
- // Call and assign to per ctrl point variable
- currentCaller = intermediate.getEntryPointMangledName().c_str();
- TIntermTyped* callReturn = handleFunctionCall(loc, &callee, callingArgs);
- TIntermTyped* index = intermediate.addConstantUnion(cpt, loc);
- TIntermSymbol* perCtrlPtSym = intermediate.addSymbol(*perCtrlPtVar, loc);
- TIntermTyped* element = intermediate.addIndex(EOpIndexDirect, perCtrlPtSym, index, loc);
- element->setType(derefType);
- element->setLoc(loc);
- pcfCallSequence = intermediate.growAggregate(pcfCallSequence,
- handleAssign(loc, EOpAssign, element, callReturn));
- }
- }
- // ================ Step 3: Create return Sequence ================
- // Return sequence: copy PCF result to a temporary, then to shader output variable.
- if (pcfCall->getBasicType() != EbtVoid) {
- const TType* retType = &patchConstantFunction.getType(); // return type from the PCF
- TType outType; // output type that goes with the return type.
- outType.shallowCopy(*retType);
- // substitute the output type
- const auto newLists = ioTypeMap.find(retType->getStruct());
- if (newLists != ioTypeMap.end())
- outType.setStruct(newLists->second.output);
- // Substitute the top level type's built-in type
- if (patchConstantFunction.getDeclaredBuiltInType() != EbvNone)
- outType.getQualifier().builtIn = patchConstantFunction.getDeclaredBuiltInType();
- outType.getQualifier().patch = true; // make it a per-patch variable
- TVariable* pcfOutput = makeInternalVariable("@patchConstantOutput", outType);
- pcfOutput->getWritableType().getQualifier().storage = EvqVaryingOut;
- if (pcfOutput->getType().isStruct())
- flatten(*pcfOutput, false);
- assignToInterface(*pcfOutput);
- TIntermSymbol* pcfOutputSym = intermediate.addSymbol(*pcfOutput, loc);
- // The call to the PCF is a complex R-value: we want to store it in a temp to avoid
- // repeated calls to the PCF:
- TVariable* pcfCallResult = makeInternalVariable("@patchConstantResult", *retType);
- pcfCallResult->getWritableType().getQualifier().makeTemporary();
- TIntermSymbol* pcfResultVar = intermediate.addSymbol(*pcfCallResult, loc);
- TIntermNode* pcfResultAssign = handleAssign(loc, EOpAssign, pcfResultVar, pcfCall);
- TIntermNode* pcfResultToOut = handleAssign(loc, EOpAssign, pcfOutputSym,
- intermediate.addSymbol(*pcfCallResult, loc));
- pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultAssign);
- pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfResultToOut);
- } else {
- pcfCallSequence = intermediate.growAggregate(pcfCallSequence, pcfCall);
- }
- // ================ Step 4: Barrier ================
- TIntermTyped* barrier = new TIntermAggregate(EOpBarrier);
- barrier->setLoc(loc);
- barrier->setType(TType(EbtVoid));
- epBodySeq.insert(epBodySeq.end(), barrier);
- // ================ Step 5: Test on invocation ID ================
- TIntermTyped* zero = intermediate.addConstantUnion(0, loc, true);
- TIntermTyped* cmp = intermediate.addBinaryNode(EOpEqual, invocationIdSym, zero, loc, TType(EbtBool));
- // ================ Step 5B: Create if statement on Invocation ID == 0 ================
- intermediate.setAggregateOperator(pcfCallSequence, EOpSequence, TType(EbtVoid), loc);
- TIntermTyped* invocationIdTest = new TIntermSelection(cmp, pcfCallSequence, nullptr);
- invocationIdTest->setLoc(loc);
- // add our test sequence before the return.
- epBodySeq.insert(epBodySeq.end(), invocationIdTest);
- }
- // Finalization step: remove unused buffer blocks from linkage (we don't know until the
- // shader is entirely compiled).
- // Preserve order of remaining symbols.
- void HlslParseContext::removeUnusedStructBufferCounters()
- {
- const auto endIt = std::remove_if(linkageSymbols.begin(), linkageSymbols.end(),
- [this](const TSymbol* sym) {
- const auto sbcIt = structBufferCounter.find(sym->getName());
- return sbcIt != structBufferCounter.end() && !sbcIt->second;
- });
- linkageSymbols.erase(endIt, linkageSymbols.end());
- }
- // Finalization step: patch texture shadow modes to match samplers they were combined with
- void HlslParseContext::fixTextureShadowModes()
- {
- for (auto symbol = linkageSymbols.begin(); symbol != linkageSymbols.end(); ++symbol) {
- TSampler& sampler = (*symbol)->getWritableType().getSampler();
- if (sampler.isTexture()) {
- const auto shadowMode = textureShadowVariant.find((*symbol)->getUniqueId());
- if (shadowMode != textureShadowVariant.end()) {
- if (shadowMode->second->overloaded())
- // Texture needs legalization if it's been seen with both shadow and non-shadow modes.
- intermediate.setNeedsLegalization();
- sampler.shadow = shadowMode->second->isShadowId((*symbol)->getUniqueId());
- }
- }
- }
- }
- // Finalization step: patch append methods to use proper stream output, which isn't known until
- // main is parsed, which could happen after the append method is parsed.
- void HlslParseContext::finalizeAppendMethods()
- {
- TSourceLoc loc;
- loc.init();
- // Nothing to do: bypass test for valid stream output.
- if (gsAppends.empty())
- return;
- if (gsStreamOutput == nullptr) {
- error(loc, "unable to find output symbol for Append()", "", "");
- return;
- }
- // Patch append sequences, now that we know the stream output symbol.
- for (auto append = gsAppends.begin(); append != gsAppends.end(); ++append) {
- append->node->getSequence()[0] =
- handleAssign(append->loc, EOpAssign,
- intermediate.addSymbol(*gsStreamOutput, append->loc),
- append->node->getSequence()[0]->getAsTyped());
- }
- }
- // post-processing
- void HlslParseContext::finish()
- {
- // Error check: There was a dangling .mips operator. These are not nested constructs in the grammar, so
- // cannot be detected there. This is not strictly needed in a non-validating parser; it's just helpful.
- if (! mipsOperatorMipArg.empty()) {
- error(mipsOperatorMipArg.back().loc, "unterminated mips operator:", "", "");
- }
- removeUnusedStructBufferCounters();
- addPatchConstantInvocation();
- fixTextureShadowModes();
- finalizeAppendMethods();
- // Communicate out (esp. for command line) that we formed AST that will make
- // illegal AST SPIR-V and it needs transforms to legalize it.
- if (intermediate.needsLegalization() && (messages & EShMsgHlslLegalization))
- infoSink.info << "WARNING: AST will form illegal SPIR-V; need to transform to legalize";
- TParseContextBase::finish();
- }
- } // end namespace glslang
|