LensFlare.cpp 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/LensFlare.h>
  6. #include <AnKi/Renderer/DepthDownscale.h>
  7. #include <AnKi/Renderer/RenderQueue.h>
  8. #include <AnKi/Renderer/Renderer.h>
  9. #include <AnKi/Core/ConfigSet.h>
  10. #include <AnKi/Util/Functions.h>
  11. namespace anki {
  12. Error LensFlare::init()
  13. {
  14. const Error err = initInternal();
  15. if(err)
  16. {
  17. ANKI_R_LOGE("Failed to initialize lens flare pass");
  18. }
  19. return err;
  20. }
  21. Error LensFlare::initInternal()
  22. {
  23. ANKI_R_LOGV("Initializing lens flare");
  24. ANKI_CHECK(initSprite());
  25. ANKI_CHECK(initOcclusion());
  26. return Error::kNone;
  27. }
  28. Error LensFlare::initSprite()
  29. {
  30. m_maxSpritesPerFlare = ConfigSet::getSingleton().getRLensFlareMaxSpritesPerFlare();
  31. m_maxFlares = ConfigSet::getSingleton().getRLensFlareMaxFlares();
  32. if(m_maxSpritesPerFlare < 1 || m_maxFlares < 1)
  33. {
  34. ANKI_R_LOGE("Incorrect m_maxSpritesPerFlare or m_maxFlares");
  35. return Error::kUserData;
  36. }
  37. m_maxSprites = U16(m_maxSpritesPerFlare * m_maxFlares);
  38. // Load prog
  39. ANKI_CHECK(loadShaderProgram("ShaderBinaries/LensFlareSprite.ankiprogbin", m_realProg, m_realGrProg));
  40. return Error::kNone;
  41. }
  42. Error LensFlare::initOcclusion()
  43. {
  44. m_indirectBuff = GrManager::getSingleton().newBuffer(BufferInitInfo(m_maxFlares * sizeof(DrawIndirectArgs),
  45. BufferUsageBit::kIndirectDraw | BufferUsageBit::kStorageComputeWrite,
  46. BufferMapAccessBit::kNone, "LensFlares"));
  47. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/LensFlareUpdateIndirectInfo.ankiprogbin", m_updateIndirectBuffProg));
  48. ShaderProgramResourceVariantInitInfo variantInitInfo(m_updateIndirectBuffProg);
  49. variantInitInfo.addConstant("kInDepthMapSize",
  50. UVec2(getRenderer().getInternalResolution().x() / 2 / 2, getRenderer().getInternalResolution().y() / 2 / 2));
  51. const ShaderProgramResourceVariant* variant;
  52. m_updateIndirectBuffProg->getOrCreateVariant(variantInitInfo, variant);
  53. m_updateIndirectBuffGrProg.reset(&variant->getProgram());
  54. return Error::kNone;
  55. }
  56. void LensFlare::updateIndirectInfo(const RenderingContext& ctx, RenderPassWorkContext& rgraphCtx)
  57. {
  58. CommandBufferPtr& cmdb = rgraphCtx.m_commandBuffer;
  59. U32 count = min<U32>(ctx.m_renderQueue->m_lensFlares.getSize(), m_maxFlares);
  60. ANKI_ASSERT(count > 0);
  61. cmdb->bindShaderProgram(m_updateIndirectBuffGrProg.get());
  62. cmdb->setPushConstants(&ctx.m_matrices.m_viewProjectionJitter, sizeof(ctx.m_matrices.m_viewProjectionJitter));
  63. // Write flare info
  64. Vec4* flarePositions = allocateAndBindStorage<Vec4*>(count * sizeof(Vec4), cmdb, 0, 0);
  65. for(U32 i = 0; i < count; ++i)
  66. {
  67. *flarePositions = Vec4(ctx.m_renderQueue->m_lensFlares[i].m_worldPosition, 1.0f);
  68. ++flarePositions;
  69. }
  70. rgraphCtx.bindStorageBuffer(0, 1, m_runCtx.m_indirectBuffHandle);
  71. // Bind neareset because you don't need high quality
  72. cmdb->bindSampler(0, 2, getRenderer().getSamplers().m_nearestNearestClamp.get());
  73. rgraphCtx.bindTexture(0, 3, getRenderer().getDepthDownscale().getHiZRt(), kHiZQuarterSurface);
  74. cmdb->dispatchCompute(count, 1, 1);
  75. }
  76. void LensFlare::populateRenderGraph(RenderingContext& ctx)
  77. {
  78. if(ctx.m_renderQueue->m_lensFlares.getSize() == 0)
  79. {
  80. return;
  81. }
  82. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  83. // Import buffer
  84. m_runCtx.m_indirectBuffHandle = rgraph.importBuffer(m_indirectBuff.get(), BufferUsageBit::kNone);
  85. // Update the indirect buffer
  86. {
  87. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("LF Upd Ind/ct");
  88. rpass.setWork([this, &ctx](RenderPassWorkContext& rgraphCtx) {
  89. updateIndirectInfo(ctx, rgraphCtx);
  90. });
  91. rpass.newBufferDependency(m_runCtx.m_indirectBuffHandle, BufferUsageBit::kStorageComputeWrite);
  92. rpass.newTextureDependency(getRenderer().getDepthDownscale().getHiZRt(), TextureUsageBit::kSampledCompute, kHiZQuarterSurface);
  93. }
  94. }
  95. void LensFlare::runDrawFlares(const RenderingContext& ctx, CommandBufferPtr& cmdb)
  96. {
  97. if(ctx.m_renderQueue->m_lensFlares.getSize() == 0)
  98. {
  99. return;
  100. }
  101. const U32 count = min<U32>(ctx.m_renderQueue->m_lensFlares.getSize(), m_maxFlares);
  102. cmdb->bindShaderProgram(m_realGrProg.get());
  103. cmdb->setBlendFactors(0, BlendFactor::kSrcAlpha, BlendFactor::kOneMinusSrcAlpha);
  104. cmdb->setDepthWrite(false);
  105. for(U32 i = 0; i < count; ++i)
  106. {
  107. const LensFlareQueueElement& flareEl = ctx.m_renderQueue->m_lensFlares[i];
  108. // Compute position
  109. Vec4 lfPos = Vec4(flareEl.m_worldPosition, 1.0);
  110. Vec4 posClip = ctx.m_matrices.m_viewProjectionJitter * lfPos;
  111. /*if(posClip.x() > posClip.w() || posClip.x() < -posClip.w() || posClip.y() > posClip.w()
  112. || posClip.y() < -posClip.w())
  113. {
  114. // Outside clip
  115. ANKI_ASSERT(0 && "Check that before");
  116. }*/
  117. U32 c = 0;
  118. U32 spritesCount = max<U32>(1, m_maxSpritesPerFlare);
  119. // Get uniform memory
  120. LensFlareSprite* tmpSprites = allocateAndBindStorage<LensFlareSprite*>(spritesCount * sizeof(LensFlareSprite), cmdb, 0, 0);
  121. WeakArray<LensFlareSprite> sprites(tmpSprites, spritesCount);
  122. // misc
  123. Vec2 posNdc = posClip.xy() / posClip.w();
  124. // First flare
  125. sprites[c].m_posScale = Vec4(posNdc, flareEl.m_firstFlareSize * Vec2(1.0f, getRenderer().getAspectRatio()));
  126. sprites[c].m_depthPad3 = Vec4(0.0f);
  127. const F32 alpha = flareEl.m_colorMultiplier.w() * (1.0f - pow(absolute(posNdc.x()), 6.0f))
  128. * (1.0f - pow(absolute(posNdc.y()), 6.0f)); // Fade the flare on the edges
  129. sprites[c].m_color = Vec4(flareEl.m_colorMultiplier.xyz(), alpha);
  130. ++c;
  131. // Render
  132. ANKI_ASSERT(flareEl.m_textureView);
  133. cmdb->bindSampler(0, 1, getRenderer().getSamplers().m_trilinearRepeat.get());
  134. cmdb->bindTexture(0, 2, flareEl.m_textureView);
  135. cmdb->drawIndirect(PrimitiveTopology::kTriangleStrip, 1, i * sizeof(DrawIndirectArgs), m_indirectBuff.get());
  136. }
  137. // Restore state
  138. cmdb->setBlendFactors(0, BlendFactor::kOne, BlendFactor::kZero);
  139. cmdb->setDepthWrite(true);
  140. }
  141. } // end namespace anki