| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316 |
- //
- // Copyright (C) 2002-2005 3Dlabs Inc. Ltd.
- // Copyright (C) 2012-2013 LunarG, Inc.
- //
- // All rights reserved.
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions
- // are met:
- //
- // Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- //
- // Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following
- // disclaimer in the documentation and/or other materials provided
- // with the distribution.
- //
- // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
- // contributors may be used to endorse or promote products derived
- // from this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- #ifndef _POOLALLOC_INCLUDED_
- #define _POOLALLOC_INCLUDED_
- #ifdef _DEBUG
- # define GUARD_BLOCKS // define to enable guard block sanity checking
- #endif
- //
- // This header defines an allocator that can be used to efficiently
- // allocate a large number of small requests for heap memory, with the
- // intention that they are not individually deallocated, but rather
- // collectively deallocated at one time.
- //
- // This simultaneously
- //
- // * Makes each individual allocation much more efficient; the
- // typical allocation is trivial.
- // * Completely avoids the cost of doing individual deallocation.
- // * Saves the trouble of tracking down and plugging a large class of leaks.
- //
- // Individual classes can use this allocator by supplying their own
- // new and delete methods.
- //
- // STL containers can use this allocator by using the pool_allocator
- // class as the allocator (second) template argument.
- //
- #include <cstddef>
- #include <cstring>
- #include <vector>
- namespace glslang {
- // If we are using guard blocks, we must track each individual
- // allocation. If we aren't using guard blocks, these
- // never get instantiated, so won't have any impact.
- //
- class TAllocation {
- public:
- TAllocation(size_t size, unsigned char* mem, TAllocation* prev = 0) :
- size(size), mem(mem), prevAlloc(prev) {
- // Allocations are bracketed:
- // [allocationHeader][initialGuardBlock][userData][finalGuardBlock]
- // This would be cleaner with if (guardBlockSize)..., but that
- // makes the compiler print warnings about 0 length memsets,
- // even with the if() protecting them.
- # ifdef GUARD_BLOCKS
- memset(preGuard(), guardBlockBeginVal, guardBlockSize);
- memset(data(), userDataFill, size);
- memset(postGuard(), guardBlockEndVal, guardBlockSize);
- # endif
- }
- void check() const {
- checkGuardBlock(preGuard(), guardBlockBeginVal, "before");
- checkGuardBlock(postGuard(), guardBlockEndVal, "after");
- }
- void checkAllocList() const;
- // Return total size needed to accommodate user buffer of 'size',
- // plus our tracking data.
- inline static size_t allocationSize(size_t size) {
- return size + 2 * guardBlockSize + headerSize();
- }
- // Offset from surrounding buffer to get to user data buffer.
- inline static unsigned char* offsetAllocation(unsigned char* m) {
- return m + guardBlockSize + headerSize();
- }
- private:
- void checkGuardBlock(unsigned char* blockMem, unsigned char val, const char* locText) const;
- // Find offsets to pre and post guard blocks, and user data buffer
- unsigned char* preGuard() const { return mem + headerSize(); }
- unsigned char* data() const { return preGuard() + guardBlockSize; }
- unsigned char* postGuard() const { return data() + size; }
- size_t size; // size of the user data area
- unsigned char* mem; // beginning of our allocation (pts to header)
- TAllocation* prevAlloc; // prior allocation in the chain
- const static unsigned char guardBlockBeginVal;
- const static unsigned char guardBlockEndVal;
- const static unsigned char userDataFill;
- const static size_t guardBlockSize;
- # ifdef GUARD_BLOCKS
- inline static size_t headerSize() { return sizeof(TAllocation); }
- # else
- inline static size_t headerSize() { return 0; }
- # endif
- };
- //
- // There are several stacks. One is to track the pushing and popping
- // of the user, and not yet implemented. The others are simply a
- // repositories of free pages or used pages.
- //
- // Page stacks are linked together with a simple header at the beginning
- // of each allocation obtained from the underlying OS. Multi-page allocations
- // are returned to the OS. Individual page allocations are kept for future
- // re-use.
- //
- // The "page size" used is not, nor must it match, the underlying OS
- // page size. But, having it be about that size or equal to a set of
- // pages is likely most optimal.
- //
- class TPoolAllocator {
- public:
- TPoolAllocator(int growthIncrement = 8*1024, int allocationAlignment = 16);
- //
- // Don't call the destructor just to free up the memory, call pop()
- //
- ~TPoolAllocator();
- //
- // Call push() to establish a new place to pop memory too. Does not
- // have to be called to get things started.
- //
- void push();
- //
- // Call pop() to free all memory allocated since the last call to push(),
- // or if no last call to push, frees all memory since first allocation.
- //
- void pop();
- //
- // Call popAll() to free all memory allocated.
- //
- void popAll();
- //
- // Call allocate() to actually acquire memory. Returns 0 if no memory
- // available, otherwise a properly aligned pointer to 'numBytes' of memory.
- //
- void* allocate(size_t numBytes);
- //
- // There is no deallocate. The point of this class is that
- // deallocation can be skipped by the user of it, as the model
- // of use is to simultaneously deallocate everything at once
- // by calling pop(), and to not have to solve memory leak problems.
- //
- protected:
- friend struct tHeader;
- struct tHeader {
- tHeader(tHeader* nextPage, size_t pageCount) :
- #ifdef GUARD_BLOCKS
- lastAllocation(0),
- #endif
- nextPage(nextPage), pageCount(pageCount) { }
- ~tHeader() {
- #ifdef GUARD_BLOCKS
- if (lastAllocation)
- lastAllocation->checkAllocList();
- #endif
- }
- #ifdef GUARD_BLOCKS
- TAllocation* lastAllocation;
- #endif
- tHeader* nextPage;
- size_t pageCount;
- };
- struct tAllocState {
- size_t offset;
- tHeader* page;
- };
- typedef std::vector<tAllocState> tAllocStack;
- // Track allocations if and only if we're using guard blocks
- #ifndef GUARD_BLOCKS
- void* initializeAllocation(tHeader*, unsigned char* memory, size_t) {
- #else
- void* initializeAllocation(tHeader* block, unsigned char* memory, size_t numBytes) {
- new(memory) TAllocation(numBytes, memory, block->lastAllocation);
- block->lastAllocation = reinterpret_cast<TAllocation*>(memory);
- #endif
- // This is optimized entirely away if GUARD_BLOCKS is not defined.
- return TAllocation::offsetAllocation(memory);
- }
- size_t pageSize; // granularity of allocation from the OS
- size_t alignment; // all returned allocations will be aligned at
- // this granularity, which will be a power of 2
- size_t alignmentMask;
- size_t headerSkip; // amount of memory to skip to make room for the
- // header (basically, size of header, rounded
- // up to make it aligned
- size_t currentPageOffset; // next offset in top of inUseList to allocate from
- tHeader* freeList; // list of popped memory
- tHeader* inUseList; // list of all memory currently being used
- tAllocStack stack; // stack of where to allocate from, to partition pool
- int numCalls; // just an interesting statistic
- size_t totalBytes; // just an interesting statistic
- private:
- TPoolAllocator& operator=(const TPoolAllocator&); // don't allow assignment operator
- TPoolAllocator(const TPoolAllocator&); // don't allow default copy constructor
- };
- //
- // There could potentially be many pools with pops happening at
- // different times. But a simple use is to have a global pop
- // with everyone using the same global allocator.
- //
- extern TPoolAllocator& GetThreadPoolAllocator();
- void SetThreadPoolAllocator(TPoolAllocator* poolAllocator);
- //
- // This STL compatible allocator is intended to be used as the allocator
- // parameter to templatized STL containers, like vector and map.
- //
- // It will use the pools for allocation, and not
- // do any deallocation, but will still do destruction.
- //
- template<class T>
- class pool_allocator {
- public:
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef T *pointer;
- typedef const T *const_pointer;
- typedef T& reference;
- typedef const T& const_reference;
- typedef T value_type;
- template<class Other>
- struct rebind {
- typedef pool_allocator<Other> other;
- };
- pointer address(reference x) const { return &x; }
- const_pointer address(const_reference x) const { return &x; }
- pool_allocator() : allocator(GetThreadPoolAllocator()) { }
- pool_allocator(TPoolAllocator& a) : allocator(a) { }
- pool_allocator(const pool_allocator<T>& p) : allocator(p.allocator) { }
- template<class Other>
- pool_allocator(const pool_allocator<Other>& p) : allocator(p.getAllocator()) { }
- pointer allocate(size_type n) {
- return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); }
- pointer allocate(size_type n, const void*) {
- return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); }
- void deallocate(void*, size_type) { }
- void deallocate(pointer, size_type) { }
- pointer _Charalloc(size_t n) {
- return reinterpret_cast<pointer>(getAllocator().allocate(n)); }
- void construct(pointer p, const T& val) { new ((void *)p) T(val); }
- void destroy(pointer p) { p->T::~T(); }
- bool operator==(const pool_allocator& rhs) const { return &getAllocator() == &rhs.getAllocator(); }
- bool operator!=(const pool_allocator& rhs) const { return &getAllocator() != &rhs.getAllocator(); }
- size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); }
- size_type max_size(int size) const { return static_cast<size_type>(-1) / size; }
- TPoolAllocator& getAllocator() const { return allocator; }
- protected:
- pool_allocator& operator=(const pool_allocator&) { return *this; }
- TPoolAllocator& allocator;
- };
- } // end namespace glslang
- #endif // _POOLALLOC_INCLUDED_
|