Renderer.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Util/Tracer.h>
  7. #include <AnKi/Util/CVarSet.h>
  8. #include <AnKi/Util/HighRezTimer.h>
  9. #include <AnKi/Collision/Aabb.h>
  10. #include <AnKi/Collision/Plane.h>
  11. #include <AnKi/Collision/Functions.h>
  12. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  13. #include <AnKi/Core/GpuMemory/GpuSceneBuffer.h>
  14. #include <AnKi/Scene/Components/CameraComponent.h>
  15. #include <AnKi/Scene/Components/LightComponent.h>
  16. #include <AnKi/Scene/Components/SkyboxComponent.h>
  17. #include <AnKi/Core/StatsSet.h>
  18. #include <AnKi/Core/App.h>
  19. #include <AnKi/Renderer/ProbeReflections.h>
  20. #include <AnKi/Renderer/GBuffer.h>
  21. #include <AnKi/Renderer/GBufferPost.h>
  22. #include <AnKi/Renderer/LightShading.h>
  23. #include <AnKi/Renderer/ShadowMapping.h>
  24. #include <AnKi/Renderer/FinalComposite.h>
  25. #include <AnKi/Renderer/Bloom.h>
  26. #include <AnKi/Renderer/Tonemapping.h>
  27. #include <AnKi/Renderer/ForwardShading.h>
  28. #include <AnKi/Renderer/LensFlare.h>
  29. #include <AnKi/Renderer/Dbg.h>
  30. #include <AnKi/Renderer/VolumetricFog.h>
  31. #include <AnKi/Renderer/DepthDownscale.h>
  32. #include <AnKi/Renderer/TemporalAA.h>
  33. #include <AnKi/Renderer/UiStage.h>
  34. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  35. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  36. #include <AnKi/Renderer/ShadowmapsResolve.h>
  37. #include <AnKi/Renderer/RtShadows.h>
  38. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  39. #include <AnKi/Renderer/MotionVectors.h>
  40. #include <AnKi/Renderer/TemporalUpscaler.h>
  41. #include <AnKi/Renderer/VrsSriGeneration.h>
  42. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  43. #include <AnKi/Renderer/ClusterBinning.h>
  44. #include <AnKi/Renderer/Ssao.h>
  45. #include <AnKi/Renderer/Sky.h>
  46. #include <AnKi/Renderer/MotionBlur.h>
  47. #include <AnKi/Renderer/RtMaterialFetchDbg.h>
  48. #include <AnKi/Renderer/Reflections.h>
  49. #include <AnKi/Renderer/IndirectDiffuse.h>
  50. #include <AnKi/Renderer/Utils/Drawer.h>
  51. #include <AnKi/Renderer/Utils/GpuVisibility.h>
  52. #include <AnKi/Renderer/Utils/MipmapGenerator.h>
  53. #include <AnKi/Renderer/Utils/Readback.h>
  54. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  55. namespace anki {
  56. static StatCounter g_primitivesDrawnStatVar(StatCategory::kRenderer, "Primitives drawn", StatFlag::kMainThreadUpdates | StatFlag::kZeroEveryFrame);
  57. static StatCounter g_rendererCpuTimeStatVar(StatCategory::kTime, "Renderer",
  58. StatFlag::kMilisecond | StatFlag::kShowAverage | StatFlag::kMainThreadUpdates);
  59. /// Generate a Halton jitter in [-0.5, 0.5]
  60. static Vec2 generateJitter(U32 frame)
  61. {
  62. // Halton jitter
  63. Vec2 result(0.0f);
  64. constexpr U32 baseX = 2;
  65. U32 index = frame + 1;
  66. F32 invBase = 1.0f / baseX;
  67. F32 fraction = invBase;
  68. while(index > 0)
  69. {
  70. result.x() += F32(index % baseX) * fraction;
  71. index /= baseX;
  72. fraction *= invBase;
  73. }
  74. constexpr U32 baseY = 3;
  75. index = frame + 1;
  76. invBase = 1.0f / baseY;
  77. fraction = invBase;
  78. while(index > 0)
  79. {
  80. result.y() += F32(index % baseY) * fraction;
  81. index /= baseY;
  82. fraction *= invBase;
  83. }
  84. result.x() -= 0.5f;
  85. result.y() -= 0.5f;
  86. return result;
  87. }
  88. Renderer::Renderer()
  89. {
  90. }
  91. Renderer::~Renderer()
  92. {
  93. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) deleteInstance(RendererMemoryPool::getSingleton(), m_##name2);
  94. #include <AnKi/Renderer/RendererObject.def.h>
  95. }
  96. Error Renderer::init(const RendererInitInfo& inf)
  97. {
  98. ANKI_TRACE_SCOPED_EVENT(RInit);
  99. const Error err = initInternal(inf);
  100. if(err)
  101. {
  102. ANKI_R_LOGE("Failed to initialize the renderer");
  103. }
  104. return err;
  105. }
  106. Error Renderer::initInternal(const RendererInitInfo& inf)
  107. {
  108. RendererMemoryPool::allocateSingleton(inf.m_allocCallback, inf.m_allocCallbackUserData);
  109. m_framePool.init(inf.m_allocCallback, inf.m_allocCallbackUserData, 10_MB, 1.0f);
  110. m_frameCount = 0;
  111. m_swapchainResolution = inf.m_swapchainSize;
  112. m_rgraph = GrManager::getSingleton().newRenderGraph();
  113. // Set from the config
  114. m_postProcessResolution = UVec2(Vec2(m_swapchainResolution) * g_renderScalingCVar);
  115. alignRoundDown(2, m_postProcessResolution.x());
  116. alignRoundDown(2, m_postProcessResolution.y());
  117. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_internalRenderScalingCVar);
  118. alignRoundDown(2, m_internalResolution.x());
  119. alignRoundDown(2, m_internalResolution.y());
  120. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  121. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  122. m_tileCounts.x() = (m_internalResolution.x() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  123. m_tileCounts.y() = (m_internalResolution.y() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  124. m_zSplitCount = g_zSplitCountCVar;
  125. if(g_meshletRenderingCVar && !GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  126. {
  127. m_meshletRenderingType = MeshletRenderingType::kSoftware;
  128. }
  129. else if(GrManager::getSingleton().getDeviceCapabilities().m_meshShaders)
  130. {
  131. m_meshletRenderingType = MeshletRenderingType::kMeshShaders;
  132. }
  133. else
  134. {
  135. m_meshletRenderingType = MeshletRenderingType::kNone;
  136. }
  137. // A few sanity checks
  138. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  139. {
  140. ANKI_R_LOGE("Incorrect sizes");
  141. return Error::kUserData;
  142. }
  143. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  144. // Dummy resources
  145. {
  146. TextureInitInfo texinit("RendererDummy");
  147. texinit.m_width = texinit.m_height = 4;
  148. texinit.m_usage = TextureUsageBit::kAllSrv | TextureUsageBit::kUavCompute;
  149. texinit.m_format = Format::kR8G8B8A8_Unorm;
  150. m_dummyTex2d = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  151. texinit.m_depth = 4;
  152. texinit.m_type = TextureType::k3D;
  153. m_dummyTex3d = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSrv);
  154. m_dummyBuff = GrManager::getSingleton().newBuffer(
  155. BufferInitInfo(1024, BufferUsageBit::kAllConstant | BufferUsageBit::kAllUav, BufferMapAccessBit::kNone, "Dummy"));
  156. }
  157. {
  158. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/FillBuffer.ankiprogbin", m_fillBufferProg));
  159. ShaderProgramResourceVariantInitInfo initInf(m_fillBufferProg);
  160. const ShaderProgramResourceVariant* variant;
  161. m_fillBufferProg->getOrCreateVariant(initInf, variant);
  162. m_fillBufferGrProg.reset(&variant->getProgram());
  163. }
  164. // Init the stages
  165. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) \
  166. if(initCondition) \
  167. { \
  168. m_##name2 = newInstance<name>(RendererMemoryPool::getSingleton()); \
  169. ANKI_R_LOGV("Initializing " ANKI_STRINGIZE(name)); \
  170. const Error err = m_##name2->init(); \
  171. if(err) \
  172. { \
  173. ANKI_R_LOGE("Initialization failed: " ANKI_STRINGIZE(name)); \
  174. return err; \
  175. } \
  176. }
  177. #include <AnKi/Renderer/RendererObject.def.h>
  178. // Init samplers
  179. {
  180. SamplerInitInfo sinit("NearestNearestClamp");
  181. sinit.m_addressing = SamplingAddressing::kClamp;
  182. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  183. sinit.m_minMagFilter = SamplingFilter::kNearest;
  184. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  185. sinit.setName("TrilinearClamp");
  186. sinit.m_minMagFilter = SamplingFilter::kLinear;
  187. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  188. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  189. sinit.setName("TrilinearRepeat");
  190. sinit.m_addressing = SamplingAddressing::kRepeat;
  191. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  192. if(g_textureAnisotropyCVar <= 1u)
  193. {
  194. m_samplers.m_trilinearRepeatAniso = m_samplers.m_trilinearRepeat;
  195. }
  196. else
  197. {
  198. sinit.setName("TrilinearRepeatAniso");
  199. sinit.m_anisotropyLevel = g_textureAnisotropyCVar;
  200. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  201. }
  202. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  203. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  204. if(getTemporalUpscaler().getEnabled())
  205. {
  206. // DLSS wants more bias
  207. scalingMipBias -= 1.0f;
  208. }
  209. sinit.m_lodBias = scalingMipBias;
  210. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  211. sinit = {};
  212. sinit.setName("TrilinearClampShadow");
  213. sinit.m_minMagFilter = SamplingFilter::kLinear;
  214. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  215. sinit.m_compareOperation = CompareOperation::kLessEqual;
  216. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  217. }
  218. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  219. {
  220. m_jitterOffsets[i] = generateJitter(i);
  221. }
  222. if(m_swapchainResolution != m_postProcessResolution)
  223. {
  224. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/Blit.ankiprogbin", m_blitProg));
  225. ShaderProgramResourceVariantInitInfo varInit(m_blitProg);
  226. const ShaderProgramResourceVariant* variant;
  227. varInit.requestTechniqueAndTypes(ShaderTypeBit::kVertex | ShaderTypeBit::kPixel);
  228. m_blitProg->getOrCreateVariant(varInit, variant);
  229. m_blitGrProg.reset(&variant->getProgram());
  230. ANKI_R_LOGI("There will be a blit pass to the swapchain because render scaling is not 1.0");
  231. }
  232. return Error::kNone;
  233. }
  234. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  235. {
  236. // Import RTs first
  237. m_bloom2->importRenderTargets(ctx);
  238. m_tonemapping->importRenderTargets(ctx);
  239. m_vrsSriGeneration->importRenderTargets(ctx);
  240. m_gbuffer->importRenderTargets(ctx);
  241. // Populate render graph. WARNING Watch the order
  242. gpuSceneCopy(ctx);
  243. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  244. if(m_accelerationStructureBuilder)
  245. {
  246. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  247. }
  248. m_gbuffer->populateRenderGraph(ctx);
  249. m_shadowMapping->populateRenderGraph(ctx);
  250. m_clusterBinning2->populateRenderGraph(ctx);
  251. m_generatedSky->populateRenderGraph(ctx);
  252. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  253. m_probeReflections->populateRenderGraph(ctx);
  254. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  255. m_motionVectors->populateRenderGraph(ctx);
  256. m_gbufferPost->populateRenderGraph(ctx);
  257. m_depthDownscale->populateRenderGraph(ctx);
  258. if(m_rtShadows)
  259. {
  260. m_rtShadows->populateRenderGraph(ctx);
  261. }
  262. if(m_rtMaterialFetchDbg)
  263. {
  264. m_rtMaterialFetchDbg->populateRenderGraph(ctx);
  265. }
  266. m_indirectDiffuse->populateRenderGraph(ctx);
  267. m_reflections->populateRenderGraph(ctx);
  268. m_shadowmapsResolve->populateRenderGraph(ctx);
  269. m_volumetricFog->populateRenderGraph(ctx);
  270. m_lensFlare->populateRenderGraph(ctx);
  271. m_ssao->populateRenderGraph(ctx);
  272. m_forwardShading->populateRenderGraph(ctx); // This may feel out of place but it's only visibility. Keep it just before light shading
  273. m_lightShading->populateRenderGraph(ctx);
  274. if(getTemporalUpscaler().getEnabled())
  275. {
  276. m_temporalUpscaler->populateRenderGraph(ctx);
  277. }
  278. else
  279. {
  280. m_temporalAA->populateRenderGraph(ctx);
  281. }
  282. m_vrsSriGeneration->populateRenderGraph(ctx);
  283. m_tonemapping->populateRenderGraph(ctx);
  284. m_motionBlur->populateRenderGraph(ctx);
  285. m_bloom2->populateRenderGraph(ctx);
  286. m_dbg->populateRenderGraph(ctx);
  287. m_finalComposite->populateRenderGraph(ctx);
  288. return Error::kNone;
  289. }
  290. void Renderer::writeGlobalRendererConstants(RenderingContext& ctx, GlobalRendererConstants& consts)
  291. {
  292. ANKI_TRACE_SCOPED_EVENT(RWriteGlobalRendererConstants);
  293. consts.m_renderingSize = Vec2(F32(m_internalResolution.x()), F32(m_internalResolution.y()));
  294. consts.m_time = F32(HighRezTimer::getCurrentTime());
  295. consts.m_frame = m_frameCount & kMaxU32;
  296. Plane nearPlane;
  297. extractClipPlane(ctx.m_matrices.m_viewProjection, FrustumPlaneType::kNear, nearPlane);
  298. consts.m_nearPlaneWSpace = Vec4(nearPlane.getNormal().xyz(), nearPlane.getOffset());
  299. consts.m_near = ctx.m_cameraNear;
  300. consts.m_far = ctx.m_cameraFar;
  301. consts.m_cameraPosition = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  302. consts.m_tileCounts = m_tileCounts;
  303. consts.m_zSplitCount = m_zSplitCount;
  304. consts.m_zSplitCountOverFrustumLength = F32(m_zSplitCount) / (ctx.m_cameraFar - ctx.m_cameraNear);
  305. consts.m_zSplitMagic.x() = (ctx.m_cameraNear - ctx.m_cameraFar) / (ctx.m_cameraNear * F32(m_zSplitCount));
  306. consts.m_zSplitMagic.y() = ctx.m_cameraFar / (ctx.m_cameraNear * F32(m_zSplitCount));
  307. consts.m_lightVolumeLastZSplit = min(g_volumetricLightingAccumulationFinalZSplitCVar - 1, m_zSplitCount);
  308. consts.m_reflectionProbesMipCount = F32(m_probeReflections->getReflectionTextureMipmapCount());
  309. consts.m_matrices = ctx.m_matrices;
  310. consts.m_previousMatrices = ctx.m_prevMatrices;
  311. // Directional light
  312. const LightComponent* dirLight = SceneGraph::getSingleton().getDirectionalLight();
  313. if(dirLight)
  314. {
  315. DirectionalLight& out = consts.m_directionalLight;
  316. const U32 shadowCascadeCount = (dirLight->getShadowEnabled()) ? g_shadowCascadeCountCVar : 0;
  317. out.m_diffuseColor = dirLight->getDiffuseColor().xyz();
  318. out.m_power = dirLight->getLightPower();
  319. out.m_shadowCascadeCount_31bit_active_1bit = shadowCascadeCount << 1u;
  320. out.m_shadowCascadeCount_31bit_active_1bit |= 1;
  321. out.m_direction = dirLight->getDirection();
  322. out.m_shadowCascadeDistances =
  323. Vec4(g_shadowCascade0DistanceCVar, g_shadowCascade1DistanceCVar, g_shadowCascade2DistanceCVar, g_shadowCascade3DistanceCVar);
  324. for(U cascade = 0; cascade < shadowCascadeCount; ++cascade)
  325. {
  326. ANKI_ASSERT(ctx.m_dirLightTextureMatrices[cascade] != Mat4::getZero());
  327. out.m_textureMatrices[cascade] = ctx.m_dirLightTextureMatrices[cascade];
  328. out.m_cascadeFarPlanes[cascade] = ctx.m_dirLightFarPlanes[cascade];
  329. out.m_cascadePcfTexelRadius[cascade] = ctx.m_dirLightPcfTexelRadius[cascade];
  330. }
  331. }
  332. else
  333. {
  334. consts.m_directionalLight.m_shadowCascadeCount_31bit_active_1bit = 0;
  335. }
  336. // Sky
  337. const SkyboxComponent* sky = SceneGraph::getSingleton().getSkybox();
  338. const Bool isSolidColor =
  339. (!sky || sky->getSkyboxType() == SkyboxType::kSolidColor || (!dirLight && sky->getSkyboxType() == SkyboxType::kGenerated));
  340. if(isSolidColor)
  341. {
  342. consts.m_sky.m_solidColor = (sky) ? sky->getSolidColor() : Vec3(0.0);
  343. consts.m_sky.m_type = 0;
  344. }
  345. else if(sky->getSkyboxType() == SkyboxType::kImage2D)
  346. {
  347. consts.m_sky.m_type = 1;
  348. }
  349. else
  350. {
  351. consts.m_sky.m_type = 2;
  352. }
  353. }
  354. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  355. {
  356. ANKI_ASSERT(!!(usage & TextureUsageBit::kRtvDsvWrite) || !!(usage & TextureUsageBit::kUavCompute));
  357. TextureInitInfo init(name);
  358. init.m_width = w;
  359. init.m_height = h;
  360. init.m_depth = 1;
  361. init.m_layerCount = 1;
  362. init.m_type = TextureType::k2D;
  363. init.m_format = format;
  364. init.m_mipmapCount = 1;
  365. init.m_samples = 1;
  366. init.m_usage = usage;
  367. return init;
  368. }
  369. RenderTargetDesc Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  370. {
  371. RenderTargetDesc init(name);
  372. init.m_width = w;
  373. init.m_height = h;
  374. init.m_depth = 1;
  375. init.m_layerCount = 1;
  376. init.m_type = TextureType::k2D;
  377. init.m_format = format;
  378. init.m_mipmapCount = 1;
  379. init.m_samples = 1;
  380. init.m_usage = TextureUsageBit::kNone;
  381. return init;
  382. }
  383. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  384. {
  385. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite) || !!(inf.m_usage & TextureUsageBit::kUavCompute));
  386. const U faceCount = textureTypeIsCube(inf.m_type) ? 6 : 1;
  387. Bool useCompute = false;
  388. if(!!(inf.m_usage & TextureUsageBit::kRtvDsvWrite))
  389. {
  390. useCompute = false;
  391. }
  392. else if(!!(inf.m_usage & TextureUsageBit::kUavCompute))
  393. {
  394. useCompute = true;
  395. }
  396. else
  397. {
  398. ANKI_ASSERT(!"Can't handle that");
  399. }
  400. // Create tex
  401. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  402. // Clear all surfaces
  403. CommandBufferInitInfo cmdbinit;
  404. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  405. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  406. {
  407. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  408. }
  409. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  410. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  411. {
  412. for(U32 face = 0; face < faceCount; ++face)
  413. {
  414. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  415. {
  416. if(!useCompute)
  417. {
  418. RenderTarget rt;
  419. rt.m_clearValue = clearVal;
  420. if(getFormatInfo(inf.m_format).isDepthStencil())
  421. {
  422. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  423. if(getFormatInfo(inf.m_format).isDepth())
  424. {
  425. aspect |= DepthStencilAspectBit::kDepth;
  426. }
  427. if(getFormatInfo(inf.m_format).isStencil())
  428. {
  429. aspect |= DepthStencilAspectBit::kStencil;
  430. }
  431. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer, aspect));
  432. }
  433. else
  434. {
  435. rt.m_textureView = TextureView(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  436. }
  437. TextureBarrierInfo barrier = {rt.m_textureView, TextureUsageBit::kNone, TextureUsageBit::kRtvDsvWrite};
  438. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  439. if(getFormatInfo(inf.m_format).isDepthStencil())
  440. {
  441. cmdb->beginRenderPass({}, &rt);
  442. }
  443. else
  444. {
  445. cmdb->beginRenderPass({rt});
  446. }
  447. cmdb->endRenderPass();
  448. if(!!initialUsage)
  449. {
  450. barrier.m_previousUsage = TextureUsageBit::kRtvDsvWrite;
  451. barrier.m_nextUsage = initialUsage;
  452. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  453. }
  454. }
  455. else
  456. {
  457. // Compute
  458. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  459. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  460. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  461. I32 componentType = 0;
  462. if(formatInfo.m_shaderType == 0)
  463. {
  464. componentType = 0;
  465. }
  466. else if(formatInfo.m_shaderType == 1)
  467. {
  468. componentType = 1;
  469. }
  470. else
  471. {
  472. ANKI_ASSERT(!"Not supported");
  473. }
  474. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  475. const ShaderProgramResourceVariant* variant;
  476. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  477. cmdb->bindShaderProgram(&variant->getProgram());
  478. cmdb->setFastConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  479. const TextureView view(tex.get(), TextureSubresourceDesc::surface(mip, face, layer));
  480. cmdb->bindUav(0, 0, view);
  481. const TextureBarrierInfo barrier = {view, TextureUsageBit::kNone, TextureUsageBit::kUavCompute};
  482. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  483. UVec3 wgSize;
  484. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  485. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  486. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  487. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  488. if(!!initialUsage)
  489. {
  490. const TextureBarrierInfo barrier = {view, TextureUsageBit::kUavCompute, initialUsage};
  491. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  492. }
  493. }
  494. }
  495. }
  496. }
  497. cmdb->endRecording();
  498. FencePtr fence;
  499. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  500. fence->clientWait(10.0_sec);
  501. return tex;
  502. }
  503. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  504. {
  505. #if ANKI_ASSERTIONS_ENABLED
  506. for(const DebugRtInfo& inf : m_debugRts)
  507. {
  508. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  509. }
  510. #endif
  511. ANKI_ASSERT(obj);
  512. DebugRtInfo inf;
  513. inf.m_obj = obj;
  514. inf.m_rtName = rtName;
  515. m_debugRts.emplaceBack(std::move(inf));
  516. }
  517. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  518. {
  519. if(m_currentDebugRtName.isEmpty()) [[likely]]
  520. {
  521. return false;
  522. }
  523. RendererObject* obj = nullptr;
  524. for(const DebugRtInfo& inf : m_debugRts)
  525. {
  526. if(inf.m_rtName == m_currentDebugRtName)
  527. {
  528. obj = inf.m_obj;
  529. }
  530. }
  531. if(obj)
  532. {
  533. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  534. return true;
  535. }
  536. else
  537. {
  538. ANKI_R_LOGE("Debug rendertarget doesn't exist: %s", m_currentDebugRtName.cstr());
  539. m_currentDebugRtName = {};
  540. return false;
  541. }
  542. }
  543. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  544. {
  545. m_currentDebugRtName.destroy();
  546. if(!rtName.isEmpty() && rtName.getLength() > 0)
  547. {
  548. m_currentDebugRtName = rtName;
  549. }
  550. }
  551. Format Renderer::getHdrFormat() const
  552. {
  553. Format out;
  554. if(!g_highQualityHdrCVar)
  555. {
  556. out = Format::kB10G11R11_Ufloat_Pack32;
  557. }
  558. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  559. {
  560. out = Format::kR16G16B16_Sfloat;
  561. }
  562. else
  563. {
  564. out = Format::kR16G16B16A16_Sfloat;
  565. }
  566. return out;
  567. }
  568. Format Renderer::getDepthNoStencilFormat() const
  569. {
  570. if(ANKI_PLATFORM_MOBILE)
  571. {
  572. return Format::kX8D24_Unorm_Pack32;
  573. }
  574. else
  575. {
  576. return Format::kD32_Sfloat;
  577. }
  578. }
  579. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  580. {
  581. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  582. m_runCtx.m_gpuSceneHandle =
  583. rgraph.importBuffer(GpuSceneBuffer::getSingleton().getBufferView(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  584. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  585. {
  586. NonGraphicsRenderPass& rpass = rgraph.newNonGraphicsRenderPass("GPU scene patching");
  587. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kUavCompute);
  588. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  589. ANKI_TRACE_SCOPED_EVENT(GpuSceneCopy);
  590. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  591. });
  592. }
  593. }
  594. #if ANKI_STATS_ENABLED
  595. void Renderer::updatePipelineStats()
  596. {
  597. RendererDynamicArray<PipelineQueryPtr>& arr = m_pipelineQueries[m_frameCount % kMaxFramesInFlight];
  598. U64 sum = 0;
  599. for(PipelineQueryPtr& q : arr)
  600. {
  601. U64 value;
  602. const PipelineQueryResult res = q->getResult(value);
  603. if(res == PipelineQueryResult::kNotAvailable)
  604. {
  605. ANKI_R_LOGW("Pipeline query result is not available");
  606. }
  607. else
  608. {
  609. sum += value;
  610. }
  611. }
  612. arr.destroy();
  613. g_primitivesDrawnStatVar.set(sum);
  614. }
  615. #endif
  616. Error Renderer::render(Texture* presentTex)
  617. {
  618. ANKI_TRACE_SCOPED_EVENT(Render);
  619. const Second startTime = HighRezTimer::getCurrentTime();
  620. // First thing, reset the temp mem pool
  621. m_framePool.reset();
  622. RenderingContext ctx(&m_framePool);
  623. ctx.m_renderGraphDescr.setStatisticsEnabled(ANKI_STATS_ENABLED);
  624. ctx.m_swapchainRenderTarget = ctx.m_renderGraphDescr.importRenderTarget(presentTex, TextureUsageBit::kNone);
  625. #if ANKI_STATS_ENABLED
  626. updatePipelineStats();
  627. #endif
  628. const CameraComponent& cam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  629. ctx.m_prevMatrices = m_prevMatrices;
  630. ctx.m_matrices.m_cameraTransform = Mat3x4(cam.getFrustum().getWorldTransform());
  631. ctx.m_matrices.m_view = cam.getFrustum().getViewMatrix();
  632. ctx.m_matrices.m_projection = cam.getFrustum().getProjectionMatrix();
  633. ctx.m_matrices.m_viewProjection = cam.getFrustum().getViewProjectionMatrix();
  634. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  635. jitter *= 2.0f; // In [-1, 1]
  636. const Vec2 ndcPixelSize = 1.0f / Vec2(m_internalResolution);
  637. jitter *= ndcPixelSize;
  638. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  639. ctx.m_matrices.m_jitter.setTranslationPart(Vec3(jitter, 0.0f));
  640. ctx.m_matrices.m_jitterOffsetNdc = jitter;
  641. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  642. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  643. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.invert();
  644. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.invert();
  645. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.invert();
  646. ctx.m_matrices.m_reprojection = ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjection;
  647. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  648. ctx.m_matrices.m_projMat00_11_22_23 = Vec4(ctx.m_matrices.m_projection(0, 0), ctx.m_matrices.m_projection(1, 1),
  649. ctx.m_matrices.m_projection(2, 2), ctx.m_matrices.m_projection(2, 3));
  650. ctx.m_cameraNear = cam.getNear();
  651. ctx.m_cameraFar = cam.getFar();
  652. // Allocate global constants
  653. GlobalRendererConstants* globalConsts;
  654. {
  655. U32 alignment = (GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferNaturalAlignment)
  656. ? sizeof(*globalConsts)
  657. : GrManager::getSingleton().getDeviceCapabilities().m_structuredBufferBindOffsetAlignment;
  658. alignment = computeCompoundAlignment(alignment, GrManager::getSingleton().getDeviceCapabilities().m_constantBufferBindOffsetAlignment);
  659. ctx.m_globalRenderingConstantsBuffer = RebarTransientMemoryPool::getSingleton().allocate(sizeof(*globalConsts), alignment, globalConsts);
  660. }
  661. ANKI_CHECK(populateRenderGraph(ctx));
  662. // Blit renderer's result to swapchain
  663. const Bool bNeedsBlit = m_postProcessResolution != m_swapchainResolution;
  664. if(bNeedsBlit)
  665. {
  666. GraphicsRenderPass& pass = ctx.m_renderGraphDescr.newGraphicsRenderPass("Final Blit");
  667. pass.setRenderpassInfo({GraphicsRenderPassTargetDesc(ctx.m_swapchainRenderTarget)});
  668. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kRtvDsvWrite);
  669. pass.newTextureDependency(m_finalComposite->getRenderTarget(), TextureUsageBit::kSrvPixel);
  670. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  671. ANKI_TRACE_SCOPED_EVENT(BlitAndUi);
  672. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  673. cmdb.setViewport(0, 0, m_swapchainResolution.x(), m_swapchainResolution.y());
  674. cmdb.bindShaderProgram(m_blitGrProg.get());
  675. cmdb.bindSampler(0, 0, m_samplers.m_trilinearClamp.get());
  676. rgraphCtx.bindSrv(0, 0, m_finalComposite->getRenderTarget());
  677. cmdb.draw(PrimitiveTopology::kTriangles, 3);
  678. // Draw the UI
  679. m_uiStage->draw(m_swapchainResolution.x(), m_swapchainResolution.y(), cmdb);
  680. });
  681. }
  682. // Create a dummy pass to transition the presentable image to present
  683. {
  684. NonGraphicsRenderPass& pass = ctx.m_renderGraphDescr.newNonGraphicsRenderPass("Present");
  685. pass.setWork([]([[maybe_unused]] RenderPassWorkContext& rgraphCtx) {
  686. // Do nothing. This pass is dummy
  687. });
  688. pass.newTextureDependency(ctx.m_swapchainRenderTarget, TextureUsageBit::kPresent);
  689. }
  690. writeGlobalRendererConstants(ctx, *globalConsts);
  691. // Bake the render graph
  692. m_rgraph->compileNewGraph(ctx.m_renderGraphDescr, m_framePool);
  693. // Flush
  694. FencePtr fence;
  695. m_rgraph->recordAndSubmitCommandBuffers(&fence);
  696. // Misc
  697. m_rgraph->reset();
  698. ++m_frameCount;
  699. m_prevMatrices = ctx.m_matrices;
  700. m_readbackManager->endFrame(fence.get());
  701. // Stats
  702. if(ANKI_STATS_ENABLED || ANKI_TRACING_ENABLED)
  703. {
  704. g_rendererCpuTimeStatVar.set((HighRezTimer::getCurrentTime() - startTime) * 1000.0);
  705. RenderGraphStatistics rgraphStats;
  706. m_rgraph->getStatistics(rgraphStats);
  707. g_rendererGpuTimeStatVar.set(rgraphStats.m_gpuTime * 1000.0);
  708. if(rgraphStats.m_gpuTime > 0.0)
  709. {
  710. // WARNING: The name of the event is somewhat special. Search it to see why
  711. ANKI_TRACE_CUSTOM_EVENT(GpuFrameTime, rgraphStats.m_cpuStartTime, rgraphStats.m_gpuTime);
  712. }
  713. }
  714. return Error::kNone;
  715. }
  716. } // end namespace anki