IndirectDiffuseProbes.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  8. #include <AnKi/Renderer/Sky.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Scene/SceneGraph.h>
  11. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  12. #include <AnKi/Scene/Components/LightComponent.h>
  13. #include <AnKi/Util/CVarSet.h>
  14. #include <AnKi/Core/StatsSet.h>
  15. #include <AnKi/Util/Tracer.h>
  16. #include <AnKi/Collision/Aabb.h>
  17. #include <AnKi/Collision/Functions.h>
  18. #include <AnKi/Resource/AsyncLoader.h>
  19. namespace anki {
  20. static StatCounter g_giProbeRenderCountStatVar(StatCategory::kRenderer, "GI probes rendered", StatFlag::kMainThreadUpdates);
  21. static StatCounter g_giProbeCellsRenderCountStatVar(StatCategory::kRenderer, "GI probes cells rendered", StatFlag::kMainThreadUpdates);
  22. static Vec3 computeCellCenter(U32 cellIdx, const GlobalIlluminationProbeComponent& probe)
  23. {
  24. const Vec3 halfAabbSize = probe.getBoxVolumeSize() / 2.0f;
  25. const Vec3 aabbMin = -halfAabbSize + probe.getWorldPosition();
  26. U32 x, y, z;
  27. unflatten3dArrayIndex(probe.getCellCountsPerDimension().x(), probe.getCellCountsPerDimension().y(), probe.getCellCountsPerDimension().z(),
  28. cellIdx, x, y, z);
  29. const Vec3 cellSize = probe.getBoxVolumeSize() / Vec3(probe.getCellCountsPerDimension());
  30. const Vec3 halfCellSize = cellSize / 2.0f;
  31. const Vec3 cellCenter = aabbMin + halfCellSize + cellSize * Vec3(UVec3(x, y, z));
  32. return cellCenter;
  33. }
  34. Error IndirectDiffuseProbes::init()
  35. {
  36. const Error err = initInternal();
  37. if(err)
  38. {
  39. ANKI_R_LOGE("Failed to initialize global illumination");
  40. }
  41. return err;
  42. }
  43. Error IndirectDiffuseProbes::initInternal()
  44. {
  45. m_tileSize = g_indirectDiffuseProbeTileResolutionCVar;
  46. ANKI_CHECK(initGBuffer());
  47. ANKI_CHECK(initLightShading());
  48. ANKI_CHECK(initShadowMapping());
  49. ANKI_CHECK(initIrradiance());
  50. return Error::kNone;
  51. }
  52. Error IndirectDiffuseProbes::initGBuffer()
  53. {
  54. // Create RT descriptions
  55. {
  56. RenderTargetDesc texinit =
  57. getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  58. texinit.m_type = TextureType::kCube;
  59. // Create color RT descriptions
  60. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  61. {
  62. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  63. m_gbuffer.m_colorRtDescrs[i] = texinit;
  64. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  65. m_gbuffer.m_colorRtDescrs[i].bake();
  66. }
  67. // Create depth RT
  68. texinit.m_type = TextureType::k2D;
  69. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  70. texinit.setName("GI GBuff Depth");
  71. m_gbuffer.m_depthRtDescr = texinit;
  72. m_gbuffer.m_depthRtDescr.bake();
  73. }
  74. return Error::kNone;
  75. }
  76. Error IndirectDiffuseProbes::initShadowMapping()
  77. {
  78. const U32 resolution = g_indirectDiffuseProbeShadowMapResolutionCVar;
  79. ANKI_ASSERT(resolution > 8);
  80. // RT descr
  81. m_shadowMapping.m_rtDescr =
  82. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  83. m_shadowMapping.m_rtDescr.bake();
  84. return Error::kNone;
  85. }
  86. Error IndirectDiffuseProbes::initLightShading()
  87. {
  88. // Init RT descr
  89. {
  90. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  91. m_lightShading.m_rtDescr.m_type = TextureType::kCube;
  92. m_lightShading.m_rtDescr.bake();
  93. }
  94. // Init deferred
  95. ANKI_CHECK(m_lightShading.m_deferred.init());
  96. return Error::kNone;
  97. }
  98. Error IndirectDiffuseProbes::initIrradiance()
  99. {
  100. ANKI_CHECK(loadShaderProgram("ShaderBinaries/IrradianceDice.ankiprogbin",
  101. {{"THREDGROUP_SIZE_SQRT", MutatorValue(m_tileSize)}, {"STORE_LOCATION", 0}, {"SECOND_BOUNCE", 1}},
  102. m_irradiance.m_prog, m_irradiance.m_grProg));
  103. return Error::kNone;
  104. }
  105. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  106. {
  107. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuse);
  108. // Iterate the visible probes to find a candidate for update
  109. WeakArray<GlobalIlluminationProbeComponent*> visibleProbes =
  110. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_globalIlluminationProbes;
  111. GlobalIlluminationProbeComponent* bestCandidateProbe = nullptr;
  112. GlobalIlluminationProbeComponent* secondBestCandidateProbe = nullptr;
  113. for(GlobalIlluminationProbeComponent* probe : visibleProbes)
  114. {
  115. if(probe->getCellsNeedsRefresh())
  116. {
  117. if(probe->getNextCellForRefresh() != 0)
  118. {
  119. bestCandidateProbe = probe;
  120. break;
  121. }
  122. else
  123. {
  124. secondBestCandidateProbe = probe;
  125. }
  126. }
  127. }
  128. GlobalIlluminationProbeComponent* probeToRefresh = (bestCandidateProbe) ? bestCandidateProbe : secondBestCandidateProbe;
  129. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0) [[likely]]
  130. {
  131. // Nothing to update or can't update right now, early exit
  132. m_runCtx = {};
  133. return;
  134. }
  135. const Bool probeTouchedFirstTime = probeToRefresh->getNextCellForRefresh() == 0;
  136. if(probeTouchedFirstTime)
  137. {
  138. g_giProbeRenderCountStatVar.increment(1);
  139. }
  140. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  141. // Create some common resources to save on memory
  142. Array<RenderTargetHandle, kMaxColorRenderTargets> gbufferColorRts;
  143. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  144. {
  145. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  146. }
  147. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  148. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  149. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  150. const RenderTargetHandle shadowsRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  151. const RenderTargetHandle lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  152. const RenderTargetHandle irradianceVolume = rgraph.importRenderTarget(&probeToRefresh->getVolumeTexture(), TextureUsageBit::kNone);
  153. m_runCtx.m_probeVolumeHandle = irradianceVolume;
  154. const U32 beginCellIdx = probeToRefresh->getNextCellForRefresh();
  155. for(U32 cellIdx = beginCellIdx; cellIdx < min(beginCellIdx + kProbeCellRefreshesPerFrame, probeToRefresh->getCellCount()); ++cellIdx)
  156. {
  157. const Vec3 cellCenter = computeCellCenter(cellIdx, *probeToRefresh);
  158. // For each face do everything up to light shading
  159. for(U8 f = 0; f < 6; ++f)
  160. {
  161. // GBuffer visibility
  162. GpuVisibilityOutput visOut;
  163. Frustum frustum;
  164. {
  165. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  166. frustum.setWorldTransform(
  167. Transform(cellCenter.xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  168. frustum.update();
  169. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar, g_lod1MaxDistanceCVar};
  170. FrustumGpuVisibilityInput visIn;
  171. visIn.m_passesName = generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f);
  172. visIn.m_technique = RenderingTechnique::kGBuffer;
  173. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  174. visIn.m_lodReferencePoint = cellCenter;
  175. visIn.m_lodDistances = lodDistances;
  176. visIn.m_rgraph = &rgraph;
  177. visIn.m_viewportSize = UVec2(m_tileSize);
  178. visIn.m_limitMemory = true;
  179. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  180. }
  181. // GBuffer
  182. {
  183. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: GBuffer cell:%u face:%u", cellIdx, f));
  184. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  185. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  186. {
  187. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  188. colorRtis[j].m_subresource.m_face = f;
  189. colorRtis[j].m_handle = gbufferColorRts[j];
  190. }
  191. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  192. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  193. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  194. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  195. pass.setRenderpassInfo(colorRtis, &depthRti);
  196. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  197. {
  198. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  199. }
  200. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllRtvDsv,
  201. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  202. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  203. pass.setWork([this, visOut, viewProjMat = frustum.getViewProjectionMatrix(),
  204. viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  205. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseGBuffer);
  206. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  207. cmdb.setViewport(0, 0, m_tileSize, m_tileSize);
  208. RenderableDrawerArguments args;
  209. args.m_viewMatrix = viewMat;
  210. args.m_cameraTransform = args.m_viewMatrix.invertTransformation();
  211. args.m_viewProjectionMatrix = viewProjMat;
  212. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  213. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  214. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  215. args.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  216. args.fill(visOut);
  217. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  218. // It's secondary, no need to restore any state
  219. });
  220. }
  221. // Shadow visibility. Optional
  222. GpuVisibilityOutput shadowVisOut;
  223. Mat4 cascadeProjMat;
  224. Mat3x4 cascadeViewMat;
  225. Mat4 cascadeViewProjMat;
  226. if(doShadows)
  227. {
  228. constexpr U32 kCascadeCount = 1;
  229. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  230. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  231. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  232. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar, g_lod1MaxDistanceCVar};
  233. FrustumGpuVisibilityInput visIn;
  234. visIn.m_passesName = generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f);
  235. visIn.m_technique = RenderingTechnique::kDepth;
  236. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  237. visIn.m_lodReferencePoint = cellCenter;
  238. visIn.m_lodDistances = lodDistances;
  239. visIn.m_rgraph = &rgraph;
  240. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  241. visIn.m_limitMemory = true;
  242. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  243. }
  244. // Shadow pass. Optional
  245. if(doShadows)
  246. {
  247. // Create the pass
  248. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Shadows cell:%u face:%u", cellIdx, f));
  249. GraphicsRenderPassTargetDesc depthRti(shadowsRt);
  250. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  251. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  252. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  253. pass.setRenderpassInfo({}, &depthRti);
  254. pass.newTextureDependency(shadowsRt, TextureUsageBit::kAllRtvDsv,
  255. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  256. pass.newBufferDependency(shadowVisOut.m_dependency, BufferUsageBit::kIndirectDraw);
  257. pass.setWork([this, shadowVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  258. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseShadows);
  259. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  260. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  261. const U32 rez = m_shadowMapping.m_rtDescr.m_width;
  262. cmdb.setViewport(0, 0, rez, rez);
  263. RenderableDrawerArguments args;
  264. args.m_viewMatrix = cascadeViewMat;
  265. args.m_cameraTransform = cascadeViewMat.invertTransformation();
  266. args.m_viewProjectionMatrix = cascadeViewProjMat;
  267. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  268. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  269. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  270. args.m_viewport = UVec4(0, 0, rez, rez);
  271. args.fill(shadowVisOut);
  272. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  273. cmdb.setPolygonOffset(0.0, 0.0);
  274. // It's secondary, no need to restore the state
  275. });
  276. }
  277. // Light visibility
  278. GpuVisibilityNonRenderablesOutput lightVis;
  279. {
  280. GpuVisibilityNonRenderablesInput in;
  281. in.m_passesName = generateTempPassName("GI: Light visibility cell:%u face:%u", cellIdx, f);
  282. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  283. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  284. in.m_rgraph = &rgraph;
  285. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  286. }
  287. // Light shading pass
  288. {
  289. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("GI: Light shading cell:%u face:%u", cellIdx, f));
  290. GraphicsRenderPassTargetDesc colorRti(lightShadingRt);
  291. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  292. colorRti.m_subresource.m_face = f;
  293. pass.setRenderpassInfo({colorRti});
  294. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kSrvPixel);
  295. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  296. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  297. {
  298. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvPixel, TextureSubresourceDesc::surface(0, f, 0));
  299. }
  300. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSrvPixel,
  301. TextureSubresourceDesc::firstSurface(DepthStencilAspectBit::kDepth));
  302. if(shadowsRt.isValid())
  303. {
  304. pass.newTextureDependency(shadowsRt, TextureUsageBit::kSrvPixel);
  305. }
  306. if(getRenderer().getGeneratedSky().isEnabled())
  307. {
  308. pass.newTextureDependency(getRenderer().getGeneratedSky().getSkyLutRt(), TextureUsageBit::kSrvPixel);
  309. }
  310. pass.setWork([this, visibleLightsBuffer = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(), cellCenter,
  311. gbufferColorRts, gbufferDepthRt, probeToRefresh, cascadeViewProjMat, shadowsRt, faceIdx = f,
  312. &rctx](RenderPassWorkContext& rgraphCtx) {
  313. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseLightShading);
  314. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  315. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  316. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  317. const U32 rez = m_tileSize;
  318. cmdb.setViewport(0, 0, rez, rez);
  319. // Draw light shading
  320. TraditionalDeferredLightShadingDrawInfo dsInfo;
  321. dsInfo.m_viewProjectionMatrix = viewProjMat;
  322. dsInfo.m_invViewProjectionMatrix = viewProjMat.invert();
  323. dsInfo.m_cameraPosWSpace = cellCenter.xyz1();
  324. dsInfo.m_viewport = UVec4(0, 0, m_tileSize, m_tileSize);
  325. dsInfo.m_effectiveShadowDistance = (doShadows) ? probeToRefresh->getShadowsRenderRadius() : -1.0f;
  326. if(doShadows)
  327. {
  328. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  329. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  330. }
  331. else
  332. {
  333. dsInfo.m_dirLightMatrix = Mat4::getIdentity();
  334. }
  335. dsInfo.m_visibleLightsBuffer = visibleLightsBuffer;
  336. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  337. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  338. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  339. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  340. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  341. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  342. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  343. dsInfo.m_directionalLightShadowmapRenderTarget = shadowsRt;
  344. dsInfo.m_skyLutRenderTarget =
  345. (getRenderer().getGeneratedSky().isEnabled()) ? getRenderer().getGeneratedSky().getSkyLutRt() : RenderTargetHandle();
  346. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingConstantsBuffer;
  347. dsInfo.m_renderpassContext = &rgraphCtx;
  348. m_lightShading.m_deferred.drawLights(dsInfo);
  349. });
  350. }
  351. } // For all faces
  352. // Irradiance pass. First & 2nd bounce
  353. {
  354. NonGraphicsRenderPass& pass = rgraph.newNonGraphicsRenderPass(generateTempPassName("GI: Irradiance cell:%u", cellIdx));
  355. pass.newTextureDependency(lightShadingRt, TextureUsageBit::kSrvCompute);
  356. pass.newTextureDependency(irradianceVolume, TextureUsageBit::kUavCompute);
  357. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  358. {
  359. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvCompute);
  360. }
  361. pass.setWork([this, lightShadingRt, gbufferColorRts, irradianceVolume, cellIdx, probeToRefresh](RenderPassWorkContext& rgraphCtx) {
  362. ANKI_TRACE_SCOPED_EVENT(IndirectDiffuseIrradiance);
  363. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  364. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  365. // Bind resources
  366. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  367. rgraphCtx.bindSrv(0, 0, lightShadingRt);
  368. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  369. {
  370. rgraphCtx.bindSrv(i + 1, 0, gbufferColorRts[i]);
  371. }
  372. rgraphCtx.bindUav(0, 0, irradianceVolume);
  373. class
  374. {
  375. public:
  376. IVec3 m_volumeTexel;
  377. I32 m_nextTexelOffsetInU;
  378. } consts;
  379. U32 x, y, z;
  380. unflatten3dArrayIndex(probeToRefresh->getCellCountsPerDimension().x(), probeToRefresh->getCellCountsPerDimension().y(),
  381. probeToRefresh->getCellCountsPerDimension().z(), cellIdx, x, y, z);
  382. consts.m_volumeTexel = IVec3(x, probeToRefresh->getCellCountsPerDimension().y() - y - 1, z);
  383. consts.m_nextTexelOffsetInU = probeToRefresh->getCellCountsPerDimension().x();
  384. cmdb.setFastConstants(&consts, sizeof(consts));
  385. // Dispatch
  386. cmdb.dispatchCompute(1, 1, 1);
  387. });
  388. }
  389. probeToRefresh->incrementRefreshedCells(1);
  390. g_giProbeCellsRenderCountStatVar.increment(1);
  391. }
  392. }
  393. } // end namespace anki