ParticleEmitterComponent.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Scene/Components/ParticleEmitterComponent.h>
  6. #include <AnKi/Scene/SceneGraph.h>
  7. #include <AnKi/Scene/SceneNode.h>
  8. #include <AnKi/Scene/Components/MoveComponent.h>
  9. #include <AnKi/Resource/ParticleEmitterResource.h>
  10. #include <AnKi/Resource/ResourceManager.h>
  11. #include <AnKi/Physics/PhysicsBody.h>
  12. #include <AnKi/Physics/PhysicsCollisionShape.h>
  13. #include <AnKi/Physics/PhysicsWorld.h>
  14. #include <AnKi/Math.h>
  15. #include <AnKi/Shaders/Include/GpuSceneFunctions.h>
  16. #include <AnKi/GpuMemory/RebarTransientMemoryPool.h>
  17. namespace anki {
  18. static Vec3 getRandom(const Vec3& min, const Vec3& max)
  19. {
  20. Vec3 out;
  21. out.x() = mix(min.x(), max.x(), getRandomRange(0.0f, 1.0f));
  22. out.y() = mix(min.y(), max.y(), getRandomRange(0.0f, 1.0f));
  23. out.z() = mix(min.z(), max.z(), getRandomRange(0.0f, 1.0f));
  24. return out;
  25. }
  26. /// Particle base
  27. class ParticleEmitterComponent::ParticleBase
  28. {
  29. public:
  30. Second m_timeOfBirth; ///< Keep the time of birth for nice effects
  31. Second m_timeOfDeath = -1.0; ///< Time of death. If < 0.0 then dead
  32. F32 m_initialSize;
  33. F32 m_finalSize;
  34. F32 m_crntSize;
  35. F32 m_initialAlpha;
  36. F32 m_finalAlpha;
  37. F32 m_crntAlpha;
  38. Vec3 m_crntPosition;
  39. Bool isDead() const
  40. {
  41. return m_timeOfDeath < 0.0;
  42. }
  43. /// Kill the particle
  44. void killCommon()
  45. {
  46. ANKI_ASSERT(m_timeOfDeath > 0.0);
  47. m_timeOfDeath = -1.0;
  48. }
  49. /// Revive the particle
  50. void reviveCommon(const ParticleEmitterProperties& props, Second crntTime)
  51. {
  52. ANKI_ASSERT(isDead());
  53. // life
  54. m_timeOfDeath = crntTime + getRandomRange(props.m_particle.m_minLife, props.m_particle.m_maxLife);
  55. m_timeOfBirth = crntTime;
  56. // Size
  57. m_initialSize = getRandomRange(props.m_particle.m_minInitialSize, props.m_particle.m_maxInitialSize);
  58. m_finalSize = getRandomRange(props.m_particle.m_minFinalSize, props.m_particle.m_maxFinalSize);
  59. // Alpha
  60. m_initialAlpha = getRandomRange(props.m_particle.m_minInitialAlpha, props.m_particle.m_maxInitialAlpha);
  61. m_finalAlpha = getRandomRange(props.m_particle.m_minFinalAlpha, props.m_particle.m_maxFinalAlpha);
  62. }
  63. /// Common sumulation code
  64. void simulateCommon(Second crntTime)
  65. {
  66. const F32 lifeFactor = F32((crntTime - m_timeOfBirth) / (m_timeOfDeath - m_timeOfBirth));
  67. m_crntSize = mix(m_initialSize, m_finalSize, lifeFactor);
  68. m_crntAlpha = mix(m_initialAlpha, m_finalAlpha, lifeFactor);
  69. }
  70. };
  71. /// Simple particle for simple simulation
  72. class ParticleEmitterComponent::SimpleParticle : public ParticleEmitterComponent::ParticleBase
  73. {
  74. public:
  75. Vec3 m_velocity = Vec3(0.0f);
  76. Vec3 m_acceleration = Vec3(0.0f);
  77. void kill()
  78. {
  79. killCommon();
  80. }
  81. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  82. {
  83. reviveCommon(props, crntTime);
  84. m_velocity = Vec3(0.0f);
  85. m_acceleration = getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity);
  86. // Set the initial position
  87. m_crntPosition = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  88. m_crntPosition += trf.getOrigin().xyz();
  89. }
  90. void simulate(Second prevUpdateTime, Second crntTime)
  91. {
  92. simulateCommon(crntTime);
  93. const F32 dt = F32(crntTime - prevUpdateTime);
  94. const Vec3 xp = m_crntPosition;
  95. const Vec3 xc = m_acceleration * (dt * dt) + m_velocity * dt + xp;
  96. m_crntPosition = xc;
  97. m_velocity += m_acceleration * dt;
  98. }
  99. };
  100. /// Particle for Jolt simulations
  101. class ParticleEmitterComponent::PhysicsParticle : public ParticleEmitterComponent::ParticleBase
  102. {
  103. public:
  104. PhysicsBodyPtr m_body;
  105. PhysicsParticle(const PhysicsBodyInitInfo& init, ParticleEmitterComponent* component)
  106. {
  107. m_body = PhysicsWorld::getSingleton().newPhysicsBody(init);
  108. m_body->setUserData(component);
  109. m_body->activate(false);
  110. }
  111. void kill()
  112. {
  113. killCommon();
  114. m_body->activate(false);
  115. }
  116. void revive(const ParticleEmitterProperties& props, const Transform& trf, Second crntTime)
  117. {
  118. reviveCommon(props, crntTime);
  119. // pre calculate
  120. const Bool forceFlag = props.forceEnabled();
  121. const Bool worldGravFlag = props.wordGravityEnabled();
  122. // Activate it
  123. m_body->activate(true);
  124. m_body->setLinearVelocity(Vec3(0.0f));
  125. m_body->setAngularVelocity(Vec3(0.0f));
  126. m_body->clearForcesAndTorque();
  127. // force
  128. if(forceFlag)
  129. {
  130. Vec3 forceDir = getRandom(props.m_particle.m_minForceDirection, props.m_particle.m_maxForceDirection).normalize();
  131. // The forceDir depends on the particle emitter rotation
  132. forceDir = trf.getRotation().getRotationPart() * forceDir;
  133. const F32 forceMag = getRandomRange(props.m_particle.m_minForceMagnitude, props.m_particle.m_maxForceMagnitude);
  134. m_body->applyForce(forceDir * forceMag, Vec3(0.0f));
  135. }
  136. // gravity
  137. if(!worldGravFlag)
  138. {
  139. // TODO m_body->setGravity(getRandom(props.m_particle.m_minGravity, props.m_particle.m_maxGravity));
  140. }
  141. // Starting pos. In local space
  142. Vec3 pos = getRandom(props.m_particle.m_minStartingPosition, props.m_particle.m_maxStartingPosition);
  143. pos = trf.transform(pos);
  144. m_body->setPositionAndRotation(pos, trf.getRotation().getRotationPart());
  145. m_crntPosition = pos;
  146. }
  147. void simulate([[maybe_unused]] Second prevUpdateTime, Second crntTime)
  148. {
  149. simulateCommon(crntTime);
  150. m_crntPosition = m_body->getTransform().getOrigin().xyz();
  151. }
  152. };
  153. ParticleEmitterComponent::ParticleEmitterComponent(SceneNode* node)
  154. : SceneComponent(node, kClassType)
  155. {
  156. // Allocate and populate a quad
  157. const U32 vertCount = 4;
  158. const U32 indexCount = 6;
  159. m_quadPositions = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition], vertCount);
  160. m_quadUvs = UnifiedGeometryBuffer::getSingleton().allocateFormat(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv], vertCount);
  161. m_quadIndices = UnifiedGeometryBuffer::getSingleton().allocateFormat(Format::kR16_Uint, indexCount);
  162. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition] == Format::kR16G16B16A16_Unorm);
  163. WeakArray<U16Vec4> transientPositions;
  164. const BufferView positionsAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(vertCount, transientPositions);
  165. transientPositions[0] = U16Vec4(0, 0, 0, 0);
  166. transientPositions[1] = U16Vec4(kMaxU16, 0, 0, 0);
  167. transientPositions[2] = U16Vec4(kMaxU16, kMaxU16, 0, 0);
  168. transientPositions[3] = U16Vec4(0, kMaxU16, 0, 0);
  169. static_assert(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv] == Format::kR32G32_Sfloat);
  170. WeakArray<Vec2> transientUvs;
  171. const BufferView uvsAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(vertCount, transientUvs);
  172. transientUvs[0] = Vec2(0.0f);
  173. transientUvs[1] = Vec2(1.0f, 0.0f);
  174. transientUvs[2] = Vec2(1.0f, 1.0f);
  175. transientUvs[3] = Vec2(0.0f, 1.0f);
  176. WeakArray<U16> transientIndices;
  177. const BufferView indicesAlloc = RebarTransientMemoryPool::getSingleton().allocateCopyBuffer(indexCount, transientIndices);
  178. transientIndices[0] = 0;
  179. transientIndices[1] = 1;
  180. transientIndices[2] = 3;
  181. transientIndices[3] = 1;
  182. transientIndices[4] = 2;
  183. transientIndices[5] = 3;
  184. CommandBufferInitInfo cmdbInit("Particle quad upload");
  185. cmdbInit.m_flags |= CommandBufferFlag::kSmallBatch;
  186. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbInit);
  187. Buffer* dstBuff = &UnifiedGeometryBuffer::getSingleton().getBuffer();
  188. cmdb->copyBufferToBuffer(positionsAlloc, m_quadPositions);
  189. cmdb->copyBufferToBuffer(uvsAlloc, m_quadUvs);
  190. cmdb->copyBufferToBuffer(indicesAlloc, m_quadIndices);
  191. BufferBarrierInfo barrier;
  192. barrier.m_bufferView = BufferView(dstBuff);
  193. barrier.m_previousUsage = BufferUsageBit::kCopyDestination;
  194. barrier.m_nextUsage = dstBuff->getBufferUsage();
  195. cmdb->setPipelineBarrier({}, {&barrier, 1}, {});
  196. cmdb->endRecording();
  197. GrManager::getSingleton().submit(cmdb.get());
  198. }
  199. ParticleEmitterComponent::~ParticleEmitterComponent()
  200. {
  201. }
  202. void ParticleEmitterComponent::loadParticleEmitterResource(CString filename)
  203. {
  204. // Load
  205. ParticleEmitterResourcePtr rsrc;
  206. const Error err = ResourceManager::getSingleton().loadResource(filename, rsrc);
  207. if(err)
  208. {
  209. ANKI_SCENE_LOGE("Failed to load particle emitter");
  210. return;
  211. }
  212. m_particleEmitterResource = std::move(rsrc);
  213. m_props = m_particleEmitterResource->getProperties();
  214. m_resourceUpdated = true;
  215. // Cleanup
  216. m_simpleParticles.destroy();
  217. m_physicsParticles.destroy();
  218. GpuSceneBuffer::getSingleton().deferredFree(m_gpuScenePositions);
  219. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneScales);
  220. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneAlphas);
  221. GpuSceneBuffer::getSingleton().deferredFree(m_gpuSceneConstants);
  222. for(RenderStateBucketIndex& idx : m_renderStateBuckets)
  223. {
  224. RenderStateBucketContainer::getSingleton().removeUser(idx);
  225. }
  226. // Init particles
  227. m_simulationType = (m_props.m_usePhysicsEngine) ? SimulationType::kPhysicsEngine : SimulationType::kSimple;
  228. if(m_simulationType == SimulationType::kPhysicsEngine)
  229. {
  230. PhysicsCollisionShapePtr collisionShape = PhysicsWorld::getSingleton().newSphereCollisionShape(m_props.m_particle.m_minInitialSize / 2.0f);
  231. PhysicsBodyInitInfo binit;
  232. binit.m_layer = PhysicsLayer::kDebris;
  233. binit.m_shape = collisionShape.get();
  234. m_physicsParticles.resizeStorage(m_props.m_maxNumOfParticles);
  235. for(U32 i = 0; i < m_props.m_maxNumOfParticles; i++)
  236. {
  237. binit.m_mass = getRandomRange(m_props.m_particle.m_minMass, m_props.m_particle.m_maxMass);
  238. m_physicsParticles.emplaceBack(binit, this);
  239. }
  240. }
  241. else
  242. {
  243. m_simpleParticles.resize(m_props.m_maxNumOfParticles);
  244. }
  245. // GPU scene allocations
  246. m_gpuScenePositions = GpuSceneBuffer::getSingleton().allocate(sizeof(Vec3) * m_props.m_maxNumOfParticles, alignof(F32));
  247. m_gpuSceneAlphas = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  248. m_gpuSceneScales = GpuSceneBuffer::getSingleton().allocate(sizeof(F32) * m_props.m_maxNumOfParticles, alignof(F32));
  249. m_gpuSceneConstants = GpuSceneBuffer::getSingleton().allocate(
  250. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getSizeInBytes(), alignof(U32));
  251. // Allocate buckets
  252. for(RenderingTechnique t :
  253. EnumBitsIterable<RenderingTechnique, RenderingTechniqueBit>(m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  254. {
  255. RenderingKey key;
  256. key.setRenderingTechnique(t);
  257. ShaderProgramPtr prog;
  258. m_particleEmitterResource->getRenderingInfo(key, prog);
  259. RenderStateInfo state;
  260. state.m_program = prog;
  261. state.m_primitiveTopology = PrimitiveTopology::kTriangles;
  262. state.m_indexedDrawcall = false;
  263. m_renderStateBuckets[t] = RenderStateBucketContainer::getSingleton().addUser(state, t, 0);
  264. }
  265. }
  266. Error ParticleEmitterComponent::update(SceneComponentUpdateInfo& info, Bool& updated)
  267. {
  268. if(!m_particleEmitterResource.isCreated()) [[unlikely]]
  269. {
  270. updated = false;
  271. return Error::kNone;
  272. }
  273. updated = true;
  274. Vec3* positions;
  275. F32* scales;
  276. F32* alphas;
  277. Aabb aabbWorld;
  278. if(m_simulationType == SimulationType::kSimple)
  279. {
  280. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<SimpleParticle>(m_simpleParticles), positions,
  281. scales, alphas, aabbWorld);
  282. }
  283. else
  284. {
  285. ANKI_ASSERT(m_simulationType == SimulationType::kPhysicsEngine);
  286. simulate(info.m_previousTime, info.m_currentTime, info.m_node->getWorldTransform(), WeakArray<PhysicsParticle>(m_physicsParticles), positions,
  287. scales, alphas, aabbWorld);
  288. }
  289. // Upload particles to the GPU scene
  290. GpuSceneMicroPatcher& patcher = GpuSceneMicroPatcher::getSingleton();
  291. if(m_aliveParticleCount > 0)
  292. {
  293. patcher.newCopy(*info.m_framePool, m_gpuScenePositions, sizeof(Vec3) * m_aliveParticleCount, positions);
  294. patcher.newCopy(*info.m_framePool, m_gpuSceneScales, sizeof(F32) * m_aliveParticleCount, scales);
  295. patcher.newCopy(*info.m_framePool, m_gpuSceneAlphas, sizeof(F32) * m_aliveParticleCount, alphas);
  296. }
  297. if(m_resourceUpdated)
  298. {
  299. // Upload GpuSceneParticleEmitter
  300. GpuSceneParticleEmitter particles = {};
  301. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  302. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  303. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  304. particles.m_aliveParticleCount = m_aliveParticleCount;
  305. if(!m_gpuSceneParticleEmitter.isValid())
  306. {
  307. m_gpuSceneParticleEmitter.allocate();
  308. }
  309. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  310. // Upload uniforms
  311. patcher.newCopy(*info.m_framePool, m_gpuSceneConstants,
  312. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getSizeInBytes(),
  313. m_particleEmitterResource->getMaterial()->getPrefilledLocalConstants().getBegin());
  314. // Upload mesh LODs
  315. GpuSceneMeshLod meshLod = {};
  316. meshLod.m_vertexOffsets[U32(VertexStreamId::kPosition)] =
  317. m_quadPositions.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kPosition]).m_texelSize;
  318. meshLod.m_vertexOffsets[U32(VertexStreamId::kUv)] =
  319. m_quadUvs.getOffset() / getFormatInfo(kMeshRelatedVertexStreamFormats[VertexStreamId::kUv]).m_texelSize;
  320. meshLod.m_indexCount = 6;
  321. meshLod.m_firstIndex = m_quadIndices.getOffset() / sizeof(U16);
  322. meshLod.m_positionScale = 1.0f;
  323. meshLod.m_positionTranslation = Vec3(-0.5f, -0.5f, 0.0f);
  324. Array<GpuSceneMeshLod, kMaxLodCount> meshLods;
  325. meshLods.fill(meshLod);
  326. if(!m_gpuSceneMeshLods.isValid())
  327. {
  328. m_gpuSceneMeshLods.allocate();
  329. }
  330. m_gpuSceneMeshLods.uploadToGpuScene(meshLods);
  331. // Upload the GpuSceneRenderable
  332. GpuSceneRenderable renderable = {};
  333. renderable.m_boneTransformsOffset = 0;
  334. renderable.m_constantsOffset = m_gpuSceneConstants.getOffset();
  335. renderable.m_meshLodsIndex = m_gpuSceneMeshLods.getIndex() * kMaxLodCount;
  336. renderable.m_particleEmitterIndex = m_gpuSceneParticleEmitter.getIndex();
  337. renderable.m_worldTransformsIndex = 0;
  338. renderable.m_uuid = SceneGraph::getSingleton().getNewUuid();
  339. if(!m_gpuSceneRenderable.isValid())
  340. {
  341. m_gpuSceneRenderable.allocate();
  342. }
  343. m_gpuSceneRenderable.uploadToGpuScene(renderable);
  344. }
  345. if(!m_resourceUpdated)
  346. {
  347. // Always upload GpuSceneParticleEmitter
  348. GpuSceneParticleEmitter particles = {};
  349. particles.m_vertexOffsets[U32(VertexStreamId::kParticlePosition)] = m_gpuScenePositions.getOffset();
  350. particles.m_vertexOffsets[U32(VertexStreamId::kParticleColor)] = m_gpuSceneAlphas.getOffset();
  351. particles.m_vertexOffsets[U32(VertexStreamId::kParticleScale)] = m_gpuSceneScales.getOffset();
  352. particles.m_aliveParticleCount = m_aliveParticleCount;
  353. if(!m_gpuSceneParticleEmitter.isValid())
  354. {
  355. m_gpuSceneParticleEmitter.allocate();
  356. }
  357. m_gpuSceneParticleEmitter.uploadToGpuScene(particles);
  358. }
  359. // Upload the GpuSceneRenderableBoundingVolume always
  360. for(RenderingTechnique t : EnumIterable<RenderingTechnique>())
  361. {
  362. if(!!(RenderingTechniqueBit(1 << t) & m_particleEmitterResource->getMaterial()->getRenderingTechniques()))
  363. {
  364. const GpuSceneRenderableBoundingVolume gpuVolume = initGpuSceneRenderableBoundingVolume(
  365. aabbWorld.getMin().xyz(), aabbWorld.getMax().xyz(), m_gpuSceneRenderable.getIndex(), m_renderStateBuckets[t].get());
  366. switch(t)
  367. {
  368. case RenderingTechnique::kGBuffer:
  369. if(!m_gpuSceneRenderableAabbGBuffer.isValid())
  370. {
  371. m_gpuSceneRenderableAabbGBuffer.allocate();
  372. }
  373. m_gpuSceneRenderableAabbGBuffer.uploadToGpuScene(gpuVolume);
  374. break;
  375. case RenderingTechnique::kDepth:
  376. if(!m_gpuSceneRenderableAabbDepth.isValid())
  377. {
  378. m_gpuSceneRenderableAabbDepth.allocate();
  379. }
  380. m_gpuSceneRenderableAabbDepth.uploadToGpuScene(gpuVolume);
  381. break;
  382. case RenderingTechnique::kForward:
  383. if(!m_gpuSceneRenderableAabbForward.isValid())
  384. {
  385. m_gpuSceneRenderableAabbForward.allocate();
  386. }
  387. m_gpuSceneRenderableAabbForward.uploadToGpuScene(gpuVolume);
  388. break;
  389. default:
  390. ANKI_ASSERT(0);
  391. }
  392. }
  393. else if(!!(RenderingTechniqueBit(1 << t) & RenderingTechniqueBit::kAllRt))
  394. {
  395. continue;
  396. }
  397. else
  398. {
  399. switch(t)
  400. {
  401. case RenderingTechnique::kGBuffer:
  402. m_gpuSceneRenderableAabbGBuffer.free();
  403. break;
  404. case RenderingTechnique::kDepth:
  405. m_gpuSceneRenderableAabbDepth.free();
  406. break;
  407. case RenderingTechnique::kForward:
  408. m_gpuSceneRenderableAabbForward.free();
  409. break;
  410. default:
  411. ANKI_ASSERT(0);
  412. }
  413. }
  414. }
  415. m_resourceUpdated = false;
  416. return Error::kNone;
  417. }
  418. template<typename TParticle>
  419. void ParticleEmitterComponent::simulate(Second prevUpdateTime, Second crntTime, const Transform& worldTransform, WeakArray<TParticle> particles,
  420. Vec3*& positions, F32*& scales, F32*& alphas, Aabb& aabbWorld)
  421. {
  422. // - Deactivate the dead particles
  423. // - Calc the AABB
  424. // - Calc the instancing stuff
  425. Vec3 aabbMin(kMaxF32);
  426. Vec3 aabbMax(kMinF32);
  427. m_aliveParticleCount = 0;
  428. positions =
  429. static_cast<Vec3*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(Vec3), alignof(Vec3)));
  430. scales = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  431. alphas = static_cast<F32*>(SceneGraph::getSingleton().getFrameMemoryPool().allocate(m_props.m_maxNumOfParticles * sizeof(F32), alignof(F32)));
  432. F32 maxParticleSize = -1.0f;
  433. for(TParticle& particle : particles)
  434. {
  435. if(particle.isDead())
  436. {
  437. // if its already dead so dont deactivate it again
  438. continue;
  439. }
  440. if(particle.m_timeOfDeath < crntTime)
  441. {
  442. // Just died
  443. particle.kill();
  444. }
  445. else
  446. {
  447. // It's alive
  448. // This will calculate a new world transformation
  449. particle.simulate(prevUpdateTime, crntTime);
  450. const Vec3& origin = particle.m_crntPosition;
  451. aabbMin = aabbMin.min(origin);
  452. aabbMax = aabbMax.max(origin);
  453. positions[m_aliveParticleCount] = origin;
  454. scales[m_aliveParticleCount] = particle.m_crntSize;
  455. maxParticleSize = max(maxParticleSize, particle.m_crntSize);
  456. alphas[m_aliveParticleCount] = clamp(particle.m_crntAlpha, 0.0f, 1.0f);
  457. ++m_aliveParticleCount;
  458. }
  459. }
  460. // AABB
  461. if(m_aliveParticleCount != 0)
  462. {
  463. ANKI_ASSERT(maxParticleSize > 0.0f);
  464. const Vec3 min = aabbMin - maxParticleSize;
  465. const Vec3 max = aabbMax + maxParticleSize;
  466. aabbWorld = Aabb(min, max);
  467. }
  468. else
  469. {
  470. aabbWorld = Aabb(Vec3(0.0f), Vec3(0.001f));
  471. positions = nullptr;
  472. alphas = scales = nullptr;
  473. }
  474. //
  475. // Emit new particles
  476. //
  477. if(m_timeLeftForNextEmission <= 0.0)
  478. {
  479. U particleCount = 0; // How many particles I am allowed to emmit
  480. for(TParticle& particle : particles)
  481. {
  482. if(!particle.isDead())
  483. {
  484. // its alive so skip it
  485. continue;
  486. }
  487. particle.revive(m_props, worldTransform, crntTime);
  488. // do the rest
  489. ++particleCount;
  490. if(particleCount >= m_props.m_particlesPerEmission)
  491. {
  492. break;
  493. }
  494. } // end for all particles
  495. m_timeLeftForNextEmission = m_props.m_emissionPeriod;
  496. } // end if can emit
  497. else
  498. {
  499. m_timeLeftForNextEmission -= crntTime - prevUpdateTime;
  500. }
  501. }
  502. } // end namespace anki