ShadowMapping.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/ShadowMapping.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/GBuffer.h>
  8. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  9. #include <AnKi/Core/App.h>
  10. #include <AnKi/Core/StatsSet.h>
  11. #include <AnKi/Core/GpuMemory/GpuVisibleTransientMemoryPool.h>
  12. #include <AnKi/Util/Tracer.h>
  13. #include <AnKi/Scene/Components/LightComponent.h>
  14. #include <AnKi/Scene/Components/CameraComponent.h>
  15. #include <AnKi/Scene/RenderStateBucket.h>
  16. namespace anki {
  17. static NumericCVar<U32> g_shadowMappingTileResolutionCVar(CVarSubsystem::kRenderer, "ShadowMappingTileResolution", (ANKI_PLATFORM_MOBILE) ? 128 : 256,
  18. 16, 2048, "Shadowmapping tile resolution");
  19. static NumericCVar<U32> g_shadowMappingTileCountPerRowOrColumnCVar(CVarSubsystem::kRenderer, "ShadowMappingTileCountPerRowOrColumn", 32, 1, 256,
  20. "Shadowmapping atlas will have this number squared number of tiles");
  21. NumericCVar<U32> g_shadowMappingPcfCVar(CVarSubsystem::kRenderer, "ShadowMappingPcf", (ANKI_PLATFORM_MOBILE) ? 0 : 1, 0, 1,
  22. "Shadow PCF (CVarSubsystem::kRenderer, 0: off, 1: on)");
  23. static StatCounter g_tilesAllocatedStatVar(StatCategory::kRenderer, "Shadow tiles (re)allocated", StatFlag::kMainThreadUpdates);
  24. class LightHash
  25. {
  26. public:
  27. class Unpacked
  28. {
  29. public:
  30. U64 m_uuid : 31;
  31. U64 m_componentIndex : 30;
  32. U64 m_faceIdx : 3;
  33. };
  34. union
  35. {
  36. Unpacked m_unpacked;
  37. U64 m_packed;
  38. };
  39. };
  40. static U64 encodeTileHash(U32 lightUuid, U32 componentIndex, U32 faceIdx)
  41. {
  42. ANKI_ASSERT(faceIdx < 6);
  43. LightHash c;
  44. c.m_unpacked.m_uuid = lightUuid;
  45. c.m_unpacked.m_componentIndex = componentIndex;
  46. c.m_unpacked.m_faceIdx = faceIdx;
  47. return c.m_packed;
  48. }
  49. static LightHash decodeTileHash(U64 hash)
  50. {
  51. LightHash c;
  52. c.m_packed = hash;
  53. return c;
  54. }
  55. Error ShadowMapping::init()
  56. {
  57. const Error err = initInternal();
  58. if(err)
  59. {
  60. ANKI_R_LOGE("Failed to initialize shadowmapping");
  61. }
  62. return err;
  63. }
  64. Error ShadowMapping::initInternal()
  65. {
  66. // Init RT
  67. {
  68. m_tileResolution = g_shadowMappingTileResolutionCVar.get();
  69. m_tileCountBothAxis = g_shadowMappingTileCountPerRowOrColumnCVar.get();
  70. ANKI_R_LOGV("Initializing shadowmapping. Atlas resolution %ux%u", m_tileResolution * m_tileCountBothAxis,
  71. m_tileResolution * m_tileCountBothAxis);
  72. // RT
  73. const TextureUsageBit usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kSampledCompute | TextureUsageBit::kAllFramebuffer;
  74. TextureInitInfo texinit = getRenderer().create2DRenderTargetInitInfo(
  75. m_tileResolution * m_tileCountBothAxis, m_tileResolution * m_tileCountBothAxis, Format::kD16_Unorm, usage, "ShadowAtlas");
  76. ClearValue clearVal;
  77. clearVal.m_colorf[0] = 1.0f;
  78. m_atlasTex = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSampledFragment, clearVal);
  79. }
  80. // Tiles
  81. m_tileAlloc.init(m_tileCountBothAxis, m_tileCountBothAxis, kTileAllocHierarchyCount, true);
  82. m_loadFbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  83. m_loadFbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kLoad;
  84. m_loadFbDescr.bake();
  85. m_clearFbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  86. m_clearFbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  87. m_clearFbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  88. m_clearFbDescr.bake();
  89. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ShadowMappingClearDepth.ankiprogbin", m_clearDepthProg, m_clearDepthGrProg));
  90. ANKI_CHECK(loadShaderProgram("ShaderBinaries/ShadowMappingVetVisibility.ankiprogbin", m_vetVisibilityProg, m_vetVisibilityGrProg));
  91. for(U32 i = 0; i < kMaxShadowCascades; ++i)
  92. {
  93. RendererString name;
  94. name.sprintf("DirLight HZB #%d", i);
  95. const U32 cascadeResolution = (m_tileResolution * (1 << (kTileAllocHierarchyCount - 1))) >> chooseDirectionalLightShadowCascadeDetail(i);
  96. UVec2 size(min(cascadeResolution, 1024u));
  97. size /= 2;
  98. m_cascadeHzbRtDescrs[i] = getRenderer().create2DRenderTargetDescription(size.x(), size.y(), Format::kR32_Sfloat, name);
  99. m_cascadeHzbRtDescrs[i].m_mipmapCount = U8(computeMaxMipmapCount2d(m_cascadeHzbRtDescrs[i].m_width, m_cascadeHzbRtDescrs[i].m_height));
  100. m_cascadeHzbRtDescrs[i].bake();
  101. }
  102. return Error::kNone;
  103. }
  104. Mat4 ShadowMapping::createSpotLightTextureMatrix(const UVec4& viewport) const
  105. {
  106. const F32 atlasSize = F32(m_tileResolution * m_tileCountBothAxis);
  107. #if ANKI_COMPILER_GCC_COMPATIBLE
  108. # pragma GCC diagnostic push
  109. # pragma GCC diagnostic ignored "-Wpedantic" // Because GCC and clang throw an incorrect warning
  110. #endif
  111. const Vec2 uv(F32(viewport[0]) / atlasSize, F32(viewport[1]) / atlasSize);
  112. #if ANKI_COMPILER_GCC_COMPATIBLE
  113. # pragma GCC diagnostic pop
  114. #endif
  115. ANKI_ASSERT(uv >= Vec2(0.0f) && uv <= Vec2(1.0f));
  116. ANKI_ASSERT(viewport[2] == viewport[3]);
  117. const F32 sizeTextureSpace = F32(viewport[2]) / atlasSize;
  118. const Mat4 biasMat4(0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  119. return Mat4(sizeTextureSpace, 0.0f, 0.0f, uv.x(), 0.0f, sizeTextureSpace, 0.0f, uv.y(), 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f)
  120. * biasMat4;
  121. }
  122. void ShadowMapping::populateRenderGraph(RenderingContext& ctx)
  123. {
  124. ANKI_TRACE_SCOPED_EVENT(ShadowMapping);
  125. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  126. // Import
  127. if(m_rtImportedOnce) [[likely]]
  128. {
  129. m_runCtx.m_rt = rgraph.importRenderTarget(m_atlasTex.get());
  130. }
  131. else
  132. {
  133. m_runCtx.m_rt = rgraph.importRenderTarget(m_atlasTex.get(), TextureUsageBit::kSampledFragment);
  134. m_rtImportedOnce = true;
  135. }
  136. // First process the lights
  137. processLights(ctx);
  138. }
  139. void ShadowMapping::chooseDetail(const Vec3& cameraOrigin, const LightComponent& lightc, Vec2 lodDistances, U32& tileAllocatorHierarchy) const
  140. {
  141. if(lightc.getLightComponentType() == LightComponentType::kPoint)
  142. {
  143. const F32 distFromTheCamera = (cameraOrigin - lightc.getWorldPosition()).getLength() - lightc.getRadius();
  144. if(distFromTheCamera < lodDistances[0])
  145. {
  146. tileAllocatorHierarchy = kPointLightMaxTileAllocHierarchy;
  147. }
  148. else
  149. {
  150. tileAllocatorHierarchy = max(kPointLightMaxTileAllocHierarchy, 1u) - 1;
  151. }
  152. }
  153. else
  154. {
  155. ANKI_ASSERT(lightc.getLightComponentType() == LightComponentType::kSpot);
  156. // Get some data
  157. const Vec3 coneOrigin = lightc.getWorldPosition();
  158. const Vec3 coneDir = lightc.getDirection();
  159. const F32 coneAngle = lightc.getOuterAngle();
  160. // Compute the distance from the camera to the light cone
  161. const Vec3 V = cameraOrigin - coneOrigin;
  162. const F32 VlenSq = V.dot(V);
  163. const F32 V1len = V.dot(coneDir);
  164. const F32 distFromTheCamera = cos(coneAngle) * sqrt(VlenSq - V1len * V1len) - V1len * sin(coneAngle);
  165. if(distFromTheCamera < lodDistances[0])
  166. {
  167. tileAllocatorHierarchy = kSpotLightMaxTileAllocHierarchy;
  168. }
  169. else if(distFromTheCamera < lodDistances[1])
  170. {
  171. tileAllocatorHierarchy = max(kSpotLightMaxTileAllocHierarchy, 1u) - 1;
  172. }
  173. else
  174. {
  175. tileAllocatorHierarchy = max(kSpotLightMaxTileAllocHierarchy, 2u) - 2;
  176. }
  177. }
  178. }
  179. TileAllocatorResult2 ShadowMapping::allocateAtlasTiles(U32 lightUuid, U32 componentIndex, U32 faceCount, const U32* hierarchies,
  180. UVec4* atlasTileViewports)
  181. {
  182. ANKI_ASSERT(lightUuid > 0);
  183. ANKI_ASSERT(faceCount > 0);
  184. ANKI_ASSERT(hierarchies);
  185. TileAllocatorResult2 goodResult = TileAllocatorResult2::kAllocationSucceded | TileAllocatorResult2::kTileCached;
  186. for(U32 i = 0; i < faceCount; ++i)
  187. {
  188. TileAllocator::ArrayOfLightUuids kickedOutLights(&getRenderer().getFrameMemoryPool());
  189. Array<U32, 4> tileViewport;
  190. const TileAllocatorResult2 result = m_tileAlloc.allocate(
  191. GlobalFrameIndex::getSingleton().m_value, encodeTileHash(lightUuid, componentIndex, i), hierarchies[i], tileViewport, kickedOutLights);
  192. for(U64 kickedLightHash : kickedOutLights)
  193. {
  194. const LightHash hash = decodeTileHash(kickedLightHash);
  195. const Bool found = SceneGraph::getSingleton().getComponentArrays().getLights().indexExists(hash.m_unpacked.m_componentIndex);
  196. if(found)
  197. {
  198. LightComponent& lightc = SceneGraph::getSingleton().getComponentArrays().getLights()[hash.m_unpacked.m_componentIndex];
  199. if(lightc.getUuid() == hash.m_unpacked.m_uuid)
  200. {
  201. lightc.setShadowAtlasUvViewports({});
  202. }
  203. }
  204. }
  205. if(!!(result & TileAllocatorResult2::kAllocationFailed))
  206. {
  207. ANKI_R_LOGW("There is not enough space in the shadow atlas for more shadow maps. Increase the %s or decrease the scene's shadow casters",
  208. g_shadowMappingTileCountPerRowOrColumnCVar.getFullName().cstr());
  209. // Invalidate cache entries for what we already allocated
  210. for(U32 j = 0; j < i; ++j)
  211. {
  212. m_tileAlloc.invalidateCache(encodeTileHash(lightUuid, componentIndex, j));
  213. }
  214. return TileAllocatorResult2::kAllocationFailed;
  215. }
  216. if(!(result & TileAllocatorResult2::kTileCached))
  217. {
  218. g_tilesAllocatedStatVar.increment(1);
  219. }
  220. goodResult &= result;
  221. // Set viewport
  222. const UVec4 viewport = UVec4(tileViewport) * m_tileResolution;
  223. atlasTileViewports[i] = viewport;
  224. }
  225. return goodResult;
  226. }
  227. void ShadowMapping::processLights(RenderingContext& ctx)
  228. {
  229. // First allocate tiles for the dir light and then build passes for points and spot lights. Then passes for the dir light. The dir light has many
  230. // passes and it will push the other types of lights further into the future. So do those first.
  231. // Vars
  232. const Vec3 cameraOrigin = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  233. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  234. const CameraComponent& mainCam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  235. // Allocate tiles for the dir light first but don't build any passes
  236. const LightComponent* dirLight = SceneGraph::getSingleton().getDirectionalLight();
  237. if(dirLight && (!dirLight->getShadowEnabled() || !g_shadowCascadeCountCVar.get()))
  238. {
  239. dirLight = nullptr; // Skip dir light
  240. }
  241. Array<UVec4, kMaxShadowCascades> dirLightAtlasViewports;
  242. if(dirLight)
  243. {
  244. const U32 cascadeCount = g_shadowCascadeCountCVar.get();
  245. Array<U32, kMaxShadowCascades> hierarchies;
  246. for(U32 cascade = 0; cascade < cascadeCount; ++cascade)
  247. {
  248. // Change the quality per cascade
  249. hierarchies[cascade] = kTileAllocHierarchyCount - 1 - chooseDirectionalLightShadowCascadeDetail(cascade);
  250. }
  251. [[maybe_unused]] const TileAllocatorResult2 res = allocateAtlasTiles(kMaxU32, 0, cascadeCount, &hierarchies[0], &dirLightAtlasViewports[0]);
  252. ANKI_ASSERT(!!(res & TileAllocatorResult2::kAllocationSucceded) && "Dir light should never fail");
  253. }
  254. // Process the point lights first
  255. U32 lightIdx = 0;
  256. WeakArray<LightComponent*> lights = getRenderer().getPrimaryNonRenderableVisibility().getInterestingVisibleComponents().m_shadowLights;
  257. for(LightComponent* lightc : lights)
  258. {
  259. if(lightc->getLightComponentType() != LightComponentType::kPoint || !lightc->getShadowEnabled())
  260. {
  261. continue;
  262. }
  263. // Prepare data to allocate tiles and allocate
  264. U32 hierarchy;
  265. chooseDetail(cameraOrigin, *lightc, {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()}, hierarchy);
  266. Array<U32, 6> hierarchies;
  267. hierarchies.fill(hierarchy);
  268. Array<UVec4, 6> atlasViewports;
  269. const TileAllocatorResult2 result = allocateAtlasTiles(lightc->getUuid(), lightc->getArrayIndex(), 6, &hierarchies[0], &atlasViewports[0]);
  270. if(!!(result & TileAllocatorResult2::kAllocationSucceded))
  271. {
  272. // All good, update the light
  273. // Remove a few texels to avoid bilinear filtering bleeding
  274. F32 texelsBorder;
  275. if(g_shadowMappingPcfCVar.get())
  276. {
  277. texelsBorder = 2.0f; // 2 texels
  278. }
  279. else
  280. {
  281. texelsBorder = 0.5f; // Half texel
  282. }
  283. const F32 atlasResolution = F32(m_tileResolution * m_tileCountBothAxis);
  284. F32 superTileSize = F32(atlasViewports[0][2]); // Should be the same for all tiles and faces
  285. superTileSize -= texelsBorder * 2.0f; // Remove from both sides
  286. Array<Vec4, 6> uvViewports;
  287. for(U face = 0; face < 6; ++face)
  288. {
  289. // Add a half texel to the viewport's start to avoid bilinear filtering bleeding
  290. const Vec2 uvViewportXY = (Vec2(atlasViewports[face].xy()) + texelsBorder) / atlasResolution;
  291. uvViewports[face] = Vec4(uvViewportXY, Vec2(superTileSize / atlasResolution));
  292. }
  293. if(!(result & TileAllocatorResult2::kTileCached))
  294. {
  295. lightc->setShadowAtlasUvViewports(uvViewports);
  296. }
  297. // Vis testing
  298. const Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  299. DistanceGpuVisibilityInput visIn;
  300. visIn.m_passesName = generateTempPassName("Shadows point light", lightIdx);
  301. visIn.m_technique = RenderingTechnique::kDepth;
  302. visIn.m_lodReferencePoint = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  303. visIn.m_lodDistances = lodDistances;
  304. visIn.m_rgraph = &rgraph;
  305. visIn.m_pointOfTest = lightc->getWorldPosition();
  306. visIn.m_testRadius = lightc->getRadius();
  307. visIn.m_hashVisibles = true;
  308. GpuVisibilityOutput visOut;
  309. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  310. // Vet visibility
  311. const Bool renderAllways = !(result & TileAllocatorResult2::kTileCached);
  312. BufferOffsetRange clearTileIndirectArgs;
  313. if(!renderAllways)
  314. {
  315. clearTileIndirectArgs = createVetVisibilityPass(generateTempPassName("Shadows: Vet point light", lightIdx), *lightc, visOut, rgraph);
  316. }
  317. // Add additional visibility and draw passes
  318. for(U32 face = 0; face < 6; ++face)
  319. {
  320. Frustum frustum;
  321. frustum.init(FrustumType::kPerspective);
  322. frustum.setPerspective(kClusterObjectFrustumNearPlane, lightc->getRadius(), kPi / 2.0f, kPi / 2.0f);
  323. frustum.setWorldTransform(
  324. Transform(lightc->getWorldPosition().xyz0(), Frustum::getOmnidirectionalFrustumRotations()[face], Vec4(1.0f, 1.0f, 1.0f, 0.0f)));
  325. frustum.update();
  326. GpuMeshletVisibilityOutput meshletVisOut;
  327. if(getRenderer().runSoftwareMeshletRendering())
  328. {
  329. GpuMeshletVisibilityInput meshIn;
  330. meshIn.m_passesName = generateTempPassName("Shadows point light", lightIdx, "face", face);
  331. meshIn.m_technique = RenderingTechnique::kDepth;
  332. meshIn.m_viewProjectionMatrix = frustum.getViewProjectionMatrix();
  333. meshIn.m_cameraTransform = frustum.getViewMatrix().getInverseTransformation();
  334. meshIn.m_viewportSize = atlasViewports[face].zw();
  335. meshIn.m_rgraph = &rgraph;
  336. meshIn.fillBuffers(visOut);
  337. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, meshletVisOut);
  338. }
  339. createDrawShadowsPass(atlasViewports[face], frustum.getViewProjectionMatrix(), frustum.getViewMatrix(), visOut, meshletVisOut,
  340. clearTileIndirectArgs, {}, generateTempPassName("Shadows: Point light", lightIdx, "face", face), rgraph);
  341. }
  342. }
  343. else
  344. {
  345. // Can't be a caster from now on
  346. lightc->setShadowAtlasUvViewports({});
  347. }
  348. ++lightIdx;
  349. }
  350. // Process the spot lights 2nd
  351. lightIdx = 0;
  352. for(LightComponent* lightc : lights)
  353. {
  354. if(lightc->getLightComponentType() != LightComponentType::kSpot || !lightc->getShadowEnabled())
  355. {
  356. continue;
  357. }
  358. // Allocate tile
  359. U32 hierarchy;
  360. chooseDetail(cameraOrigin, *lightc, {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()}, hierarchy);
  361. UVec4 atlasViewport;
  362. const TileAllocatorResult2 result = allocateAtlasTiles(lightc->getUuid(), lightc->getArrayIndex(), 1, &hierarchy, &atlasViewport);
  363. if(!!(result & TileAllocatorResult2::kAllocationSucceded))
  364. {
  365. // All good, update the light
  366. if(!(result & TileAllocatorResult2::kTileCached))
  367. {
  368. const F32 atlasResolution = F32(m_tileResolution * m_tileCountBothAxis);
  369. const Vec4 uvViewport = Vec4(atlasViewport) / atlasResolution;
  370. lightc->setShadowAtlasUvViewports({&uvViewport, 1});
  371. }
  372. // Vis testing
  373. const Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  374. FrustumGpuVisibilityInput visIn;
  375. visIn.m_passesName = generateTempPassName("Shadows spot light", lightIdx);
  376. visIn.m_technique = RenderingTechnique::kDepth;
  377. visIn.m_lodReferencePoint = cameraOrigin;
  378. visIn.m_lodDistances = lodDistances;
  379. visIn.m_rgraph = &rgraph;
  380. visIn.m_viewProjectionMatrix = lightc->getSpotLightViewProjectionMatrix();
  381. visIn.m_hashVisibles = true;
  382. visIn.m_viewportSize = atlasViewport.zw();
  383. GpuVisibilityOutput visOut;
  384. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  385. // Vet visibility
  386. const Bool renderAllways = !(result & TileAllocatorResult2::kTileCached);
  387. BufferOffsetRange clearTileIndirectArgs;
  388. if(!renderAllways)
  389. {
  390. clearTileIndirectArgs = createVetVisibilityPass(generateTempPassName("Shadows: Vet spot light", lightIdx), *lightc, visOut, rgraph);
  391. }
  392. // Additional visibility
  393. GpuMeshletVisibilityOutput meshletVisOut;
  394. if(getRenderer().runSoftwareMeshletRendering())
  395. {
  396. GpuMeshletVisibilityInput meshIn;
  397. meshIn.m_passesName = generateTempPassName("Shadows spot light", lightIdx);
  398. meshIn.m_technique = RenderingTechnique::kDepth;
  399. meshIn.m_viewProjectionMatrix = lightc->getSpotLightViewProjectionMatrix();
  400. meshIn.m_cameraTransform = lightc->getSpotLightViewMatrix().getInverseTransformation();
  401. meshIn.m_viewportSize = atlasViewport.zw();
  402. meshIn.m_rgraph = &rgraph;
  403. meshIn.fillBuffers(visOut);
  404. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, meshletVisOut);
  405. }
  406. // Add draw pass
  407. createDrawShadowsPass(atlasViewport, lightc->getSpotLightViewProjectionMatrix(), lightc->getSpotLightViewMatrix(), visOut, meshletVisOut,
  408. clearTileIndirectArgs, {}, generateTempPassName("Shadows: Spot light", lightIdx), rgraph);
  409. }
  410. else
  411. {
  412. // Doesn't have renderables or the allocation failed, won't be a shadow caster
  413. lightc->setShadowAtlasUvViewports({});
  414. }
  415. }
  416. // Process the directional light last
  417. if(dirLight)
  418. {
  419. const U32 cascadeCount = g_shadowCascadeCountCVar.get();
  420. // Compute the view projection matrices
  421. Array<F32, kMaxShadowCascades> cascadeDistances;
  422. static_assert(kMaxShadowCascades == 4);
  423. cascadeDistances[0] = g_shadowCascade0DistanceCVar.get();
  424. cascadeDistances[1] = g_shadowCascade1DistanceCVar.get();
  425. cascadeDistances[2] = g_shadowCascade2DistanceCVar.get();
  426. cascadeDistances[3] = g_shadowCascade3DistanceCVar.get();
  427. Array<Mat4, kMaxShadowCascades> cascadeViewProjMats;
  428. Array<Mat3x4, kMaxShadowCascades> cascadeViewMats;
  429. Array<Mat4, kMaxShadowCascades> cascadeProjMats;
  430. dirLight->computeCascadeFrustums(mainCam.getFrustum(), {&cascadeDistances[0], cascadeCount}, {&cascadeProjMats[0], cascadeCount},
  431. {&cascadeViewMats[0], cascadeCount});
  432. for(U cascade = 0; cascade < cascadeCount; ++cascade)
  433. {
  434. cascadeViewProjMats[cascade] = cascadeProjMats[cascade] * Mat4(cascadeViewMats[cascade], Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  435. }
  436. // HZB generation
  437. HzbDirectionalLightInput hzbGenIn;
  438. hzbGenIn.m_cascadeCount = cascadeCount;
  439. hzbGenIn.m_depthBufferRt = getRenderer().getGBuffer().getDepthRt();
  440. hzbGenIn.m_depthBufferRtSize = getRenderer().getInternalResolution();
  441. hzbGenIn.m_cameraProjectionMatrix = ctx.m_matrices.m_projection;
  442. hzbGenIn.m_cameraInverseViewProjectionMatrix = ctx.m_matrices.m_invertedViewProjection;
  443. for(U cascade = 0; cascade < cascadeCount; ++cascade)
  444. {
  445. hzbGenIn.m_cascades[cascade].m_hzbRt = rgraph.newRenderTarget(m_cascadeHzbRtDescrs[cascade]);
  446. hzbGenIn.m_cascades[cascade].m_hzbRtSize = UVec2(m_cascadeHzbRtDescrs[cascade].m_width, m_cascadeHzbRtDescrs[cascade].m_height);
  447. hzbGenIn.m_cascades[cascade].m_viewMatrix = cascadeViewMats[cascade];
  448. hzbGenIn.m_cascades[cascade].m_projectionMatrix = cascadeProjMats[cascade];
  449. hzbGenIn.m_cascades[cascade].m_cascadeMaxDistance = cascadeDistances[cascade];
  450. }
  451. getRenderer().getHzbGenerator().populateRenderGraphDirectionalLight(hzbGenIn, rgraph);
  452. // Create passes per cascade
  453. for(U32 cascade = 0; cascade < cascadeCount; ++cascade)
  454. {
  455. // Vis testing
  456. const Array<F32, kMaxLodCount - 1> lodDistances = {g_lod0MaxDistanceCVar.get(), g_lod1MaxDistanceCVar.get()};
  457. FrustumGpuVisibilityInput visIn;
  458. visIn.m_passesName = generateTempPassName("Shadows: Dir light cascade", cascade);
  459. visIn.m_technique = RenderingTechnique::kDepth;
  460. visIn.m_viewProjectionMatrix = cascadeViewProjMats[cascade];
  461. visIn.m_lodReferencePoint = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  462. visIn.m_lodDistances = lodDistances;
  463. visIn.m_hzbRt = &hzbGenIn.m_cascades[cascade].m_hzbRt;
  464. visIn.m_rgraph = &rgraph;
  465. visIn.m_viewportSize = dirLightAtlasViewports[cascade].zw();
  466. GpuVisibilityOutput visOut;
  467. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  468. // Additional visibility
  469. GpuMeshletVisibilityOutput meshletVisOut;
  470. if(getRenderer().runSoftwareMeshletRendering())
  471. {
  472. GpuMeshletVisibilityInput meshIn;
  473. meshIn.m_passesName = generateTempPassName("Shadows: Dir light cascade", lightIdx);
  474. meshIn.m_technique = RenderingTechnique::kDepth;
  475. meshIn.m_viewProjectionMatrix = cascadeViewProjMats[cascade];
  476. meshIn.m_cameraTransform = cascadeViewMats[cascade].getInverseTransformation();
  477. meshIn.m_viewportSize = dirLightAtlasViewports[cascade].zw();
  478. meshIn.m_rgraph = &rgraph;
  479. meshIn.fillBuffers(visOut);
  480. getRenderer().getGpuVisibility().populateRenderGraph(meshIn, meshletVisOut);
  481. }
  482. // Draw
  483. createDrawShadowsPass(dirLightAtlasViewports[cascade], cascadeViewProjMats[cascade], cascadeViewMats[cascade], visOut, meshletVisOut, {},
  484. hzbGenIn.m_cascades[cascade].m_hzbRt, generateTempPassName("Shadows: Dir light cascade", cascade), rgraph);
  485. // Update the texture matrix to point to the correct region in the atlas
  486. ctx.m_dirLightTextureMatrices[cascade] = createSpotLightTextureMatrix(dirLightAtlasViewports[cascade]) * cascadeViewProjMats[cascade];
  487. }
  488. }
  489. }
  490. BufferOffsetRange ShadowMapping::createVetVisibilityPass(CString passName, const LightComponent& lightc, const GpuVisibilityOutput& visOut,
  491. RenderGraphDescription& rgraph) const
  492. {
  493. BufferOffsetRange clearTileIndirectArgs;
  494. clearTileIndirectArgs = GpuVisibleTransientMemoryPool::getSingleton().allocate(sizeof(DrawIndirectArgs));
  495. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass(passName);
  496. // The shader doesn't actually write to the handle but have it as a write dependency for the drawer to correctly wait for this pass
  497. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kUavComputeWrite);
  498. pass.setWork([this, &lightc, hashBuff = visOut.m_visiblesHashBuffer, mdiBuff = visOut.m_legacy.m_mdiDrawCountsBuffer, clearTileIndirectArgs,
  499. taskShadersIndirectArgs = visOut.m_mesh.m_taskShaderIndirectArgsBuffer](RenderPassWorkContext& rpass) {
  500. CommandBuffer& cmdb = *rpass.m_commandBuffer;
  501. cmdb.bindShaderProgram(m_vetVisibilityGrProg.get());
  502. const UVec4 lightIndex(lightc.getGpuSceneLightAllocation().getIndex());
  503. cmdb.setPushConstants(&lightIndex, sizeof(lightIndex));
  504. cmdb.bindUavBuffer(0, 0, hashBuff);
  505. cmdb.bindUavBuffer(0, 1, mdiBuff);
  506. cmdb.bindUavBuffer(0, 2, GpuSceneArrays::Light::getSingleton().getBufferOffsetRange());
  507. cmdb.bindUavBuffer(0, 3, GpuSceneArrays::LightVisibleRenderablesHash::getSingleton().getBufferOffsetRange());
  508. cmdb.bindUavBuffer(0, 4, clearTileIndirectArgs);
  509. cmdb.bindUavBuffer(0, 5, taskShadersIndirectArgs);
  510. ANKI_ASSERT(RenderStateBucketContainer::getSingleton().getBucketCount(RenderingTechnique::kDepth) <= 64 && "TODO");
  511. cmdb.dispatchCompute(1, 1, 1);
  512. });
  513. return clearTileIndirectArgs;
  514. }
  515. void ShadowMapping::createDrawShadowsPass(const UVec4& viewport, const Mat4& viewProjMat, const Mat3x4& viewMat, const GpuVisibilityOutput& visOut,
  516. const GpuMeshletVisibilityOutput& meshletVisOut, const BufferOffsetRange& clearTileIndirectArgs,
  517. const RenderTargetHandle hzbRt, CString passName, RenderGraphDescription& rgraph)
  518. {
  519. const Bool loadFb = (clearTileIndirectArgs.m_buffer != nullptr);
  520. // Create the pass
  521. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass(passName);
  522. pass.setFramebufferInfo((loadFb) ? m_loadFbDescr : m_clearFbDescr, {}, m_runCtx.m_rt, {}, viewport[0], viewport[1], viewport[2], viewport[3]);
  523. pass.newBufferDependency((meshletVisOut.isFilled()) ? meshletVisOut.m_dependency : visOut.m_dependency, BufferUsageBit::kIndirectDraw);
  524. pass.newTextureDependency(m_runCtx.m_rt, TextureUsageBit::kFramebufferWrite, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  525. pass.setWork(1, [this, visOut, meshletVisOut, viewport, clearTileIndirectArgs, viewMat, viewProjMat, hzbRt](RenderPassWorkContext& rgraphCtx) {
  526. ANKI_TRACE_SCOPED_EVENT(ShadowMapping);
  527. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  528. cmdb.setViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
  529. if(clearTileIndirectArgs.m_buffer)
  530. {
  531. // Clear the depth buffer using a quad because it needs to be conditional
  532. cmdb.bindShaderProgram(m_clearDepthGrProg.get());
  533. cmdb.setDepthCompareOperation(CompareOperation::kAlways);
  534. cmdb.drawIndirect(PrimitiveTopology::kTriangles, 1, clearTileIndirectArgs.m_offset, clearTileIndirectArgs.m_buffer);
  535. cmdb.setDepthCompareOperation(CompareOperation::kLess);
  536. }
  537. // Set state
  538. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  539. RenderableDrawerArguments args;
  540. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  541. args.m_viewMatrix = viewMat;
  542. args.m_cameraTransform = viewMat.getInverseTransformation();
  543. args.m_viewProjectionMatrix = viewProjMat;
  544. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  545. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  546. args.m_viewport = UVec4(viewport[0], viewport[1], viewport[2], viewport[3]);
  547. args.fill(visOut);
  548. TextureViewPtr hzbView;
  549. if(hzbRt.isValid())
  550. {
  551. hzbView = rgraphCtx.createTextureView(hzbRt);
  552. args.m_hzbTexture = hzbView.get();
  553. }
  554. if(meshletVisOut.isFilled())
  555. {
  556. args.fill(meshletVisOut);
  557. }
  558. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  559. });
  560. }
  561. } // end namespace anki