Mat.h 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #pragma once
  6. #include <AnKi/Math/Common.h>
  7. #include <AnKi/Math/Vec.h>
  8. namespace anki {
  9. /// @addtogroup math
  10. /// @{
  11. /// Matrix type.
  12. /// @tparam T The scalar type. Eg float.
  13. /// @tparam kTRowCount The number of rows.
  14. /// @tparam kTColumnCount The number of columns.
  15. template<typename T, U kTRowCount, U kTColumnCount>
  16. class alignas(MathSimd<T, kTColumnCount>::kAlignment) TMat
  17. {
  18. public:
  19. using Scalar = T;
  20. using Simd = typename MathSimd<T, kTColumnCount>::Type;
  21. #if ANKI_COMPILER_GCC_COMPATIBLE
  22. # pragma GCC diagnostic push
  23. # pragma GCC diagnostic ignored "-Wignored-attributes"
  24. #endif
  25. using SimdArray = Array<Simd, kTRowCount>;
  26. #if ANKI_COMPILER_GCC_COMPATIBLE
  27. # pragma GCC diagnostic pop
  28. #endif
  29. using RowVec = TVec<T, kTColumnCount>;
  30. using ColumnVec = TVec<T, kTRowCount>;
  31. static constexpr U kRowCount = kTRowCount; ///< Number of rows
  32. static constexpr U kColumnCount = kTColumnCount; ///< Number of columns
  33. static constexpr U kSize = kTRowCount * kTColumnCount; ///< Number of total elements
  34. static constexpr Bool kIsSquare = kTColumnCount == kTRowCount;
  35. static constexpr Bool kHasSimd = kTColumnCount == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
  36. static constexpr Bool kIs4x4Simd = kTRowCount == 4 && kTColumnCount == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
  37. static constexpr Bool kIs3x4Simd = kTRowCount == 3 && kTColumnCount == 4 && std::is_same<T, F32>::value && ANKI_ENABLE_SIMD;
  38. /// @name Constructors
  39. /// @{
  40. constexpr TMat()
  41. : TMat(T(0))
  42. {
  43. }
  44. /// Copy.
  45. constexpr TMat(const TMat& b)
  46. {
  47. for(U i = 0; i < kRowCount; i++)
  48. {
  49. m_rows[i] = b.m_rows[i];
  50. }
  51. }
  52. explicit constexpr TMat(const T f)
  53. {
  54. for(U i = 0; i < kRowCount; i++)
  55. {
  56. m_rows[i] = RowVec(f);
  57. }
  58. }
  59. explicit constexpr TMat(const T arr[])
  60. {
  61. for(U i = 0; i < N; i++)
  62. {
  63. m_arr1[i] = arr[i];
  64. }
  65. }
  66. // 3x3 specific constructors
  67. constexpr TMat(T m00, T m01, T m02, T m10, T m11, T m12, T m20, T m21, T m22) requires(kSize == 9)
  68. {
  69. auto& m = *this;
  70. m(0, 0) = m00;
  71. m(0, 1) = m01;
  72. m(0, 2) = m02;
  73. m(1, 0) = m10;
  74. m(1, 1) = m11;
  75. m(1, 2) = m12;
  76. m(2, 0) = m20;
  77. m(2, 1) = m21;
  78. m(2, 2) = m22;
  79. }
  80. explicit constexpr TMat(const TQuat<T>& q) requires(kSize == 9)
  81. {
  82. TMat& m = *this;
  83. // If length is > 1 + 0.002 or < 1 - 0.002 then not normalized quat
  84. ANKI_ASSERT(absolute(T(1) - q.length()) <= 0.002);
  85. T xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
  86. xs = q.x() + q.x();
  87. ys = q.y() + q.y();
  88. zs = q.z() + q.z();
  89. wx = q.w() * xs;
  90. wy = q.w() * ys;
  91. wz = q.w() * zs;
  92. xx = q.x() * xs;
  93. xy = q.x() * ys;
  94. xz = q.x() * zs;
  95. yy = q.y() * ys;
  96. yz = q.y() * zs;
  97. zz = q.z() * zs;
  98. m(0, 0) = T(1) - (yy + zz);
  99. m(0, 1) = xy - wz;
  100. m(0, 2) = xz + wy;
  101. m(1, 0) = xy + wz;
  102. m(1, 1) = T(1) - (xx + zz);
  103. m(1, 2) = yz - wx;
  104. m(2, 0) = xz - wy;
  105. m(2, 1) = yz + wx;
  106. m(2, 2) = T(1) - (xx + yy);
  107. }
  108. explicit constexpr TMat(const TEuler<T>& e) requires(kSize == 9)
  109. {
  110. TMat& m = *this;
  111. T ch, sh, ca, sa, cb, sb;
  112. sinCos(e.y(), sh, ch);
  113. sinCos(e.z(), sa, ca);
  114. sinCos(e.x(), sb, cb);
  115. m(0, 0) = ch * ca;
  116. m(0, 1) = sh * sb - ch * sa * cb;
  117. m(0, 2) = ch * sa * sb + sh * cb;
  118. m(1, 0) = sa;
  119. m(1, 1) = ca * cb;
  120. m(1, 2) = -ca * sb;
  121. m(2, 0) = -sh * ca;
  122. m(2, 1) = sh * sa * cb + ch * sb;
  123. m(2, 2) = -sh * sa * sb + ch * cb;
  124. }
  125. explicit constexpr TMat(const TAxisang<T>& axisang) requires(kSize == 9)
  126. {
  127. TMat& m = *this;
  128. // Not normalized axis
  129. ANKI_ASSERT(isZero<T>(T(1) - axisang.getAxis().getLength()));
  130. T c, s;
  131. sinCos(axisang.getAngle(), s, c);
  132. T t = T(1) - c;
  133. const TVec<T, 3>& axis = axisang.getAxis();
  134. m(0, 0) = c + axis.x() * axis.x() * t;
  135. m(1, 1) = c + axis.y() * axis.y() * t;
  136. m(2, 2) = c + axis.z() * axis.z() * t;
  137. T tmp1 = axis.x() * axis.y() * t;
  138. T tmp2 = axis.z() * s;
  139. m(1, 0) = tmp1 + tmp2;
  140. m(0, 1) = tmp1 - tmp2;
  141. tmp1 = axis.x() * axis.z() * t;
  142. tmp2 = axis.y() * s;
  143. m(2, 0) = tmp1 - tmp2;
  144. m(0, 2) = tmp1 + tmp2;
  145. tmp1 = axis.y() * axis.z() * t;
  146. tmp2 = axis.x() * s;
  147. m(2, 1) = tmp1 + tmp2;
  148. m(1, 2) = tmp1 - tmp2;
  149. }
  150. // 4x4 specific constructors
  151. constexpr TMat(T m00, T m01, T m02, T m03, T m10, T m11, T m12, T m13, T m20, T m21, T m22, T m23, T m30, T m31, T m32,
  152. T m33) requires(kSize == 16)
  153. {
  154. auto& m = *this;
  155. m(0, 0) = m00;
  156. m(0, 1) = m01;
  157. m(0, 2) = m02;
  158. m(0, 3) = m03;
  159. m(1, 0) = m10;
  160. m(1, 1) = m11;
  161. m(1, 2) = m12;
  162. m(1, 3) = m13;
  163. m(2, 0) = m20;
  164. m(2, 1) = m21;
  165. m(2, 2) = m22;
  166. m(2, 3) = m23;
  167. m(3, 0) = m30;
  168. m(3, 1) = m31;
  169. m(3, 2) = m32;
  170. m(3, 3) = m33;
  171. }
  172. constexpr TMat(const TVec<T, 3>& translation, const TMat<T, 3, 3>& rotation, const TVec<T, 3>& scale = TVec<T, 3>(T(1))) requires(kSize == 16)
  173. {
  174. if(scale == TVec<T, 3>(T(1)))
  175. {
  176. setRotationPart(rotation);
  177. }
  178. else
  179. {
  180. const auto a = rotation.getColumn(0) * scale.x();
  181. const auto b = rotation.getColumn(1) * scale.y();
  182. const auto c = rotation.getColumn(2) * scale.z();
  183. TMat<T, 3, 3> rot;
  184. rot.setColumns(a, b, c);
  185. setRotationPart(rot);
  186. }
  187. setTranslationPart(translation);
  188. auto& m = *this;
  189. m(3, 0) = m(3, 1) = m(3, 2) = T(0);
  190. m(3, 3) = T(1);
  191. }
  192. explicit constexpr TMat(const TTransform<T>& t) requires(kSize == 16)
  193. : TMat(t.getOrigin().xyz(), t.getRotation().getRotationPart(), t.getScale().xyz())
  194. {
  195. }
  196. /// Set a 4x4 matrix using a 3x4 for the first 3 rows and a vec4 for the 4rth row.
  197. explicit constexpr TMat(const TMat<T, 3, 4>& m3, const TVec<T, 4>& row3) requires(kSize == 16)
  198. {
  199. setRow(0, m3.getRow(0));
  200. setRow(1, m3.getRow(1));
  201. setRow(2, m3.getRow(2));
  202. setRow(3, row3);
  203. }
  204. // 3x4 specific constructors
  205. constexpr TMat(T m00, T m01, T m02, T m03, T m10, T m11, T m12, T m13, T m20, T m21, T m22, T m23) requires(kSize == 12)
  206. {
  207. auto& m = *this;
  208. m(0, 0) = m00;
  209. m(0, 1) = m01;
  210. m(0, 2) = m02;
  211. m(0, 3) = m03;
  212. m(1, 0) = m10;
  213. m(1, 1) = m11;
  214. m(1, 2) = m12;
  215. m(1, 3) = m13;
  216. m(2, 0) = m20;
  217. m(2, 1) = m21;
  218. m(2, 2) = m22;
  219. m(2, 3) = m23;
  220. }
  221. explicit constexpr TMat(const TMat<T, 4, 4>& m4) requires(kSize == 12)
  222. {
  223. ANKI_ASSERT(m4(3, 0) == T(0) && m4(3, 1) == T(0) && m4(3, 2) == T(0) && m4(3, 3) == T(1));
  224. m_rows[0] = m4.getRow(0);
  225. m_rows[1] = m4.getRow(1);
  226. m_rows[2] = m4.getRow(2);
  227. }
  228. explicit constexpr TMat(const TVec<T, 3>& translation, const TMat<T, 3, 3>& rotation,
  229. const TVec<T, 3>& scale = TVec<T, 3>(T(1))) requires(kSize == 12)
  230. {
  231. if(scale == TVec<T, 3>(T(1)))
  232. {
  233. setRotationPart(rotation);
  234. }
  235. else
  236. {
  237. const auto a = rotation.getColumn(0) * scale.x();
  238. const auto b = rotation.getColumn(1) * scale.y();
  239. const auto c = rotation.getColumn(2) * scale.z();
  240. setColumns(a, b, c);
  241. }
  242. setTranslationPart(translation);
  243. }
  244. explicit constexpr TMat(const TVec<T, 3>& translation, const TQuat<T>& q, const TVec<T, 3>& scale = TVec<T, 3>(T(1))) requires(kSize == 12)
  245. : TMat(translation, TMat<T, 3, 3>(q), scale)
  246. {
  247. }
  248. explicit constexpr TMat(const TVec<T, 3>& translation, const TEuler<T>& b, const TVec<T, 3>& scale = TVec<T, 3>(T(1))) requires(kSize == 12)
  249. : TMat(translation, TMat<T, 3, 3>(b), scale)
  250. {
  251. }
  252. explicit constexpr TMat(const TVec<T, 3>& translation, const TAxisang<T>& b, const TVec<T, 3>& scale = TVec<T, 3>(T(1))) requires(kSize == 12)
  253. : TMat(translation, TMat<T, 3, 3>(b), scale)
  254. {
  255. }
  256. explicit constexpr TMat(const TTransform<T>& t) requires(kSize == 12)
  257. : TMat(t.getOrigin().xyz(), t.getRotation().getRotationPart(), t.getScale().xyz())
  258. {
  259. }
  260. /// @}
  261. /// @name Accessors
  262. /// @{
  263. T& operator()(const U j, const U i)
  264. {
  265. return m_arr2[j][i];
  266. }
  267. [[nodiscard]] T operator()(const U j, const U i) const
  268. {
  269. return m_arr2[j][i];
  270. }
  271. T& operator[](const U n)
  272. {
  273. return m_arr1[n];
  274. }
  275. [[nodiscard]] T operator[](const U n) const
  276. {
  277. return m_arr1[n];
  278. }
  279. /// @}
  280. /// @name Operators with same type
  281. /// @{
  282. /// Copy.
  283. TMat& operator=(const TMat& b)
  284. {
  285. for(U i = 0; i < kRowCount; ++i)
  286. {
  287. m_rows[i] = b.m_rows[i];
  288. }
  289. return *this;
  290. }
  291. [[nodiscard]] TMat operator+(const TMat& b) const
  292. {
  293. TMat c;
  294. for(U i = 0; i < kRowCount; ++i)
  295. {
  296. c.m_rows[i] = m_rows[i] + b.m_rows[i];
  297. }
  298. return c;
  299. }
  300. TMat& operator+=(const TMat& b)
  301. {
  302. for(U i = 0; i < kRowCount; ++i)
  303. {
  304. m_rows[i] += b.m_rows[i];
  305. }
  306. return *this;
  307. }
  308. [[nodiscard]] TMat operator-(const TMat& b) const
  309. {
  310. TMat c;
  311. for(U i = 0; i < kRowCount; ++i)
  312. {
  313. c.m_rows[i] = m_rows[i] - b.m_rows[i];
  314. }
  315. return c;
  316. }
  317. TMat& operator-=(const TMat& b)
  318. {
  319. for(U i = 0; i < kRowCount; ++i)
  320. {
  321. m_rows[i] -= b.m_rows[i];
  322. }
  323. return *this;
  324. }
  325. [[nodiscard]] TMat operator*(const TMat& b) const requires(kIsSquare && !kIs4x4Simd)
  326. {
  327. TMat out;
  328. const TMat& a = *this;
  329. for(U j = 0; j < kTRowCount; j++)
  330. {
  331. for(U i = 0; i < kTColumnCount; i++)
  332. {
  333. out(j, i) = T(0);
  334. for(U k = 0; k < kTColumnCount; k++)
  335. {
  336. out(j, i) += a(j, k) * b(k, i);
  337. }
  338. }
  339. }
  340. return out;
  341. }
  342. #if ANKI_ENABLE_SIMD
  343. [[nodiscard]] TMat operator*(const TMat& b) const requires(kIs4x4Simd)
  344. {
  345. TMat out;
  346. const auto& m = *this;
  347. for(U i = 0; i < 4; i++)
  348. {
  349. # if ANKI_SIMD_SSE
  350. __m128 t1, t2;
  351. t1 = _mm_set1_ps(m(i, 0));
  352. t2 = _mm_mul_ps(b.m_simd[0], t1);
  353. t1 = _mm_set1_ps(m(i, 1));
  354. t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[1], t1), t2);
  355. t1 = _mm_set1_ps(m(i, 2));
  356. t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[2], t1), t2);
  357. t1 = _mm_set1_ps(m(i, 3));
  358. t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[3], t1), t2);
  359. out.m_simd[i] = t2;
  360. # else
  361. float32x4_t t1, t2;
  362. t1 = vmovq_n_f32(m(i, 0));
  363. t2 = b.m_simd[0] * t1;
  364. t1 = vmovq_n_f32(m(i, 1));
  365. t2 = b.m_simd[1] * t1 + t2;
  366. t1 = vmovq_n_f32(m(i, 2));
  367. t2 = b.m_simd[2] * t1 + t2;
  368. t1 = vmovq_n_f32(m(i, 3));
  369. t2 = b.m_simd[3] * t1 + t2;
  370. out.m_simd[i] = t2;
  371. # endif
  372. }
  373. return out;
  374. }
  375. #endif
  376. TMat& operator*=(const TMat& b)
  377. {
  378. (*this) = (*this) * b;
  379. return *this;
  380. }
  381. [[nodiscard]] Bool operator==(const TMat& b) const
  382. {
  383. for(U i = 0; i < N; i++)
  384. {
  385. if(!isZero<T>(m_arr1[i] - b.m_arr1[i]))
  386. {
  387. return false;
  388. }
  389. }
  390. return true;
  391. }
  392. [[nodiscard]] Bool operator!=(const TMat& b) const
  393. {
  394. for(U i = 0; i < N; i++)
  395. {
  396. if(!isZero<T>(m_arr1[i] - b.m_arr1[i]))
  397. {
  398. return true;
  399. }
  400. }
  401. return false;
  402. }
  403. /// @}
  404. /// @name Operators with T
  405. /// @{
  406. [[nodiscard]] TMat operator+(const T f) const
  407. {
  408. TMat out;
  409. for(U i = 0; i < kRowCount; ++i)
  410. {
  411. out.m_rows[i] = m_rows[i] + f;
  412. }
  413. return out;
  414. }
  415. TMat& operator+=(const T f)
  416. {
  417. for(U i = 0; i < kRowCount; ++i)
  418. {
  419. m_rows[i] += f;
  420. }
  421. return *this;
  422. }
  423. [[nodiscard]] TMat operator-(const T f) const
  424. {
  425. TMat out;
  426. for(U i = 0; i < kRowCount; ++i)
  427. {
  428. out.m_rows[i] = m_rows[i] - f;
  429. }
  430. return out;
  431. }
  432. TMat& operator-=(const T f)
  433. {
  434. for(U i = 0; i < kRowCount; ++i)
  435. {
  436. m_rows[i] -= f;
  437. }
  438. return *this;
  439. }
  440. [[nodiscard]] TMat operator*(const T f) const
  441. {
  442. TMat out;
  443. for(U i = 0; i < kRowCount; ++i)
  444. {
  445. out.m_rows[i] = m_rows[i] * f;
  446. }
  447. return out;
  448. }
  449. TMat& operator*=(const T f)
  450. {
  451. for(U i = 0; i < kRowCount; ++i)
  452. {
  453. m_rows[i] *= f;
  454. }
  455. return *this;
  456. }
  457. [[nodiscard]] TMat operator/(const T f) const
  458. {
  459. ANKI_ASSERT(f != T(0));
  460. TMat out;
  461. for(U i = 0; i < kRowCount; ++i)
  462. {
  463. out.m_rows[i] = m_rows[i] / f;
  464. }
  465. return out;
  466. }
  467. TMat& operator/=(const T f)
  468. {
  469. ANKI_ASSERT(f != T(0));
  470. for(U i = 0; i < kRowCount; ++i)
  471. {
  472. m_rows[i] /= f;
  473. }
  474. return *this;
  475. }
  476. /// @}
  477. /// @name Operators with other types
  478. /// @{
  479. [[nodiscard]] ColumnVec operator*(const RowVec& v) const requires(!kHasSimd)
  480. {
  481. const TMat& m = *this;
  482. ColumnVec out;
  483. for(U j = 0; j < kTRowCount; j++)
  484. {
  485. T sum = T(0);
  486. for(U i = 0; i < kTColumnCount; i++)
  487. {
  488. sum += m(j, i) * v[i];
  489. }
  490. out[j] = sum;
  491. }
  492. return out;
  493. }
  494. #if ANKI_SIMD_SSE
  495. [[nodiscard]] ColumnVec operator*(const RowVec& v) const requires(kIs4x4Simd)
  496. {
  497. __m128 a = _mm_mul_ps(m_simd[0], v.getSimd());
  498. __m128 b = _mm_mul_ps(m_simd[1], v.getSimd());
  499. __m128 c = _mm_mul_ps(m_simd[2], v.getSimd());
  500. __m128 d = _mm_mul_ps(m_simd[3], v.getSimd());
  501. a = _mm_hadd_ps(a, b);
  502. c = _mm_hadd_ps(c, d);
  503. return RowVec(_mm_hadd_ps(a, c));
  504. }
  505. [[nodiscard]] ColumnVec operator*(const RowVec& v) const requires(kIs3x4Simd)
  506. {
  507. __m128 a = _mm_mul_ps(m_simd[0], v.getSimd());
  508. __m128 b = _mm_mul_ps(m_simd[1], v.getSimd());
  509. __m128 c = _mm_mul_ps(m_simd[2], v.getSimd());
  510. a = _mm_hadd_ps(a, b);
  511. const RowVec d(_mm_hadd_ps(a, c));
  512. return ColumnVec(d[0], d[1], d[2] + d[3]);
  513. }
  514. #else
  515. [[nodiscard]] ColumnVec operator*(const RowVec& v) const requires(kHasSimd)
  516. {
  517. ColumnVec out;
  518. for(U i = 0; i < kTRowCount; i++)
  519. {
  520. out[i] = RowVec(m_simd[i]).dot(v);
  521. }
  522. return out;
  523. }
  524. #endif
  525. /// @}
  526. /// @name Other
  527. /// @{
  528. void setRow(const U j, const RowVec& v)
  529. {
  530. m_rows[j] = v;
  531. }
  532. void setRows(const RowVec& a, const RowVec& b, const RowVec& c)
  533. {
  534. setRow(0, a);
  535. setRow(1, b);
  536. setRow(2, c);
  537. }
  538. void setRows(const RowVec& a, const RowVec& b, const RowVec& c, const RowVec& d) requires(kTRowCount > 3)
  539. {
  540. setRows(a, b, c);
  541. setRow(3, d);
  542. }
  543. const RowVec& getRow(const U j) const
  544. {
  545. return m_rows[j];
  546. }
  547. void getRows(RowVec& a, RowVec& b, RowVec& c) const
  548. {
  549. a = getRow(0);
  550. b = getRow(1);
  551. c = getRow(2);
  552. }
  553. void getRows(RowVec& a, RowVec& b, RowVec& c, RowVec& d) const requires(kTRowCount > 3)
  554. {
  555. getRows(a, b, c);
  556. d = getRow(3);
  557. }
  558. void setColumn(const U i, const ColumnVec& v)
  559. {
  560. for(U j = 0; j < kTRowCount; j++)
  561. {
  562. m_arr2[j][i] = v[j];
  563. }
  564. }
  565. void setColumns(const ColumnVec& a, const ColumnVec& b, const ColumnVec& c)
  566. {
  567. setColumn(0, a);
  568. setColumn(1, b);
  569. setColumn(2, c);
  570. }
  571. void setColumns(const ColumnVec& a, const ColumnVec& b, const ColumnVec& c, const ColumnVec& d) requires(kTColumnCount > 3)
  572. {
  573. setColumns(a, b, c);
  574. setColumn(3, d);
  575. }
  576. [[nodiscard]] ColumnVec getColumn(const U i) const
  577. {
  578. ColumnVec out;
  579. for(U j = 0; j < kTRowCount; j++)
  580. {
  581. out[j] = m_arr2[j][i];
  582. }
  583. return out;
  584. }
  585. void getColumns(ColumnVec& a, ColumnVec& b, ColumnVec& c) const
  586. {
  587. a = getColumn(0);
  588. b = getColumn(1);
  589. c = getColumn(2);
  590. }
  591. void getColumns(ColumnVec& a, ColumnVec& b, ColumnVec& c, ColumnVec& d) const requires(kTColumnCount > 3)
  592. {
  593. getColumns(a, b, c);
  594. d = getColumn(3);
  595. }
  596. /// Get 1st column
  597. [[nodiscard]] ColumnVec getXAxis() const
  598. {
  599. return getColumn(0);
  600. }
  601. /// Get 2nd column
  602. [[nodiscard]] ColumnVec getYAxis() const
  603. {
  604. return getColumn(1);
  605. }
  606. /// Get 3rd column
  607. [[nodiscard]] ColumnVec getZAxis() const
  608. {
  609. return getColumn(2);
  610. }
  611. /// Set 1st column
  612. void setXAxis(const ColumnVec& v)
  613. {
  614. setColumn(0, v);
  615. }
  616. /// Set 2nd column
  617. void setYAxis(const ColumnVec& v)
  618. {
  619. setColumn(1, v);
  620. }
  621. /// Set 3rd column
  622. void setZAxis(const ColumnVec& v)
  623. {
  624. setColumn(2, v);
  625. }
  626. void setRotationX(const T rad)
  627. {
  628. TMat& m = *this;
  629. T sintheta, costheta;
  630. sinCos(rad, sintheta, costheta);
  631. m(0, 0) = T(1);
  632. m(0, 1) = T(0);
  633. m(0, 2) = T(0);
  634. m(1, 0) = T(0);
  635. m(1, 1) = costheta;
  636. m(1, 2) = -sintheta;
  637. m(2, 0) = T(0);
  638. m(2, 1) = sintheta;
  639. m(2, 2) = costheta;
  640. }
  641. void setRotationY(const T rad)
  642. {
  643. TMat& m = *this;
  644. T sintheta, costheta;
  645. sinCos(rad, sintheta, costheta);
  646. m(0, 0) = costheta;
  647. m(0, 1) = T(0);
  648. m(0, 2) = sintheta;
  649. m(1, 0) = T(0);
  650. m(1, 1) = T(1);
  651. m(1, 2) = T(0);
  652. m(2, 0) = -sintheta;
  653. m(2, 1) = T(0);
  654. m(2, 2) = costheta;
  655. }
  656. void setRotationZ(const T rad)
  657. {
  658. TMat& m = *this;
  659. T sintheta, costheta;
  660. sinCos(rad, sintheta, costheta);
  661. m(0, 0) = costheta;
  662. m(0, 1) = -sintheta;
  663. m(0, 2) = T(0);
  664. m(1, 0) = sintheta;
  665. m(1, 1) = costheta;
  666. m(1, 2) = T(0);
  667. m(2, 0) = T(0);
  668. m(2, 1) = T(0);
  669. m(2, 2) = T(1);
  670. }
  671. /// It rotates "this" in the axis defined by the rotation AND not the world axis.
  672. void rotateXAxis(const T rad)
  673. {
  674. TMat& m = *this;
  675. // If we analize the mat3 we can extract the 3 unit vectors rotated by the mat3. The 3 rotated vectors are in mat's columns. This means that:
  676. // mat3.colomn[0] == i * mat3. rotateXAxis() rotates rad angle not from i vector (aka x axis) but from the vector from colomn 0
  677. // NOTE: See the clean code from < r664
  678. T sina, cosa;
  679. sinCos(rad, sina, cosa);
  680. // zAxis = zAxis*cosa - yAxis*sina;
  681. m(0, 2) = m(0, 2) * cosa - m(0, 1) * sina;
  682. m(1, 2) = m(1, 2) * cosa - m(1, 1) * sina;
  683. m(2, 2) = m(2, 2) * cosa - m(2, 1) * sina;
  684. // zAxis.normalize();
  685. T len = sqrt(m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2));
  686. m(0, 2) /= len;
  687. m(1, 2) /= len;
  688. m(2, 2) /= len;
  689. // yAxis = zAxis * xAxis;
  690. m(0, 1) = m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0);
  691. m(1, 1) = m(2, 2) * m(0, 0) - m(0, 2) * m(2, 0);
  692. m(2, 1) = m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0);
  693. // yAxis.normalize();
  694. }
  695. /// @copybrief rotateXAxis
  696. void rotateYAxis(const T rad)
  697. {
  698. TMat& m = *this;
  699. // NOTE: See the clean code from < r664
  700. T sina, cosa;
  701. sinCos(rad, sina, cosa);
  702. // zAxis = zAxis*cosa + xAxis*sina;
  703. m(0, 2) = m(0, 2) * cosa + m(0, 0) * sina;
  704. m(1, 2) = m(1, 2) * cosa + m(1, 0) * sina;
  705. m(2, 2) = m(2, 2) * cosa + m(2, 0) * sina;
  706. // zAxis.normalize();
  707. T len = sqrt(m(0, 2) * m(0, 2) + m(1, 2) * m(1, 2) + m(2, 2) * m(2, 2));
  708. m(0, 2) /= len;
  709. m(1, 2) /= len;
  710. m(2, 2) /= len;
  711. // xAxis = (zAxis*yAxis) * -1.0f;
  712. m(0, 0) = m(2, 2) * m(1, 1) - m(1, 2) * m(2, 1);
  713. m(1, 0) = m(0, 2) * m(2, 1) - m(2, 2) * m(0, 1);
  714. m(2, 0) = m(1, 2) * m(0, 1) - m(0, 2) * m(1, 1);
  715. }
  716. /// @copybrief rotateXAxis
  717. void rotateZAxis(const T rad)
  718. {
  719. TMat& m = *this;
  720. // NOTE: See the clean code from < r664
  721. T sina, cosa;
  722. sinCos(rad, sina, cosa);
  723. // xAxis = xAxis*cosa + yAxis*sina;
  724. m(0, 0) = m(0, 0) * cosa + m(0, 1) * sina;
  725. m(1, 0) = m(1, 0) * cosa + m(1, 1) * sina;
  726. m(2, 0) = m(2, 0) * cosa + m(2, 1) * sina;
  727. // xAxis.normalize();
  728. T len = sqrt(m(0, 0) * m(0, 0) + m(1, 0) * m(1, 0) + m(2, 0) * m(2, 0));
  729. m(0, 0) /= len;
  730. m(1, 0) /= len;
  731. m(2, 0) /= len;
  732. // yAxis = zAxis*xAxis;
  733. m(0, 1) = m(1, 2) * m(2, 0) - m(2, 2) * m(1, 0);
  734. m(1, 1) = m(2, 2) * m(0, 0) - m(0, 2) * m(2, 0);
  735. m(2, 1) = m(0, 2) * m(1, 0) - m(1, 2) * m(0, 0);
  736. }
  737. void setRotationPart(const TMat<T, 3, 3>& m3)
  738. {
  739. TMat& m = *this;
  740. for(U j = 0; j < 3; j++)
  741. {
  742. for(U i = 0; i < 3; i++)
  743. {
  744. m(j, i) = m3(j, i);
  745. }
  746. }
  747. }
  748. [[nodiscard]] TMat<T, 3, 3> getRotationPart() const
  749. {
  750. const TMat& m = *this;
  751. TMat<T, 3, 3> m3;
  752. m3(0, 0) = m(0, 0);
  753. m3(0, 1) = m(0, 1);
  754. m3(0, 2) = m(0, 2);
  755. m3(1, 0) = m(1, 0);
  756. m3(1, 1) = m(1, 1);
  757. m3(1, 2) = m(1, 2);
  758. m3(2, 0) = m(2, 0);
  759. m3(2, 1) = m(2, 1);
  760. m3(2, 2) = m(2, 2);
  761. return m3;
  762. }
  763. void setTranslationPart(const TVec<T, 3>& v)
  764. {
  765. auto c = getColumn(3);
  766. c.x() = v.x();
  767. c.y() = v.y();
  768. c.z() = v.z();
  769. setColumn(3, c);
  770. }
  771. [[nodiscard]] ColumnVec getTranslationPart() const requires(kTColumnCount == 4)
  772. {
  773. return getColumn(3);
  774. }
  775. [[nodiscard]] TMat reorthogonalize() const requires(kTRowCount == 3)
  776. {
  777. // There are 2 methods, the standard and the Gram-Schmidt method with a twist for zAxis. This uses the 2nd. For the first see < r664
  778. ColumnVec xAxis, yAxis, zAxis;
  779. getColumns(xAxis, yAxis, zAxis);
  780. xAxis = xAxis.normalize();
  781. yAxis = yAxis - (xAxis * xAxis.dot(yAxis));
  782. yAxis = yAxis.normalize();
  783. zAxis = xAxis.cross(yAxis);
  784. TMat out = *this;
  785. out.setColumns(xAxis, yAxis, zAxis);
  786. return out;
  787. }
  788. [[nodiscard]] TMat transpose() const requires(kIsSquare && !kHasSimd)
  789. {
  790. TMat out;
  791. for(U j = 0; j < kTRowCount; j++)
  792. {
  793. for(U i = 0; i < kTColumnCount; i++)
  794. {
  795. out.m_arr2[i][j] = m_arr2[j][i];
  796. }
  797. }
  798. return out;
  799. }
  800. #if ANKI_ENABLE_SIMD
  801. [[nodiscard]] TMat transpose() const requires(kIsSquare&& kHasSimd)
  802. {
  803. TMat out;
  804. # if ANKI_SIMD_SSE
  805. const __m128 tmp0 = _mm_shuffle_ps(m_simd[0], m_simd[1], 0x44);
  806. const __m128 tmp2 = _mm_shuffle_ps(m_simd[0], m_simd[1], 0xEE);
  807. const __m128 tmp1 = _mm_shuffle_ps(m_simd[2], m_simd[3], 0x44);
  808. const __m128 tmp3 = _mm_shuffle_ps(m_simd[2], m_simd[3], 0xEE);
  809. out.m_simd[0] = _mm_shuffle_ps(tmp0, tmp1, 0x88);
  810. out.m_simd[1] = _mm_shuffle_ps(tmp0, tmp1, 0xDD);
  811. out.m_simd[2] = _mm_shuffle_ps(tmp2, tmp3, 0x88);
  812. out.m_simd[3] = _mm_shuffle_ps(tmp2, tmp3, 0xDD);
  813. # else
  814. const float32x4x2_t row01 = vtrnq_f32(m_simd[0], m_simd[1]);
  815. const float32x4x2_t row23 = vtrnq_f32(m_simd[2], m_simd[3]);
  816. out.m_simd[0] = vcombine_f32(vget_low_f32(row01.val[0]), vget_low_f32(row23.val[0]));
  817. out.m_simd[1] = vcombine_f32(vget_low_f32(row01.val[1]), vget_low_f32(row23.val[1]));
  818. out.m_simd[2] = vcombine_f32(vget_high_f32(row01.val[0]), vget_high_f32(row23.val[0]));
  819. out.m_simd[3] = vcombine_f32(vget_high_f32(row01.val[1]), vget_high_f32(row23.val[1]));
  820. # endif
  821. return out;
  822. }
  823. #endif
  824. void transposeRotationPart()
  825. {
  826. for(U j = 0; j < 3; j++)
  827. {
  828. for(U i = j + 1; i < 3; i++)
  829. {
  830. const T tmp = m_arr2[j][i];
  831. m_arr2[j][i] = m_arr2[i][j];
  832. m_arr2[i][j] = tmp;
  833. }
  834. }
  835. }
  836. [[nodiscard]] T getDet() const requires(kSize == 9)
  837. {
  838. const auto& m = *this;
  839. // For the accurate method see < r664
  840. return m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0))
  841. + m(0, 2) * (m(0, 1) * m(2, 1) - m(1, 1) * m(2, 0));
  842. }
  843. [[nodiscard]] T getDet() const requires(kSize == 16)
  844. {
  845. const auto& t = *this;
  846. return t(0, 3) * t(1, 2) * t(2, 1) * t(3, 0) - t(0, 2) * t(1, 3) * t(2, 1) * t(3, 0) - t(0, 3) * t(1, 1) * t(2, 2) * t(3, 0)
  847. + t(0, 1) * t(1, 3) * t(2, 2) * t(3, 0) + t(0, 2) * t(1, 1) * t(2, 3) * t(3, 0) - t(0, 1) * t(1, 2) * t(2, 3) * t(3, 0)
  848. - t(0, 3) * t(1, 2) * t(2, 0) * t(3, 1) + t(0, 2) * t(1, 3) * t(2, 0) * t(3, 1) + t(0, 3) * t(1, 0) * t(2, 2) * t(3, 1)
  849. - t(0, 0) * t(1, 3) * t(2, 2) * t(3, 1) - t(0, 2) * t(1, 0) * t(2, 3) * t(3, 1) + t(0, 0) * t(1, 2) * t(2, 3) * t(3, 1)
  850. + t(0, 3) * t(1, 1) * t(2, 0) * t(3, 2) - t(0, 1) * t(1, 3) * t(2, 0) * t(3, 2) - t(0, 3) * t(1, 0) * t(2, 1) * t(3, 2)
  851. + t(0, 0) * t(1, 3) * t(2, 1) * t(3, 2) + t(0, 1) * t(1, 0) * t(2, 3) * t(3, 2) - t(0, 0) * t(1, 1) * t(2, 3) * t(3, 2)
  852. - t(0, 2) * t(1, 1) * t(2, 0) * t(3, 3) + t(0, 1) * t(1, 2) * t(2, 0) * t(3, 3) + t(0, 2) * t(1, 0) * t(2, 1) * t(3, 3)
  853. - t(0, 0) * t(1, 2) * t(2, 1) * t(3, 3) - t(0, 1) * t(1, 0) * t(2, 2) * t(3, 3) + t(0, 0) * t(1, 1) * t(2, 2) * t(3, 3);
  854. }
  855. [[nodiscard]] TMat invert() const requires(kSize == 9)
  856. {
  857. // Using Gramer's method Inv(A) = (1 / getDet(A)) * Adj(A)
  858. const TMat& m = *this;
  859. TMat r;
  860. // compute determinant
  861. const T cofactor0 = m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1);
  862. const T cofactor3 = m(0, 2) * m(2, 1) - m(0, 1) * m(2, 2);
  863. const T cofactor6 = m(0, 1) * m(1, 2) - m(0, 2) * m(1, 1);
  864. const T det = m(0, 0) * cofactor0 + m(1, 0) * cofactor3 + m(2, 0) * cofactor6;
  865. ANKI_ASSERT(!isZero<T>(det)); // Cannot invert det == 0
  866. // create adjoint matrix and multiply by 1/det to get inverse
  867. const T invDet = T(1) / det;
  868. r(0, 0) = invDet * cofactor0;
  869. r(0, 1) = invDet * cofactor3;
  870. r(0, 2) = invDet * cofactor6;
  871. r(1, 0) = invDet * (m(1, 2) * m(2, 0) - m(1, 0) * m(2, 2));
  872. r(1, 1) = invDet * (m(0, 0) * m(2, 2) - m(0, 2) * m(2, 0));
  873. r(1, 2) = invDet * (m(0, 2) * m(1, 0) - m(0, 0) * m(1, 2));
  874. r(2, 0) = invDet * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0));
  875. r(2, 1) = invDet * (m(0, 1) * m(2, 0) - m(0, 0) * m(2, 1));
  876. r(2, 2) = invDet * (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0));
  877. return r;
  878. }
  879. /// Invert using Cramer's rule
  880. [[nodiscard]] TMat invert() const requires(kSize == 16)
  881. {
  882. Array<T, 12> tmp;
  883. const auto& in = (*this);
  884. TMat m4;
  885. tmp[0] = in(2, 2) * in(3, 3);
  886. tmp[1] = in(3, 2) * in(2, 3);
  887. tmp[2] = in(1, 2) * in(3, 3);
  888. tmp[3] = in(3, 2) * in(1, 3);
  889. tmp[4] = in(1, 2) * in(2, 3);
  890. tmp[5] = in(2, 2) * in(1, 3);
  891. tmp[6] = in(0, 2) * in(3, 3);
  892. tmp[7] = in(3, 2) * in(0, 3);
  893. tmp[8] = in(0, 2) * in(2, 3);
  894. tmp[9] = in(2, 2) * in(0, 3);
  895. tmp[10] = in(0, 2) * in(1, 3);
  896. tmp[11] = in(1, 2) * in(0, 3);
  897. m4(0, 0) = tmp[0] * in(1, 1) + tmp[3] * in(2, 1) + tmp[4] * in(3, 1);
  898. m4(0, 0) -= tmp[1] * in(1, 1) + tmp[2] * in(2, 1) + tmp[5] * in(3, 1);
  899. m4(0, 1) = tmp[1] * in(0, 1) + tmp[6] * in(2, 1) + tmp[9] * in(3, 1);
  900. m4(0, 1) -= tmp[0] * in(0, 1) + tmp[7] * in(2, 1) + tmp[8] * in(3, 1);
  901. m4(0, 2) = tmp[2] * in(0, 1) + tmp[7] * in(1, 1) + tmp[10] * in(3, 1);
  902. m4(0, 2) -= tmp[3] * in(0, 1) + tmp[6] * in(1, 1) + tmp[11] * in(3, 1);
  903. m4(0, 3) = tmp[5] * in(0, 1) + tmp[8] * in(1, 1) + tmp[11] * in(2, 1);
  904. m4(0, 3) -= tmp[4] * in(0, 1) + tmp[9] * in(1, 1) + tmp[10] * in(2, 1);
  905. m4(1, 0) = tmp[1] * in(1, 0) + tmp[2] * in(2, 0) + tmp[5] * in(3, 0);
  906. m4(1, 0) -= tmp[0] * in(1, 0) + tmp[3] * in(2, 0) + tmp[4] * in(3, 0);
  907. m4(1, 1) = tmp[0] * in(0, 0) + tmp[7] * in(2, 0) + tmp[8] * in(3, 0);
  908. m4(1, 1) -= tmp[1] * in(0, 0) + tmp[6] * in(2, 0) + tmp[9] * in(3, 0);
  909. m4(1, 2) = tmp[3] * in(0, 0) + tmp[6] * in(1, 0) + tmp[11] * in(3, 0);
  910. m4(1, 2) -= tmp[2] * in(0, 0) + tmp[7] * in(1, 0) + tmp[10] * in(3, 0);
  911. m4(1, 3) = tmp[4] * in(0, 0) + tmp[9] * in(1, 0) + tmp[10] * in(2, 0);
  912. m4(1, 3) -= tmp[5] * in(0, 0) + tmp[8] * in(1, 0) + tmp[11] * in(2, 0);
  913. tmp[0] = in(2, 0) * in(3, 1);
  914. tmp[1] = in(3, 0) * in(2, 1);
  915. tmp[2] = in(1, 0) * in(3, 1);
  916. tmp[3] = in(3, 0) * in(1, 1);
  917. tmp[4] = in(1, 0) * in(2, 1);
  918. tmp[5] = in(2, 0) * in(1, 1);
  919. tmp[6] = in(0, 0) * in(3, 1);
  920. tmp[7] = in(3, 0) * in(0, 1);
  921. tmp[8] = in(0, 0) * in(2, 1);
  922. tmp[9] = in(2, 0) * in(0, 1);
  923. tmp[10] = in(0, 0) * in(1, 1);
  924. tmp[11] = in(1, 0) * in(0, 1);
  925. m4(2, 0) = tmp[0] * in(1, 3) + tmp[3] * in(2, 3) + tmp[4] * in(3, 3);
  926. m4(2, 0) -= tmp[1] * in(1, 3) + tmp[2] * in(2, 3) + tmp[5] * in(3, 3);
  927. m4(2, 1) = tmp[1] * in(0, 3) + tmp[6] * in(2, 3) + tmp[9] * in(3, 3);
  928. m4(2, 1) -= tmp[0] * in(0, 3) + tmp[7] * in(2, 3) + tmp[8] * in(3, 3);
  929. m4(2, 2) = tmp[2] * in(0, 3) + tmp[7] * in(1, 3) + tmp[10] * in(3, 3);
  930. m4(2, 2) -= tmp[3] * in(0, 3) + tmp[6] * in(1, 3) + tmp[11] * in(3, 3);
  931. m4(2, 3) = tmp[5] * in(0, 3) + tmp[8] * in(1, 3) + tmp[11] * in(2, 3);
  932. m4(2, 3) -= tmp[4] * in(0, 3) + tmp[9] * in(1, 3) + tmp[10] * in(2, 3);
  933. m4(3, 0) = tmp[2] * in(2, 2) + tmp[5] * in(3, 2) + tmp[1] * in(1, 2);
  934. m4(3, 0) -= tmp[4] * in(3, 2) + tmp[0] * in(1, 2) + tmp[3] * in(2, 2);
  935. m4(3, 1) = tmp[8] * in(3, 2) + tmp[0] * in(0, 2) + tmp[7] * in(2, 2);
  936. m4(3, 1) -= tmp[6] * in(2, 2) + tmp[9] * in(3, 2) + tmp[1] * in(0, 2);
  937. m4(3, 2) = tmp[6] * in(1, 2) + tmp[11] * in(3, 2) + tmp[3] * in(0, 2);
  938. m4(3, 2) -= tmp[10] * in(3, 2) + tmp[2] * in(0, 2) + tmp[7] * in(1, 2);
  939. m4(3, 3) = tmp[10] * in(2, 2) + tmp[4] * in(0, 2) + tmp[9] * in(1, 2);
  940. m4(3, 3) -= tmp[8] * in(1, 2) + tmp[11] * in(2, 2) + tmp[5] * in(0, 2);
  941. T det = in(0, 0) * m4(0, 0) + in(1, 0) * m4(0, 1) + in(2, 0) * m4(0, 2) + in(3, 0) * m4(0, 3);
  942. ANKI_ASSERT(!isZero<T>(det)); // Cannot invert, det == 0
  943. det = T(1) / det;
  944. m4 *= det;
  945. return m4;
  946. }
  947. /// 12 muls, 27 adds. Something like m4 = m0 * m1 but without touching the 4rth row and allot faster
  948. [[nodiscard]] static TMat combineTransformations(const TMat& m0, const TMat& m1) requires(kSize == 16)
  949. {
  950. // See the clean code in < r664
  951. // one of the 2 mat4 doesnt represent transformation
  952. ANKI_ASSERT(isZero<T>(m0(3, 0) + m0(3, 1) + m0(3, 2) + m0(3, 3) - T(1)) && isZero<T>(m1(3, 0) + m1(3, 1) + m1(3, 2) + m1(3, 3) - T(1)));
  953. TMat m4;
  954. m4(0, 0) = m0(0, 0) * m1(0, 0) + m0(0, 1) * m1(1, 0) + m0(0, 2) * m1(2, 0);
  955. m4(0, 1) = m0(0, 0) * m1(0, 1) + m0(0, 1) * m1(1, 1) + m0(0, 2) * m1(2, 1);
  956. m4(0, 2) = m0(0, 0) * m1(0, 2) + m0(0, 1) * m1(1, 2) + m0(0, 2) * m1(2, 2);
  957. m4(1, 0) = m0(1, 0) * m1(0, 0) + m0(1, 1) * m1(1, 0) + m0(1, 2) * m1(2, 0);
  958. m4(1, 1) = m0(1, 0) * m1(0, 1) + m0(1, 1) * m1(1, 1) + m0(1, 2) * m1(2, 1);
  959. m4(1, 2) = m0(1, 0) * m1(0, 2) + m0(1, 1) * m1(1, 2) + m0(1, 2) * m1(2, 2);
  960. m4(2, 0) = m0(2, 0) * m1(0, 0) + m0(2, 1) * m1(1, 0) + m0(2, 2) * m1(2, 0);
  961. m4(2, 1) = m0(2, 0) * m1(0, 1) + m0(2, 1) * m1(1, 1) + m0(2, 2) * m1(2, 1);
  962. m4(2, 2) = m0(2, 0) * m1(0, 2) + m0(2, 1) * m1(1, 2) + m0(2, 2) * m1(2, 2);
  963. m4(0, 3) = m0(0, 0) * m1(0, 3) + m0(0, 1) * m1(1, 3) + m0(0, 2) * m1(2, 3) + m0(0, 3);
  964. m4(1, 3) = m0(1, 0) * m1(0, 3) + m0(1, 1) * m1(1, 3) + m0(1, 2) * m1(2, 3) + m0(1, 3);
  965. m4(2, 3) = m0(2, 0) * m1(0, 3) + m0(2, 1) * m1(1, 3) + m0(2, 2) * m1(2, 3) + m0(2, 3);
  966. m4(3, 0) = m4(3, 1) = m4(3, 2) = T(0);
  967. m4(3, 3) = T(1);
  968. return m4;
  969. }
  970. /// Create a new matrix that is equivalent to Mat4(this)*Mat4(b)
  971. [[nodiscard]] TMat combineTransformations(const TMat& b) const requires(kSize == 12 && !kHasSimd)
  972. {
  973. const auto& a = *this;
  974. TMat c;
  975. c(0, 0) = a(0, 0) * b(0, 0) + a(0, 1) * b(1, 0) + a(0, 2) * b(2, 0);
  976. c(0, 1) = a(0, 0) * b(0, 1) + a(0, 1) * b(1, 1) + a(0, 2) * b(2, 1);
  977. c(0, 2) = a(0, 0) * b(0, 2) + a(0, 1) * b(1, 2) + a(0, 2) * b(2, 2);
  978. c(1, 0) = a(1, 0) * b(0, 0) + a(1, 1) * b(1, 0) + a(1, 2) * b(2, 0);
  979. c(1, 1) = a(1, 0) * b(0, 1) + a(1, 1) * b(1, 1) + a(1, 2) * b(2, 1);
  980. c(1, 2) = a(1, 0) * b(0, 2) + a(1, 1) * b(1, 2) + a(1, 2) * b(2, 2);
  981. c(2, 0) = a(2, 0) * b(0, 0) + a(2, 1) * b(1, 0) + a(2, 2) * b(2, 0);
  982. c(2, 1) = a(2, 0) * b(0, 1) + a(2, 1) * b(1, 1) + a(2, 2) * b(2, 1);
  983. c(2, 2) = a(2, 0) * b(0, 2) + a(2, 1) * b(1, 2) + a(2, 2) * b(2, 2);
  984. c(0, 3) = a(0, 0) * b(0, 3) + a(0, 1) * b(1, 3) + a(0, 2) * b(2, 3) + a(0, 3);
  985. c(1, 3) = a(1, 0) * b(0, 3) + a(1, 1) * b(1, 3) + a(1, 2) * b(2, 3) + a(1, 3);
  986. c(2, 3) = a(2, 0) * b(0, 3) + a(2, 1) * b(1, 3) + a(2, 2) * b(2, 3) + a(2, 3);
  987. return c;
  988. }
  989. #if ANKI_ENABLE_SIMD
  990. [[nodiscard]] TMat combineTransformations(const TMat& b) const requires(kSize == 12 && kHasSimd)
  991. {
  992. TMat c;
  993. const auto& a = *this;
  994. # if ANKI_SIMD_SSE
  995. for(U i = 0; i < 3; i++)
  996. {
  997. __m128 t1, t2;
  998. t1 = _mm_set1_ps(a(i, 0));
  999. t2 = _mm_mul_ps(b.m_simd[0], t1);
  1000. t1 = _mm_set1_ps(a(i, 1));
  1001. t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[1], t1), t2);
  1002. t1 = _mm_set1_ps(a(i, 2));
  1003. t2 = _mm_add_ps(_mm_mul_ps(b.m_simd[2], t1), t2);
  1004. TVec<T, 4> v4(T(0), T(0), T(0), a(i, 3));
  1005. t2 = _mm_add_ps(v4.getSimd(), t2);
  1006. c.m_simd[i] = t2;
  1007. }
  1008. # else
  1009. for(U i = 0; i < 3; i++)
  1010. {
  1011. float32x4_t t1, t2;
  1012. t1 = vdupq_n_f32(a(i, 0));
  1013. t2 = b.m_simd[0] * t1;
  1014. t1 = vdupq_n_f32(a(i, 1));
  1015. t2 = b.m_simd[1] * t1 + t2;
  1016. t1 = vdupq_n_f32(a(i, 2));
  1017. t2 = b.m_simd[2] * t1 + t2;
  1018. TVec<T, 4> v4(T(0), T(0), T(0), a(i, 3));
  1019. t2 += v4.getSimd();
  1020. c.m_simd[i] = t2;
  1021. }
  1022. # endif
  1023. return c;
  1024. }
  1025. #endif
  1026. /// Calculate a perspective projection matrix. The z is mapped in [0, 1] range just like DX and Vulkan.
  1027. /// Same as D3DXMatrixPerspectiveFovRH
  1028. [[nodiscard]] static TMat calculatePerspectiveProjectionMatrix(T fovX, T fovY, T near, T far) requires(kSize == 16)
  1029. {
  1030. ANKI_ASSERT(fovX > T(0) && fovY > T(0) && near > T(0) && far > T(0));
  1031. const T g = near - far;
  1032. const T f = T(1) / tan(fovY / T(2)); // f = cot(fovY/2)
  1033. TMat proj;
  1034. proj(0, 0) = f * (fovY / fovX); // = f/aspectRatio;
  1035. proj(0, 1) = T(0);
  1036. proj(0, 2) = T(0);
  1037. proj(0, 3) = T(0);
  1038. proj(1, 0) = T(0);
  1039. proj(1, 1) = f;
  1040. proj(1, 2) = T(0);
  1041. proj(1, 3) = T(0);
  1042. proj(2, 0) = T(0);
  1043. proj(2, 1) = T(0);
  1044. proj(2, 2) = far / g;
  1045. proj(2, 3) = (far * near) / g;
  1046. proj(3, 0) = T(0);
  1047. proj(3, 1) = T(0);
  1048. proj(3, 2) = T(-1);
  1049. proj(3, 3) = T(0);
  1050. return proj;
  1051. }
  1052. /// Calculate an orthographic projection matrix. The z is mapped in [0, 1] range just like DX and Vulkan.
  1053. /// Same as D3DXMatrixOrthoOffCenterRH.
  1054. [[nodiscard]] static TMat calculateOrthographicProjectionMatrix(T right, T left, T top, T bottom, T near, T far) requires(kSize == 16)
  1055. {
  1056. ANKI_ASSERT(right != T(0) && left != T(0) && top != T(0) && bottom != T(0) && near != T(0) && far != T(0));
  1057. const T difx = right - left;
  1058. const T dify = top - bottom;
  1059. const T difz = far - near;
  1060. const T tx = -(right + left) / difx;
  1061. const T ty = -(top + bottom) / dify;
  1062. const T tz = -near / difz;
  1063. TMat m;
  1064. m(0, 0) = T(2) / difx;
  1065. m(0, 1) = T(0);
  1066. m(0, 2) = T(0);
  1067. m(0, 3) = tx;
  1068. m(1, 0) = T(0);
  1069. m(1, 1) = T(2) / dify;
  1070. m(1, 2) = T(0);
  1071. m(1, 3) = ty;
  1072. m(2, 0) = T(0);
  1073. m(2, 1) = T(0);
  1074. m(2, 2) = T(-1) / difz;
  1075. m(2, 3) = tz;
  1076. m(3, 0) = T(0);
  1077. m(3, 1) = T(0);
  1078. m(3, 2) = T(0);
  1079. m(3, 3) = T(1);
  1080. return m;
  1081. }
  1082. /// Calculate a perspective projection matrix. The z is reversed and mapped in [1, 0] range just like DX and Vulkan.
  1083. /// Same as D3DXMatrixPerspectiveFovRH but z reversed
  1084. [[nodiscard]] static TMat calculatePerspectiveProjectionMatrixReverseZ(T fovX, T fovY, T near, T far) requires(kSize == 16)
  1085. {
  1086. ANKI_ASSERT(fovX > T(0) && fovY > T(0) && near > T(0) && far > T(0));
  1087. const T g = near - far;
  1088. const T f = T(1) / tan(fovY / T(2)); // f = cot(fovY/2)
  1089. TMat proj;
  1090. proj(0, 0) = f * (fovY / fovX); // = f/aspectRatio;
  1091. proj(0, 1) = T(0);
  1092. proj(0, 2) = T(0);
  1093. proj(0, 3) = T(0);
  1094. proj(1, 0) = T(0);
  1095. proj(1, 1) = f;
  1096. proj(1, 2) = T(0);
  1097. proj(1, 3) = T(0);
  1098. proj(2, 0) = T(0);
  1099. proj(2, 1) = T(0);
  1100. proj(2, 2) = far / g;
  1101. proj(2, 3) = (far * near) / g;
  1102. proj(3, 0) = T(0);
  1103. proj(3, 1) = T(0);
  1104. proj(3, 2) = T(-1);
  1105. proj(3, 3) = T(0);
  1106. const TMat rev(T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(-1), T(1), T(0), T(0), T(0), T(1));
  1107. return rev * proj;
  1108. }
  1109. /// Given the parameters that construct a projection matrix extract 4 values that can be used to unproject a point from NDC to view space.
  1110. /// @code
  1111. /// Vec4 unprojParams = calculatePerspectiveUnprojectionParams(...);
  1112. /// F32 z = unprojParams.z() / (unprojParams.w() + depth);
  1113. /// Vec2 xy = ndc.xy() * unprojParams.xy() * z;
  1114. /// Vec3 posViewSpace(xy, z);
  1115. /// @endcode
  1116. [[nodiscard]] static TVec<T, 4> calculatePerspectiveUnprojectionParams(T fovX, T fovY, T near, T far) requires(kSize == 16)
  1117. {
  1118. TVec<T, 4> out;
  1119. const T g = near - far;
  1120. const T f = T(1) / tan(fovY / T(2)); // f = cot(fovY/2)
  1121. const T m00 = f * (fovY / fovX);
  1122. const T m11 = f;
  1123. const T m22 = far / g;
  1124. const T m23 = (far * near) / g;
  1125. // First, clip = (m * Pv) where Pv is the view space position.
  1126. // ndc.z = clip.z / clip.w = (m22 * Pv.z + m23) / -Pv.z. Note that ndc.z == depth in zero_to_one projection.
  1127. // Solving that for Pv.z we get
  1128. // Pv.z = A / (depth + B)
  1129. // where A = -m23 and B = m22
  1130. // so we save the A and B in the projection params vector
  1131. out.z() = -m23;
  1132. out.w() = m22;
  1133. // Using the same logic the Pv.x = x' * w / m00
  1134. // so Pv.x = x' * Pv.z * (-1 / m00)
  1135. out.x() = -T(T(1)) / m00;
  1136. // Same for y
  1137. out.y() = -T(T(1)) / m11;
  1138. return out;
  1139. }
  1140. /// Assuming this is a projection matrix extract the unprojection parameters. See calculatePerspectiveUnprojectionParams for more info.
  1141. [[nodiscard]] TVec<T, 4> extractPerspectiveUnprojectionParams() const requires(kSize == 16)
  1142. {
  1143. TVec<T, 4> out;
  1144. const auto& m = *this;
  1145. out.z() = -m(2, 3);
  1146. out.w() = m(2, 2);
  1147. out.x() = -T(T(1)) / m(0, 0);
  1148. out.y() = -T(T(1)) / m(1, 1);
  1149. return out;
  1150. }
  1151. /// If we suppose this matrix represents a transformation, return the inverted transformation
  1152. [[nodiscard]] TMat invertTransformation() const requires(kSize == 16)
  1153. {
  1154. const TMat<T, 3, 3> invertedRot = getRotationPart().transpose();
  1155. TVec<T, 3> invertedTsl = getTranslationPart().xyz();
  1156. invertedTsl = -(invertedRot * invertedTsl);
  1157. return TMat(invertedTsl.xyz0(), invertedRot);
  1158. }
  1159. /// If we suppose this matrix represents a transformation, return the inverted transformation
  1160. [[nodiscard]] TMat invertTransformation() const requires(kSize == 12)
  1161. {
  1162. const TMat<T, 3, 3> invertedRot = getRotationPart().transpose();
  1163. TVec<T, 3> invertedTsl = getTranslationPart().xyz();
  1164. invertedTsl = -(invertedRot * invertedTsl);
  1165. return TMat(invertedTsl.xyz(), invertedRot);
  1166. }
  1167. /// @note 9 muls, 9 adds
  1168. [[nodiscard]] TVec<T, 3> transform(const TVec<T, 3>& v) const requires(kSize == 16)
  1169. {
  1170. const auto& m = *this;
  1171. return TVec<T, 3>(m(0, 0) * v.x() + m(0, 1) * v.y() + m(0, 2) * v.z() + m(0, 3),
  1172. m(1, 0) * v.x() + m(1, 1) * v.y() + m(1, 2) * v.z() + m(1, 3),
  1173. m(2, 0) * v.x() + m(2, 1) * v.y() + m(2, 2) * v.z() + m(2, 3));
  1174. }
  1175. /// Create a new transform matrix position at eye and looking at refPoint.
  1176. template<U kVecDimensions>
  1177. [[nodiscard]] static TMat lookAt(const TVec<T, kVecDimensions>& eye, const TVec<T, kVecDimensions>& refPoint,
  1178. const TVec<T, kVecDimensions>& up) requires(kTRowCount == 3 && kTColumnCount == 4 && kVecDimensions >= 3)
  1179. {
  1180. const TVec<T, 3> vdir = (refPoint.xyz() - eye.xyz()).normalize();
  1181. const TVec<T, 3> vup = (up.xyz() - vdir * up.xyz().dot(vdir)).normalize();
  1182. const TVec<T, 3> vside = vdir.cross(vup);
  1183. TMat out;
  1184. out.setColumns(vside, vup, -vdir, eye.xyz());
  1185. return out;
  1186. }
  1187. /// Create a new transform matrix position at eye and looking at refPoint.
  1188. template<U kVecDimensions>
  1189. [[nodiscard]] static TMat lookAt(const TVec<T, kVecDimensions>& eye, const TVec<T, kVecDimensions>& refPoint,
  1190. const TVec<T, kVecDimensions>& up) requires(kTRowCount == 4 && kTColumnCount == 4 && kVecDimensions >= 3)
  1191. {
  1192. const TVec<T, 4> vdir = (refPoint.xyz0() - eye.xyz0()).normalize();
  1193. const TVec<T, 4> vup = (up.xyz0() - vdir * up.xyz0().dot(vdir)).normalize();
  1194. const TVec<T, 4> vside = vdir.cross(vup);
  1195. TMat out;
  1196. out.setColumns(vside, vup, -vdir, eye.xyz1());
  1197. return out;
  1198. }
  1199. /// Create a rotation matrix from some direction. http://jcgt.org/published/0006/01/01/
  1200. [[nodiscard]] static TMat rotationFromDirection(const TVec<T, 3>& zAxis) requires(kSize == 9)
  1201. {
  1202. const TVec<T, 3> z = zAxis;
  1203. const T sign = (z.z() >= T(0)) ? T(1) : -T(1);
  1204. const T a = -T(1) / (sign + z.z());
  1205. const T b = z.x() * z.y() * a;
  1206. const TVec<T, 3> x = TVec<T, 3>(T(1) + sign * a * pow(z.x(), T(2)), sign * b, -sign * z.x());
  1207. const TVec<T, 3> y = TVec<T, 3>(b, sign + a * pow(z.y(), T(2)), -z.y());
  1208. TMat out;
  1209. out.setColumns(x, y, z);
  1210. return out;
  1211. }
  1212. [[nodiscard]] TMat lerp(const TMat& b, T t) const
  1213. {
  1214. return ((*this) * (T(1) - t)) + (b * t);
  1215. }
  1216. static TMat getZero()
  1217. {
  1218. return TMat(T(0));
  1219. }
  1220. void setZero()
  1221. {
  1222. *this = getZero();
  1223. }
  1224. static TMat getIdentity() requires(kSize == 9)
  1225. {
  1226. return TMat(T(1), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(1));
  1227. }
  1228. static TMat getIdentity() requires(kSize == 16)
  1229. {
  1230. return TMat(T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1));
  1231. }
  1232. static TMat getIdentity() requires(kSize == 12)
  1233. {
  1234. return TMat(T(1), T(0), T(0), T(0), T(0), T(1), T(0), T(0), T(0), T(0), T(1), T(0));
  1235. }
  1236. void setIdentity()
  1237. {
  1238. (*this) = getIdentity();
  1239. }
  1240. static constexpr U8 getSize()
  1241. {
  1242. return U8(kTColumnCount * kTRowCount);
  1243. }
  1244. [[nodiscard]] String toString() const requires(std::is_floating_point<T>::value)
  1245. {
  1246. String str;
  1247. for(U j = 0; j < kTRowCount; ++j)
  1248. {
  1249. for(U i = 0; i < kTColumnCount; ++i)
  1250. {
  1251. CString fmt;
  1252. if(i == kTColumnCount - 1 && j == kTRowCount - 1)
  1253. {
  1254. fmt = "%f";
  1255. }
  1256. else if(i == kTColumnCount - 1)
  1257. {
  1258. fmt = "%f\n";
  1259. }
  1260. else
  1261. {
  1262. fmt = "%f ";
  1263. }
  1264. str += String().sprintf(fmt.cstr(), m_arr2[j][i]);
  1265. }
  1266. }
  1267. return str;
  1268. }
  1269. /// @}
  1270. protected:
  1271. static constexpr U N = kTColumnCount * kTRowCount;
  1272. /// @name Data members
  1273. /// @{
  1274. union
  1275. {
  1276. T m_carr1[N]; ///< For easier debugging with gdb
  1277. T m_carr2[kTRowCount][kTColumnCount]; ///< For easier debugging with gdb
  1278. Array<T, N> m_arr1;
  1279. Array2d<T, kTRowCount, kTColumnCount> m_arr2;
  1280. SimdArray m_simd;
  1281. Array<RowVec, kTRowCount> m_rows;
  1282. };
  1283. /// @}
  1284. };
  1285. /// @memberof TMat
  1286. template<typename T, U kTRowCount, U kTColumnCount>
  1287. TMat<T, kTRowCount, kTColumnCount> operator+(const T f, const TMat<T, kTRowCount, kTColumnCount>& m)
  1288. {
  1289. return m + f;
  1290. }
  1291. /// @memberof TMat
  1292. template<typename T, U kTRowCount, U kTColumnCount>
  1293. TMat<T, kTRowCount, kTColumnCount> operator-(const T f, const TMat<T, kTRowCount, kTColumnCount>& m)
  1294. {
  1295. TMat<T, kTRowCount, kTColumnCount> out;
  1296. for(U i = 0; i < kTRowCount * kTColumnCount; i++)
  1297. {
  1298. out[i] = f - m[i];
  1299. }
  1300. return out;
  1301. }
  1302. /// @memberof TMat
  1303. template<typename T, U kTRowCount, U kTColumnCount>
  1304. TMat<T, kTRowCount, kTColumnCount> operator*(const T f, const TMat<T, kTRowCount, kTColumnCount>& m)
  1305. {
  1306. return m * f;
  1307. }
  1308. /// @memberof TMat
  1309. template<typename T, U kTRowCount, U kTColumnCount>
  1310. TMat<T, kTRowCount, kTColumnCount> operator/(const T f, const TMat<T, 3, 3>& m3)
  1311. {
  1312. TMat<T, kTRowCount, kTColumnCount> out;
  1313. for(U i = 0; i < kTRowCount * kTColumnCount; i++)
  1314. {
  1315. ANKI_ASSERT(m3[i] != T(0));
  1316. out[i] = f / m3[i];
  1317. }
  1318. return out;
  1319. }
  1320. /// F32 3x3 matrix
  1321. using Mat3 = TMat<F32, 3, 3>;
  1322. static_assert(sizeof(Mat3) == sizeof(F32) * 3 * 3, "Incorrect size");
  1323. /// F64 3x3 matrix
  1324. using DMat3 = TMat<F64, 3, 3>;
  1325. static_assert(sizeof(DMat3) == sizeof(F64) * 3 * 3, "Incorrect size");
  1326. /// F32 4x4 matrix
  1327. using Mat4 = TMat<F32, 4, 4>;
  1328. static_assert(sizeof(Mat4) == sizeof(F32) * 4 * 4, "Incorrect size");
  1329. /// F64 4x4 matrix
  1330. using DMat4 = TMat<F64, 4, 4>;
  1331. static_assert(sizeof(DMat4) == sizeof(F64) * 4 * 4, "Incorrect size");
  1332. /// F32 3x4 matrix
  1333. using Mat3x4 = TMat<F32, 3, 4>;
  1334. static_assert(sizeof(Mat3x4) == sizeof(F32) * 3 * 4, "Incorrect size");
  1335. /// F64 3x4 matrix
  1336. using DMat3x4 = TMat<F64, 3, 4>;
  1337. static_assert(sizeof(DMat3x4) == sizeof(F64) * 3 * 4, "Incorrect size");
  1338. /// @}
  1339. } // end namespace anki