Renderer.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Renderer/RenderQueue.h>
  7. #include <AnKi/Util/Tracer.h>
  8. #include <AnKi/Util/ThreadHive.h>
  9. #include <AnKi/Core/ConfigSet.h>
  10. #include <AnKi/Util/HighRezTimer.h>
  11. #include <AnKi/Collision/Aabb.h>
  12. #include <AnKi/Collision/Plane.h>
  13. #include <AnKi/Collision/Functions.h>
  14. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  15. #include <AnKi/Core/GpuMemory/GpuSceneBuffer.h>
  16. #include <AnKi/Renderer/ProbeReflections.h>
  17. #include <AnKi/Renderer/GBuffer.h>
  18. #include <AnKi/Renderer/GBufferPost.h>
  19. #include <AnKi/Renderer/LightShading.h>
  20. #include <AnKi/Renderer/ShadowMapping.h>
  21. #include <AnKi/Renderer/FinalComposite.h>
  22. #include <AnKi/Renderer/Bloom.h>
  23. #include <AnKi/Renderer/Tonemapping.h>
  24. #include <AnKi/Renderer/ForwardShading.h>
  25. #include <AnKi/Renderer/LensFlare.h>
  26. #include <AnKi/Renderer/Dbg.h>
  27. #include <AnKi/Renderer/DownscaleBlur.h>
  28. #include <AnKi/Renderer/VolumetricFog.h>
  29. #include <AnKi/Renderer/DepthDownscale.h>
  30. #include <AnKi/Renderer/TemporalAA.h>
  31. #include <AnKi/Renderer/UiStage.h>
  32. #include <AnKi/Renderer/IndirectSpecular.h>
  33. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  34. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  35. #include <AnKi/Renderer/GenericCompute.h>
  36. #include <AnKi/Renderer/ShadowmapsResolve.h>
  37. #include <AnKi/Renderer/RtShadows.h>
  38. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  39. #include <AnKi/Renderer/MotionVectors.h>
  40. #include <AnKi/Renderer/ClusterBinning.h>
  41. #include <AnKi/Renderer/Scale.h>
  42. #include <AnKi/Renderer/IndirectDiffuse.h>
  43. #include <AnKi/Renderer/VrsSriGeneration.h>
  44. #include <AnKi/Renderer/PackVisibleClusteredObjects.h>
  45. #include <AnKi/Renderer/HiZ.h>
  46. #include <AnKi/Renderer/GpuVisibility.h>
  47. namespace anki {
  48. /// Generate a Halton jitter in [-0.5, 0.5]
  49. static Vec2 generateJitter(U32 frame)
  50. {
  51. // Halton jitter
  52. Vec2 result(0.0f);
  53. constexpr U32 baseX = 2;
  54. U32 index = frame + 1;
  55. F32 invBase = 1.0f / baseX;
  56. F32 fraction = invBase;
  57. while(index > 0)
  58. {
  59. result.x() += F32(index % baseX) * fraction;
  60. index /= baseX;
  61. fraction *= invBase;
  62. }
  63. constexpr U32 baseY = 3;
  64. index = frame + 1;
  65. invBase = 1.0f / baseY;
  66. fraction = invBase;
  67. while(index > 0)
  68. {
  69. result.y() += F32(index % baseY) * fraction;
  70. index /= baseY;
  71. fraction *= invBase;
  72. }
  73. result.x() -= 0.5f;
  74. result.y() -= 0.5f;
  75. return result;
  76. }
  77. Renderer::Renderer()
  78. {
  79. }
  80. Renderer::~Renderer()
  81. {
  82. }
  83. Error Renderer::init(UVec2 swapchainSize)
  84. {
  85. ANKI_TRACE_SCOPED_EVENT(RInit);
  86. const Error err = initInternal(swapchainSize);
  87. if(err)
  88. {
  89. ANKI_R_LOGE("Failed to initialize the renderer");
  90. }
  91. return err;
  92. }
  93. Error Renderer::initInternal(UVec2 swapchainResolution)
  94. {
  95. m_frameCount = 0;
  96. // Set from the config
  97. m_postProcessResolution = UVec2(Vec2(swapchainResolution) * ConfigSet::getSingleton().getRRenderScaling());
  98. alignRoundDown(2, m_postProcessResolution.x());
  99. alignRoundDown(2, m_postProcessResolution.y());
  100. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * ConfigSet::getSingleton().getRInternalRenderScaling());
  101. alignRoundDown(2, m_internalResolution.x());
  102. alignRoundDown(2, m_internalResolution.y());
  103. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  104. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  105. m_tileSize = ConfigSet::getSingleton().getRTileSize();
  106. m_tileCounts.x() = (m_internalResolution.x() + m_tileSize - 1) / m_tileSize;
  107. m_tileCounts.y() = (m_internalResolution.y() + m_tileSize - 1) / m_tileSize;
  108. m_zSplitCount = ConfigSet::getSingleton().getRZSplitCount();
  109. // A few sanity checks
  110. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  111. {
  112. ANKI_R_LOGE("Incorrect sizes");
  113. return Error::kUserData;
  114. }
  115. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  116. // Dummy resources
  117. {
  118. TextureInitInfo texinit("RendererDummy");
  119. texinit.m_width = texinit.m_height = 4;
  120. texinit.m_usage = TextureUsageBit::kAllSampled | TextureUsageBit::kImageComputeWrite;
  121. texinit.m_format = Format::kR8G8B8A8_Unorm;
  122. TexturePtr tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  123. TextureViewInitInfo viewinit(tex.get());
  124. m_dummyTexView2d = GrManager::getSingleton().newTextureView(viewinit);
  125. texinit.m_depth = 4;
  126. texinit.m_type = TextureType::k3D;
  127. tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  128. viewinit = TextureViewInitInfo(tex.get());
  129. m_dummyTexView3d = GrManager::getSingleton().newTextureView(viewinit);
  130. m_dummyBuff = GrManager::getSingleton().newBuffer(
  131. BufferInitInfo(1024, BufferUsageBit::kAllUniform | BufferUsageBit::kAllStorage, BufferMapAccessBit::kNone, "Dummy"));
  132. }
  133. // Init the stages. Careful with the order!!!!!!!!!!
  134. m_genericCompute.reset(newInstance<GenericCompute>(RendererMemoryPool::getSingleton()));
  135. ANKI_CHECK(m_genericCompute->init());
  136. m_volumetricLightingAccumulation.reset(newInstance<VolumetricLightingAccumulation>(RendererMemoryPool::getSingleton()));
  137. ANKI_CHECK(m_volumetricLightingAccumulation->init());
  138. m_indirectDiffuseProbes.reset(newInstance<IndirectDiffuseProbes>(RendererMemoryPool::getSingleton()));
  139. ANKI_CHECK(m_indirectDiffuseProbes->init());
  140. m_probeReflections.reset(newInstance<ProbeReflections>(RendererMemoryPool::getSingleton()));
  141. ANKI_CHECK(m_probeReflections->init());
  142. m_vrsSriGeneration.reset(newInstance<VrsSriGeneration>(RendererMemoryPool::getSingleton()));
  143. ANKI_CHECK(m_vrsSriGeneration->init());
  144. m_scale.reset(newInstance<Scale>(RendererMemoryPool::getSingleton()));
  145. ANKI_CHECK(m_scale->init());
  146. m_gbuffer.reset(newInstance<GBuffer>(RendererMemoryPool::getSingleton()));
  147. ANKI_CHECK(m_gbuffer->init());
  148. m_gbufferPost.reset(newInstance<GBufferPost>(RendererMemoryPool::getSingleton()));
  149. ANKI_CHECK(m_gbufferPost->init());
  150. m_shadowMapping.reset(newInstance<ShadowMapping>(RendererMemoryPool::getSingleton()));
  151. ANKI_CHECK(m_shadowMapping->init());
  152. m_volumetricFog.reset(newInstance<VolumetricFog>(RendererMemoryPool::getSingleton()));
  153. ANKI_CHECK(m_volumetricFog->init());
  154. m_lightShading.reset(newInstance<LightShading>(RendererMemoryPool::getSingleton()));
  155. ANKI_CHECK(m_lightShading->init());
  156. m_depthDownscale.reset(newInstance<DepthDownscale>(RendererMemoryPool::getSingleton()));
  157. ANKI_CHECK(m_depthDownscale->init());
  158. m_forwardShading.reset(newInstance<ForwardShading>(RendererMemoryPool::getSingleton()));
  159. ANKI_CHECK(m_forwardShading->init());
  160. m_lensFlare.reset(newInstance<LensFlare>(RendererMemoryPool::getSingleton()));
  161. ANKI_CHECK(m_lensFlare->init());
  162. m_downscaleBlur.reset(newInstance<DownscaleBlur>(RendererMemoryPool::getSingleton()));
  163. ANKI_CHECK(m_downscaleBlur->init());
  164. m_indirectSpecular.reset(newInstance<IndirectSpecular>(RendererMemoryPool::getSingleton()));
  165. ANKI_CHECK(m_indirectSpecular->init());
  166. m_tonemapping.reset(newInstance<Tonemapping>(RendererMemoryPool::getSingleton()));
  167. ANKI_CHECK(m_tonemapping->init());
  168. m_temporalAA.reset(newInstance<TemporalAA>(RendererMemoryPool::getSingleton()));
  169. ANKI_CHECK(m_temporalAA->init());
  170. m_bloom.reset(newInstance<Bloom>(RendererMemoryPool::getSingleton()));
  171. ANKI_CHECK(m_bloom->init());
  172. m_finalComposite.reset(newInstance<FinalComposite>(RendererMemoryPool::getSingleton()));
  173. ANKI_CHECK(m_finalComposite->init());
  174. m_dbg.reset(newInstance<Dbg>(RendererMemoryPool::getSingleton()));
  175. ANKI_CHECK(m_dbg->init());
  176. m_uiStage.reset(newInstance<UiStage>(RendererMemoryPool::getSingleton()));
  177. ANKI_CHECK(m_uiStage->init());
  178. m_indirectDiffuse.reset(newInstance<IndirectDiffuse>(RendererMemoryPool::getSingleton()));
  179. ANKI_CHECK(m_indirectDiffuse->init());
  180. if(GrManager::getSingleton().getDeviceCapabilities().m_rayTracingEnabled && ConfigSet::getSingleton().getSceneRayTracedShadows())
  181. {
  182. m_accelerationStructureBuilder.reset(newInstance<AccelerationStructureBuilder>(RendererMemoryPool::getSingleton()));
  183. ANKI_CHECK(m_accelerationStructureBuilder->init());
  184. m_rtShadows.reset(newInstance<RtShadows>(RendererMemoryPool::getSingleton()));
  185. ANKI_CHECK(m_rtShadows->init());
  186. }
  187. else
  188. {
  189. m_shadowmapsResolve.reset(newInstance<ShadowmapsResolve>(RendererMemoryPool::getSingleton()));
  190. ANKI_CHECK(m_shadowmapsResolve->init());
  191. }
  192. m_motionVectors.reset(newInstance<MotionVectors>(RendererMemoryPool::getSingleton()));
  193. ANKI_CHECK(m_motionVectors->init());
  194. m_clusterBinning.reset(newInstance<ClusterBinning>(RendererMemoryPool::getSingleton()));
  195. ANKI_CHECK(m_clusterBinning->init());
  196. m_packVisibleClustererObjects.reset(newInstance<PackVisibleClusteredObjects>(RendererMemoryPool::getSingleton()));
  197. ANKI_CHECK(m_packVisibleClustererObjects->init());
  198. m_hiZ.reset(newInstance<HiZ>(RendererMemoryPool::getSingleton()));
  199. ANKI_CHECK(m_hiZ->init());
  200. m_gpuVisibility.reset(newInstance<GpuVisibility>(RendererMemoryPool::getSingleton()));
  201. ANKI_CHECK(m_gpuVisibility->init());
  202. // Init samplers
  203. {
  204. SamplerInitInfo sinit("NearestNearestClamp");
  205. sinit.m_addressing = SamplingAddressing::kClamp;
  206. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  207. sinit.m_minMagFilter = SamplingFilter::kNearest;
  208. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  209. sinit.setName("TrilinearClamp");
  210. sinit.m_minMagFilter = SamplingFilter::kLinear;
  211. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  212. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  213. sinit.setName("TrilinearRepeat");
  214. sinit.m_addressing = SamplingAddressing::kRepeat;
  215. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  216. sinit.setName("TrilinearRepeatAniso");
  217. sinit.m_anisotropyLevel = ConfigSet::getSingleton().getRTextureAnisotropy();
  218. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  219. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  220. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  221. if(getScale().getUsingGrUpscaler())
  222. {
  223. // DLSS wants more bias
  224. scalingMipBias -= 1.0f;
  225. }
  226. sinit.m_lodBias = scalingMipBias;
  227. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  228. sinit = {};
  229. sinit.setName("TrilinearClampShadow");
  230. sinit.m_minMagFilter = SamplingFilter::kLinear;
  231. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  232. sinit.m_compareOperation = CompareOperation::kLessEqual;
  233. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  234. }
  235. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  236. {
  237. m_jitterOffsets[i] = generateJitter(i);
  238. }
  239. return Error::kNone;
  240. }
  241. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  242. {
  243. ctx.m_prevMatrices = m_prevMatrices;
  244. ctx.m_matrices.m_cameraTransform = ctx.m_renderQueue->m_cameraTransform;
  245. ctx.m_matrices.m_view = ctx.m_renderQueue->m_viewMatrix;
  246. ctx.m_matrices.m_projection = ctx.m_renderQueue->m_projectionMatrix;
  247. ctx.m_matrices.m_viewProjection = ctx.m_renderQueue->m_viewProjectionMatrix;
  248. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  249. const Vec2 ndcPixelSize = 2.0f / Vec2(m_internalResolution);
  250. jitter *= ndcPixelSize;
  251. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  252. ctx.m_matrices.m_jitter.setTranslationPart(Vec4(jitter, 0.0f, 1.0f));
  253. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  254. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  255. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.getInverse();
  256. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.getInverse();
  257. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.getInverse();
  258. ctx.m_matrices.m_reprojection = ctx.m_matrices.m_jitter * ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjectionJitter;
  259. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  260. // Check if resources got loaded
  261. if(m_prevLoadRequestCount != ResourceManager::getSingleton().getLoadingRequestCount()
  262. || m_prevAsyncTasksCompleted != ResourceManager::getSingleton().getAsyncTaskCompletedCount())
  263. {
  264. m_prevLoadRequestCount = ResourceManager::getSingleton().getLoadingRequestCount();
  265. m_prevAsyncTasksCompleted = ResourceManager::getSingleton().getAsyncTaskCompletedCount();
  266. m_resourcesDirty = true;
  267. }
  268. else
  269. {
  270. m_resourcesDirty = false;
  271. }
  272. // Import RTs first
  273. m_downscaleBlur->importRenderTargets(ctx);
  274. m_tonemapping->importRenderTargets(ctx);
  275. m_depthDownscale->importRenderTargets(ctx);
  276. m_vrsSriGeneration->importRenderTargets(ctx);
  277. m_gbuffer->importRenderTargets(ctx);
  278. // Populate render graph. WARNING Watch the order
  279. m_hiZ->populateRenderGraph(ctx);
  280. gpuSceneCopy(ctx);
  281. m_gpuVisibility->populateRenderGraph(ctx);
  282. m_packVisibleClustererObjects->populateRenderGraph(ctx);
  283. m_genericCompute->populateRenderGraph(ctx);
  284. m_clusterBinning->populateRenderGraph(ctx);
  285. if(m_accelerationStructureBuilder)
  286. {
  287. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  288. }
  289. m_gbuffer->populateRenderGraph(ctx);
  290. m_shadowMapping->populateRenderGraph(ctx);
  291. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  292. m_probeReflections->populateRenderGraph(ctx);
  293. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  294. m_motionVectors->populateRenderGraph(ctx);
  295. m_gbufferPost->populateRenderGraph(ctx);
  296. m_depthDownscale->populateRenderGraph(ctx);
  297. if(m_rtShadows)
  298. {
  299. m_rtShadows->populateRenderGraph(ctx);
  300. }
  301. else
  302. {
  303. m_shadowmapsResolve->populateRenderGraph(ctx);
  304. }
  305. m_volumetricFog->populateRenderGraph(ctx);
  306. m_lensFlare->populateRenderGraph(ctx);
  307. m_indirectSpecular->populateRenderGraph(ctx);
  308. m_indirectDiffuse->populateRenderGraph(ctx);
  309. m_lightShading->populateRenderGraph(ctx);
  310. if(!getScale().getUsingGrUpscaler())
  311. {
  312. m_temporalAA->populateRenderGraph(ctx);
  313. }
  314. m_vrsSriGeneration->populateRenderGraph(ctx);
  315. m_scale->populateRenderGraph(ctx);
  316. m_downscaleBlur->populateRenderGraph(ctx);
  317. m_tonemapping->populateRenderGraph(ctx);
  318. m_bloom->populateRenderGraph(ctx);
  319. m_dbg->populateRenderGraph(ctx);
  320. m_finalComposite->populateRenderGraph(ctx);
  321. // Populate the uniforms
  322. m_clusterBinning->writeClusterBuffersAsync();
  323. return Error::kNone;
  324. }
  325. void Renderer::finalize(const RenderingContext& ctx)
  326. {
  327. ++m_frameCount;
  328. m_prevMatrices = ctx.m_matrices;
  329. // Inform about the HiZ map. Do it as late as possible
  330. if(ctx.m_renderQueue->m_fillCoverageBufferCallback)
  331. {
  332. F32* depthValues;
  333. U32 width;
  334. U32 height;
  335. m_depthDownscale->getClientDepthMapInfo(depthValues, width, height);
  336. ctx.m_renderQueue->m_fillCoverageBufferCallback(ctx.m_renderQueue->m_fillCoverageBufferCallbackUserData, depthValues, width, height);
  337. }
  338. }
  339. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  340. {
  341. ANKI_ASSERT(!!(usage & TextureUsageBit::kFramebufferWrite) || !!(usage & TextureUsageBit::kImageComputeWrite));
  342. TextureInitInfo init(name);
  343. init.m_width = w;
  344. init.m_height = h;
  345. init.m_depth = 1;
  346. init.m_layerCount = 1;
  347. init.m_type = TextureType::k2D;
  348. init.m_format = format;
  349. init.m_mipmapCount = 1;
  350. init.m_samples = 1;
  351. init.m_usage = usage;
  352. return init;
  353. }
  354. RenderTargetDescription Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  355. {
  356. RenderTargetDescription init(name);
  357. init.m_width = w;
  358. init.m_height = h;
  359. init.m_depth = 1;
  360. init.m_layerCount = 1;
  361. init.m_type = TextureType::k2D;
  362. init.m_format = format;
  363. init.m_mipmapCount = 1;
  364. init.m_samples = 1;
  365. init.m_usage = TextureUsageBit::kNone;
  366. return init;
  367. }
  368. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  369. {
  370. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite) || !!(inf.m_usage & TextureUsageBit::kImageComputeWrite));
  371. const U faceCount = (inf.m_type == TextureType::kCube || inf.m_type == TextureType::kCubeArray) ? 6 : 1;
  372. Bool useCompute = false;
  373. if(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite))
  374. {
  375. useCompute = false;
  376. }
  377. else if(!!(inf.m_usage & TextureUsageBit::kImageComputeWrite))
  378. {
  379. useCompute = true;
  380. }
  381. else
  382. {
  383. ANKI_ASSERT(!"Can't handle that");
  384. }
  385. // Create tex
  386. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  387. // Clear all surfaces
  388. CommandBufferInitInfo cmdbinit;
  389. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  390. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  391. {
  392. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  393. }
  394. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  395. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  396. {
  397. for(U32 face = 0; face < faceCount; ++face)
  398. {
  399. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  400. {
  401. TextureSurfaceInfo surf(mip, 0, face, layer);
  402. if(!useCompute)
  403. {
  404. FramebufferInitInfo fbInit("RendererClearRT");
  405. Array<TextureUsageBit, kMaxColorRenderTargets> colUsage = {};
  406. TextureUsageBit dsUsage = TextureUsageBit::kNone;
  407. if(getFormatInfo(inf.m_format).isDepthStencil())
  408. {
  409. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  410. if(getFormatInfo(inf.m_format).isDepth())
  411. {
  412. aspect |= DepthStencilAspectBit::kDepth;
  413. }
  414. if(getFormatInfo(inf.m_format).isStencil())
  415. {
  416. aspect |= DepthStencilAspectBit::kStencil;
  417. }
  418. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf, aspect));
  419. fbInit.m_depthStencilAttachment.m_textureView = std::move(view);
  420. fbInit.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  421. fbInit.m_depthStencilAttachment.m_stencilLoadOperation = AttachmentLoadOperation::kClear;
  422. fbInit.m_depthStencilAttachment.m_clearValue = clearVal;
  423. dsUsage = TextureUsageBit::kFramebufferWrite;
  424. }
  425. else
  426. {
  427. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  428. fbInit.m_colorAttachmentCount = 1;
  429. fbInit.m_colorAttachments[0].m_textureView = view;
  430. fbInit.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  431. fbInit.m_colorAttachments[0].m_clearValue = clearVal;
  432. colUsage[0] = TextureUsageBit::kFramebufferWrite;
  433. }
  434. FramebufferPtr fb = GrManager::getSingleton().newFramebuffer(fbInit);
  435. TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, surf};
  436. barrier.m_subresource.m_depthStencilAspect = tex->getDepthStencilAspect();
  437. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  438. cmdb->beginRenderPass(fb.get(), colUsage, dsUsage);
  439. cmdb->endRenderPass();
  440. if(!!initialUsage)
  441. {
  442. barrier.m_previousUsage = TextureUsageBit::kFramebufferWrite;
  443. barrier.m_nextUsage = initialUsage;
  444. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  445. }
  446. }
  447. else
  448. {
  449. // Compute
  450. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  451. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  452. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  453. I32 componentType = 0;
  454. if(formatInfo.m_shaderType == 0)
  455. {
  456. componentType = 0;
  457. }
  458. else if(formatInfo.m_shaderType == 1)
  459. {
  460. componentType = 1;
  461. }
  462. else
  463. {
  464. ANKI_ASSERT(!"Not supported");
  465. }
  466. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  467. const ShaderProgramResourceVariant* variant;
  468. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  469. cmdb->bindShaderProgram(&variant->getProgram());
  470. cmdb->setPushConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  471. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  472. cmdb->bindImage(0, 0, view.get());
  473. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kImageComputeWrite, surf};
  474. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  475. UVec3 wgSize;
  476. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  477. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  478. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  479. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  480. if(!!initialUsage)
  481. {
  482. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kImageComputeWrite, initialUsage, surf};
  483. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  484. }
  485. }
  486. }
  487. }
  488. }
  489. cmdb->flush();
  490. return tex;
  491. }
  492. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  493. {
  494. #if ANKI_ENABLE_ASSERTIONS
  495. for(const DebugRtInfo& inf : m_debugRts)
  496. {
  497. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  498. }
  499. #endif
  500. ANKI_ASSERT(obj);
  501. DebugRtInfo inf;
  502. inf.m_obj = obj;
  503. inf.m_rtName = rtName;
  504. m_debugRts.emplaceBack(std::move(inf));
  505. }
  506. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  507. {
  508. if(m_currentDebugRtName.isEmpty()) [[likely]]
  509. {
  510. return false;
  511. }
  512. RendererObject* obj = nullptr;
  513. for(const DebugRtInfo& inf : m_debugRts)
  514. {
  515. if(inf.m_rtName == m_currentDebugRtName)
  516. {
  517. obj = inf.m_obj;
  518. }
  519. }
  520. ANKI_ASSERT(obj);
  521. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  522. return true;
  523. }
  524. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  525. {
  526. m_currentDebugRtName.destroy();
  527. if(!rtName.isEmpty() && rtName.getLength() > 0)
  528. {
  529. m_currentDebugRtName = rtName;
  530. }
  531. }
  532. Format Renderer::getHdrFormat() const
  533. {
  534. Format out;
  535. if(!ConfigSet::getSingleton().getRHighQualityHdr())
  536. {
  537. out = Format::kB10G11R11_Ufloat_Pack32;
  538. }
  539. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  540. {
  541. out = Format::kR16G16B16_Sfloat;
  542. }
  543. else
  544. {
  545. out = Format::kR16G16B16A16_Sfloat;
  546. }
  547. return out;
  548. }
  549. Format Renderer::getDepthNoStencilFormat() const
  550. {
  551. if(ANKI_PLATFORM_MOBILE)
  552. {
  553. return Format::kX8D24_Unorm_Pack32;
  554. }
  555. else
  556. {
  557. return Format::kD32_Sfloat;
  558. }
  559. }
  560. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  561. {
  562. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  563. m_runCtx.m_gpuSceneHandle =
  564. rgraph.importBuffer(&GpuSceneBuffer::getSingleton().getBuffer(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  565. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  566. {
  567. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("GPU scene patching");
  568. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kStorageComputeWrite);
  569. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  570. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer.get());
  571. });
  572. }
  573. }
  574. } // end namespace anki