2
0

ProbeReflections.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ProbeReflections.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/LightShading.h>
  8. #include <AnKi/Renderer/FinalComposite.h>
  9. #include <AnKi/Renderer/GBuffer.h>
  10. #include <AnKi/Renderer/Sky.h>
  11. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  12. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  13. #include <AnKi/Renderer/Utils/MipmapGenerator.h>
  14. #include <AnKi/Renderer/Utils/Drawer.h>
  15. #include <AnKi/Renderer/Reflections.h>
  16. #include <AnKi/Util/CVarSet.h>
  17. #include <AnKi/Util/Tracer.h>
  18. #include <AnKi/Core/StatsSet.h>
  19. #include <AnKi/Resource/MeshResource.h>
  20. #include <AnKi/Resource/AsyncLoader.h>
  21. #include <AnKi/Shaders/Include/TraditionalDeferredShadingTypes.h>
  22. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  23. #include <AnKi/Scene/Components/LightComponent.h>
  24. #include <AnKi/Scene/SceneGraph.h>
  25. namespace anki {
  26. static StatCounter g_probeReflectionCountStatVar(StatCategory::kRenderer, "Reflection probes rendered", StatFlag::kMainThreadUpdates);
  27. Error ProbeReflections::init()
  28. {
  29. ANKI_CHECK(ResourceManager::getSingleton().loadResource("EngineAssets/IblDfg.png", m_integrationLut));
  30. m_gbuffer.m_tileSize = g_reflectionProbeResolutionCVar;
  31. {
  32. RenderTargetDesc texinit = getRenderer().create2DRenderTargetDescription(m_gbuffer.m_tileSize, m_gbuffer.m_tileSize,
  33. kGBufferColorRenderTargetFormats[0], "CubeRefl GBuffer");
  34. // Create color RT descriptions
  35. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  36. {
  37. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  38. texinit.m_type = TextureType::kCube;
  39. m_gbuffer.m_colorRtDescrs[i] = texinit;
  40. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("CubeRefl GBuff Col #%u", i));
  41. m_gbuffer.m_colorRtDescrs[i].bake();
  42. }
  43. // Create depth RT
  44. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  45. texinit.m_type = TextureType::k2D;
  46. texinit.setName("CubeRefl GBuff Depth");
  47. m_gbuffer.m_depthRtDescr = texinit;
  48. m_gbuffer.m_depthRtDescr.bake();
  49. }
  50. m_lightShading.m_tileSize = g_reflectionProbeResolutionCVar;
  51. m_lightShading.m_mipCount = U8(computeMaxMipmapCount2d(m_lightShading.m_tileSize, m_lightShading.m_tileSize, 8));
  52. {
  53. const U32 resolution = g_probeReflectionShadowMapResolutionCVar;
  54. ANKI_ASSERT(resolution > 8);
  55. // RT descr
  56. m_shadowMapping.m_rtDescr =
  57. getRenderer().create2DRenderTargetDescription(resolution, resolution, getRenderer().getDepthNoStencilFormat(), "CubeRefl SM");
  58. m_shadowMapping.m_rtDescr.bake();
  59. }
  60. ANKI_CHECK(m_lightShading.m_deferred.init());
  61. return Error::kNone;
  62. }
  63. void ProbeReflections::populateRenderGraph(RenderingContext& rctx)
  64. {
  65. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  66. const Bool bRtReflections = GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled && g_rtReflectionsCVar;
  67. if(bRtReflections)
  68. {
  69. return;
  70. }
  71. // Iterate the visible probes to find a candidate for update
  72. WeakArray<ReflectionProbeComponent*> visibleProbes =
  73. getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_reflectionProbes;
  74. ReflectionProbeComponent* probeToRefresh = nullptr;
  75. for(ReflectionProbeComponent* probe : visibleProbes)
  76. {
  77. if(probe->getEnvironmentTextureNeedsRefresh())
  78. {
  79. probeToRefresh = probe;
  80. break;
  81. }
  82. }
  83. if(probeToRefresh == nullptr || ResourceManager::getSingleton().getAsyncLoader().getTasksInFlightCount() != 0
  84. || getRenderer().getIndirectDiffuseProbes().hasCurrentlyRefreshedVolumeRt()) [[likely]]
  85. {
  86. // Nothing to update or can't update right now, early exit
  87. m_runCtx = {};
  88. return;
  89. }
  90. g_probeReflectionCountStatVar.increment(1);
  91. probeToRefresh->setEnvironmentTextureAsRefreshed();
  92. RenderGraphBuilder& rgraph = rctx.m_renderGraphDescr;
  93. const LightComponent* dirLightc = SceneGraph::getSingleton().getDirectionalLight();
  94. const Bool doShadows = dirLightc && dirLightc->getShadowEnabled();
  95. // Create render targets now to save memory
  96. const RenderTargetHandle probeTexture = rgraph.importRenderTarget(&probeToRefresh->getReflectionTexture(), TextureUsageBit::kNone);
  97. m_runCtx.m_probeTex = probeTexture;
  98. const RenderTargetHandle gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  99. const RenderTargetHandle shadowMapRt = (doShadows) ? rgraph.newRenderTarget(m_shadowMapping.m_rtDescr) : RenderTargetHandle();
  100. Array<RenderTargetHandle, kGBufferColorRenderTargetCount> gbufferColorRts;
  101. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  102. {
  103. gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  104. }
  105. for(U8 f = 0; f < 6; ++f)
  106. {
  107. // GBuffer visibility
  108. GpuVisibilityOutput visOut;
  109. Frustum frustum;
  110. {
  111. frustum.setPerspective(kClusterObjectFrustumNearPlane, probeToRefresh->getRenderRadius(), kPi / 2.0f, kPi / 2.0f);
  112. frustum.setWorldTransform(
  113. Transform(probeToRefresh->getWorldPosition().xyz0(), Frustum::getOmnidirectionalFrustumRotations()[f], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  114. frustum.update();
  115. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar, g_lod1MaxDistanceCVar};
  116. FrustumGpuVisibilityInput visIn;
  117. visIn.m_passesName = generateTempPassName("Cube refl: GBuffer face:%u", f);
  118. visIn.m_technique = RenderingTechnique::kGBuffer;
  119. visIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  120. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  121. visIn.m_lodDistances = lodDistances;
  122. visIn.m_rgraph = &rgraph;
  123. visIn.m_viewportSize = UVec2(m_gbuffer.m_tileSize);
  124. visIn.m_limitMemory = true;
  125. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  126. }
  127. // GBuffer pass
  128. {
  129. // Create pass
  130. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: GBuffer face:%u", f));
  131. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRtis;
  132. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  133. {
  134. colorRtis[j].m_loadOperation = RenderTargetLoadOperation::kClear;
  135. colorRtis[j].m_subresource.m_face = f;
  136. colorRtis[j].m_handle = gbufferColorRts[j];
  137. }
  138. GraphicsRenderPassTargetDesc depthRti(gbufferDepthRt);
  139. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  140. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  141. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  142. pass.setRenderpassInfo(colorRtis, &depthRti);
  143. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  144. {
  145. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  146. }
  147. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kAllRtvDsv, DepthStencilAspectBit::kDepth);
  148. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  149. pass.setWork(
  150. [this, visOut, viewProjMat = frustum.getViewProjectionMatrix(), viewMat = frustum.getViewMatrix()](RenderPassWorkContext& rgraphCtx) {
  151. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  152. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  153. cmdb.setViewport(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  154. RenderableDrawerArguments args;
  155. args.m_viewMatrix = viewMat;
  156. args.m_cameraTransform = viewMat.invertTransformation();
  157. args.m_viewProjectionMatrix = viewProjMat;
  158. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care about prev mats
  159. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  160. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  161. args.m_viewport = UVec4(0, 0, m_gbuffer.m_tileSize, m_gbuffer.m_tileSize);
  162. args.fill(visOut);
  163. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  164. });
  165. }
  166. // Shadow visibility. Optional
  167. GpuVisibilityOutput shadowVisOut;
  168. Mat4 cascadeViewProjMat;
  169. Mat3x4 cascadeViewMat;
  170. Mat4 cascadeProjMat;
  171. if(doShadows)
  172. {
  173. constexpr U32 kCascadeCount = 1;
  174. dirLightc->computeCascadeFrustums(frustum, Array<F32, kCascadeCount>{probeToRefresh->getShadowsRenderRadius()},
  175. WeakArray<Mat4>(&cascadeProjMat, kCascadeCount), WeakArray<Mat3x4>(&cascadeViewMat, kCascadeCount));
  176. cascadeViewProjMat = cascadeProjMat * Mat4(cascadeViewMat, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  177. Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar, g_lod1MaxDistanceCVar};
  178. FrustumGpuVisibilityInput visIn;
  179. visIn.m_passesName = generateTempPassName("Cube refl: Shadows face:%u", f);
  180. visIn.m_technique = RenderingTechnique::kDepth;
  181. visIn.m_viewProjectionMatrix = cascadeViewProjMat;
  182. visIn.m_lodReferencePoint = probeToRefresh->getWorldPosition();
  183. visIn.m_lodDistances = lodDistances;
  184. visIn.m_rgraph = &rgraph;
  185. visIn.m_viewportSize = UVec2(m_shadowMapping.m_rtDescr.m_height);
  186. visIn.m_limitMemory = true;
  187. getRenderer().getGpuVisibility().populateRenderGraph(visIn, shadowVisOut);
  188. }
  189. // Shadows. Optional
  190. if(doShadows)
  191. {
  192. // Pass
  193. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: Shadows face:%u", f));
  194. GraphicsRenderPassTargetDesc depthRti(shadowMapRt);
  195. depthRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  196. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  197. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  198. pass.setRenderpassInfo({}, &depthRti);
  199. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kAllRtvDsv, DepthStencilAspectBit::kDepth);
  200. pass.newBufferDependency(shadowVisOut.m_dependency, BufferUsageBit::kIndirectDraw);
  201. pass.setWork([this, shadowVisOut, cascadeViewProjMat, cascadeViewMat](RenderPassWorkContext& rgraphCtx) {
  202. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  203. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  204. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  205. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  206. cmdb.setViewport(0, 0, rez, rez);
  207. RenderableDrawerArguments args;
  208. args.m_viewMatrix = cascadeViewMat;
  209. args.m_cameraTransform = cascadeViewMat.invertTransformation();
  210. args.m_viewProjectionMatrix = cascadeViewProjMat;
  211. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  212. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  213. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  214. args.m_viewport = UVec4(0, 0, rez, rez);
  215. args.fill(shadowVisOut);
  216. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  217. cmdb.setPolygonOffset(0.0, 0.0);
  218. });
  219. }
  220. // Light visibility
  221. GpuVisibilityNonRenderablesOutput lightVis;
  222. {
  223. GpuVisibilityNonRenderablesInput in;
  224. in.m_passesName = generateTempPassName("Cube refl: Light visibility face:%u", f);
  225. in.m_objectType = GpuSceneNonRenderableObjectType::kLight;
  226. in.m_viewProjectionMat = frustum.getViewProjectionMatrix();
  227. in.m_rgraph = &rgraph;
  228. getRenderer().getGpuVisibilityNonRenderables().populateRenderGraph(in, lightVis);
  229. }
  230. // Light shading pass
  231. {
  232. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass(generateTempPassName("Cube refl: light shading face:%u", f));
  233. GraphicsRenderPassTargetDesc colorRti(probeTexture);
  234. colorRti.m_subresource.m_face = f;
  235. colorRti.m_loadOperation = RenderTargetLoadOperation::kClear;
  236. pass.setRenderpassInfo({colorRti});
  237. pass.newBufferDependency(lightVis.m_visiblesBufferHandle, BufferUsageBit::kSrvPixel);
  238. pass.newTextureDependency(probeTexture, TextureUsageBit::kRtvDsvWrite, TextureSubresourceDesc::surface(0, f, 0));
  239. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  240. {
  241. pass.newTextureDependency(gbufferColorRts[i], TextureUsageBit::kSrvPixel, TextureSubresourceDesc::surface(0, f, 0));
  242. }
  243. pass.newTextureDependency(gbufferDepthRt, TextureUsageBit::kSrvPixel, DepthStencilAspectBit::kDepth);
  244. if(shadowMapRt.isValid())
  245. {
  246. pass.newTextureDependency(shadowMapRt, TextureUsageBit::kSrvPixel);
  247. }
  248. if(getRenderer().getGeneratedSky().isEnabled())
  249. {
  250. pass.newTextureDependency(getRenderer().getGeneratedSky().getSkyLutRt(), TextureUsageBit::kSrvPixel);
  251. }
  252. if(getRenderer().getIndirectDiffuseProbes().hasCurrentlyRefreshedVolumeRt())
  253. {
  254. pass.newTextureDependency(getRenderer().getIndirectDiffuseProbes().getCurrentlyRefreshedVolumeRt(), TextureUsageBit::kSrvPixel);
  255. }
  256. pass.setWork([this, visResult = lightVis.m_visiblesBuffer, viewProjMat = frustum.getViewProjectionMatrix(),
  257. cascadeViewProjMat = cascadeViewProjMat, probeToRefresh, gbufferColorRts, gbufferDepthRt, shadowMapRt, faceIdx = f,
  258. &rctx](RenderPassWorkContext& rgraphCtx) {
  259. ANKI_TRACE_SCOPED_EVENT(ProbeReflections);
  260. TraditionalDeferredLightShadingDrawInfo dsInfo;
  261. dsInfo.m_viewProjectionMatrix = viewProjMat;
  262. dsInfo.m_invViewProjectionMatrix = viewProjMat.invert();
  263. dsInfo.m_cameraPosWSpace = probeToRefresh->getWorldPosition().xyz1();
  264. dsInfo.m_viewport = UVec4(0, 0, m_lightShading.m_tileSize, m_lightShading.m_tileSize);
  265. dsInfo.m_effectiveShadowDistance = probeToRefresh->getShadowsRenderRadius();
  266. dsInfo.m_applyIndirectDiffuse = true;
  267. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, -0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  268. dsInfo.m_dirLightMatrix = biasMat4 * cascadeViewProjMat;
  269. dsInfo.m_visibleLightsBuffer = visResult;
  270. dsInfo.m_gbufferRenderTargets[0] = gbufferColorRts[0];
  271. dsInfo.m_gbufferRenderTargetSubresource[0].m_face = faceIdx;
  272. dsInfo.m_gbufferRenderTargets[1] = gbufferColorRts[1];
  273. dsInfo.m_gbufferRenderTargetSubresource[1].m_face = faceIdx;
  274. dsInfo.m_gbufferRenderTargets[2] = gbufferColorRts[2];
  275. dsInfo.m_gbufferRenderTargetSubresource[2].m_face = faceIdx;
  276. dsInfo.m_gbufferDepthRenderTarget = gbufferDepthRt;
  277. if(shadowMapRt.isValid())
  278. {
  279. dsInfo.m_directionalLightShadowmapRenderTarget = shadowMapRt;
  280. }
  281. dsInfo.m_skyLutRenderTarget =
  282. (getRenderer().getGeneratedSky().isEnabled()) ? getRenderer().getGeneratedSky().getSkyLutRt() : RenderTargetHandle();
  283. dsInfo.m_globalRendererConsts = rctx.m_globalRenderingConstantsBuffer;
  284. dsInfo.m_renderpassContext = &rgraphCtx;
  285. m_lightShading.m_deferred.drawLights(dsInfo);
  286. });
  287. }
  288. } // For 6 faces
  289. // Mipmapping "passes"
  290. {
  291. const MipmapGeneratorTargetArguments desc = {
  292. .m_handle = probeTexture,
  293. .m_targetSize = UVec2(probeToRefresh->getReflectionTexture().getWidth(), probeToRefresh->getReflectionTexture().getHeight()),
  294. .m_layerCount = 1,
  295. .m_mipmapCount = m_lightShading.m_mipCount,
  296. .m_isCubeTexture = true};
  297. getRenderer().getMipmapGenerator().populateRenderGraph(desc, rgraph, "Cube refl: Gen mips");
  298. }
  299. }
  300. } // end namespace anki