generate.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. from __future__ import print_function
  2. import numpy as np
  3. class Obj:
  4. def __init__(self, fn):
  5. self.ind_v = 0
  6. self.ind_vt = 0
  7. self.ind_vn = 0
  8. self.fn = fn
  9. self.out = open(fn + ".tmp", "w")
  10. self.out.write("mtllib dinnerware.mtl\n")
  11. def __del__(self):
  12. self.out.close()
  13. import shutil
  14. shutil.move(self.fn + ".tmp", self.fn)
  15. def push_v(self, v):
  16. self.out.write("v %f %f %f\n" % (v[0],v[1],v[2]))
  17. self.ind_v += 1
  18. return self.ind_v
  19. def push_vt(self, vt):
  20. self.out.write("vt %f %f\n" % (vt[0],vt[1]))
  21. self.ind_vt += 1
  22. return self.ind_vt
  23. def push_vn(self, vn):
  24. vn /= np.linalg.norm(vn)
  25. self.out.write("vn %f %f %f\n" % (vn[0],vn[1],vn[2]))
  26. self.ind_vn += 1
  27. return self.ind_vn
  28. def convex_hull(points, vind, nind, tind, obj):
  29. "super ineffective"
  30. cnt = len(points)
  31. for a in range(cnt):
  32. for b in range(a+1,cnt):
  33. for c in range(b+1,cnt):
  34. vec1 = points[a] - points[b]
  35. vec2 = points[a] - points[c]
  36. n = np.cross(vec1, vec2)
  37. n /= np.linalg.norm(n)
  38. C = np.dot(n, points[a])
  39. inner = np.inner(n, points)
  40. pos = (inner <= C+0.0001).all()
  41. neg = (inner >= C-0.0001).all()
  42. if not pos and not neg: continue
  43. obj.out.write("f %i//%i %i//%i %i//%i\n" % (
  44. (vind[a], nind[a], vind[b], nind[b], vind[c], nind[c])
  45. if (inner - C).sum() < 0 else
  46. (vind[a], nind[a], vind[c], nind[c], vind[b], nind[b]) ) )
  47. #obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
  48. # (vind[a], tind[a], nind[a], vind[b], tind[b], nind[b], vind[c], tind[c], nind[c])
  49. # if (inner - C).sum() < 0 else
  50. # (vind[a], tind[a], nind[a], vind[c], tind[c], nind[c], vind[b], tind[b], nind[b]) ) )
  51. def test_convex_hull():
  52. obj = Obj("convex_test.obj")
  53. vlist = np.random.uniform( low=-0.1, high=+0.1, size=(100,3) )
  54. nlist = vlist.copy()
  55. tlist = np.random.uniform( low=0, high=+1, size=(100,2) )
  56. vind = [obj.push_v(xyz) for xyz in vlist]
  57. nind = [obj.push_vn(xyz) for xyz in nlist]
  58. tind = [obj.push_vt(uv) for uv in tlist]
  59. convex_hull(vlist, vind, nind, tind, obj)
  60. class Contour:
  61. def __init__(self):
  62. self.vprev_vind = None
  63. def f(self, obj, vlist_vind, vlist_tind, vlist_nind):
  64. cnt = len(vlist_vind)
  65. for i1 in range(cnt):
  66. i2 = i1-1
  67. obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
  68. vlist_vind[i2], vlist_tind[i2], vlist_nind[i2],
  69. vlist_vind[i1], vlist_tind[i1], vlist_nind[i1],
  70. self.vprev_vind[i1], self.vprev_tind[i1], self.vprev_nind[i1],
  71. ) )
  72. obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
  73. vlist_vind[i2], vlist_tind[i2], vlist_nind[i2],
  74. self.vprev_vind[i1], self.vprev_tind[i1], self.vprev_nind[i1],
  75. self.vprev_vind[i2], self.vprev_tind[i2], self.vprev_nind[i2],
  76. ) )
  77. def belt(self, obj, vlist, nlist, tlist):
  78. vlist_vind = [obj.push_v(xyz) for xyz in vlist]
  79. vlist_tind = [obj.push_vt(xyz) for xyz in tlist]
  80. vlist_nind = [obj.push_vn(xyz) for xyz in nlist]
  81. if self.vprev_vind:
  82. self.f(obj, vlist_vind, vlist_tind, vlist_nind)
  83. else:
  84. self.first_vind = vlist_vind
  85. self.first_tind = vlist_tind
  86. self.first_nind = vlist_nind
  87. self.vprev_vind = vlist_vind
  88. self.vprev_tind = vlist_tind
  89. self.vprev_nind = vlist_nind
  90. def finish(self, obj):
  91. self.f(obj, self.first_vind, self.first_tind, self.first_nind)
  92. def test_contour():
  93. RAD1 = 2.0
  94. RAD2 = 1.5
  95. obj = Obj("torus.obj")
  96. obj.out.write("usemtl porcelain\n")
  97. contour = Contour()
  98. for step in range(100):
  99. angle = step/100.0*2*np.pi
  100. belt_v = []
  101. belt_n = []
  102. belt_t = []
  103. for b in range(50):
  104. beta = b/50.0*2*np.pi
  105. r = RAD2*np.cos(beta) + RAD1
  106. z = RAD2*np.sin(beta)
  107. belt_v.append( np.array( [
  108. np.cos(angle)*r,
  109. np.sin(angle)*r,
  110. z] ) )
  111. belt_n.append( np.array( [
  112. np.cos(angle)*np.cos(beta),
  113. np.sin(angle)*np.cos(beta),
  114. np.sin(beta)] ) )
  115. belt_t.append( (0,0) )
  116. contour.belt(obj, belt_v, belt_n, belt_t)
  117. contour.finish(obj)
  118. #test_convex_hull()
  119. #test_contour()
  120. class RotationFigureParams:
  121. pass
  122. def generate_plate(p, obj, collision_prefix):
  123. contour = Contour()
  124. belt_vlist_3d_prev = None
  125. for step in range(p.N_VIZ+1):
  126. angle = step/float(p.N_VIZ)*2*np.pi
  127. if step % p.COLLISION_EVERY == 0:
  128. vlist_3d = []
  129. for x,y in p.belt_simple:
  130. vlist_3d.append( [
  131. np.cos(angle)*x*1.06,
  132. np.sin(angle)*x*1.06,
  133. y
  134. ] )
  135. if belt_vlist_3d_prev:
  136. obj2 = Obj(collision_prefix % (step / p.COLLISION_EVERY))
  137. obj2.out.write("usemtl pan_tefal\n")
  138. vlist = np.array( vlist_3d + belt_vlist_3d_prev )
  139. vlist[len(vlist_3d):] *= 1.01 # break points on one plane
  140. vlist[0,0:2] += 0.01*vlist[len(vlist_3d),0:2]
  141. vlist[len(vlist_3d),0:2] += 0.01*vlist[0,0:2]
  142. nlist = np.random.uniform( low=-1, high=+1, size=vlist.shape )
  143. tlist = np.random.uniform( low=0, high=+1, size=(len(vlist),2) )
  144. vind = [obj2.push_v(xyz) for xyz in vlist]
  145. nind = [obj2.push_vn(xyz) for xyz in nlist]
  146. convex_hull(vlist, vind, nind, None, obj2)
  147. belt_vlist_3d_prev = vlist_3d
  148. if step==p.N_VIZ: break
  149. belt_v = []
  150. belt_n = []
  151. belt_t = []
  152. for x,y,nx,ny in p.belt:
  153. belt_v.append( np.array( [
  154. np.cos(angle)*x,
  155. np.sin(angle)*x,
  156. y
  157. ] ) )
  158. belt_n.append( np.array( [
  159. np.cos(angle)*nx,
  160. np.sin(angle)*nx,
  161. ny
  162. ] ) )
  163. if ny-nx >= 0:
  164. belt_t.append( (
  165. 127.0/512 + np.cos(angle)*x/p.RAD_HIGH*105/512,
  166. (512-135.0)/512 + np.sin(angle)*x/p.RAD_HIGH*105/512) )
  167. else:
  168. belt_t.append( (
  169. 382.0/512 + np.cos(angle)*x/p.RAD_HIGH*125/512,
  170. (512-380.0)/512 + np.sin(angle)*x/p.RAD_HIGH*125/512) )
  171. contour.belt(obj, belt_v, belt_n, belt_t)
  172. contour.finish(obj)
  173. def tefal():
  174. p = RotationFigureParams()
  175. p.RAD_LOW = 0.240/2
  176. p.RAD_HIGH = 0.255/2
  177. p.H = 0.075
  178. p.THICK = 0.005
  179. p.N_VIZ = 30
  180. p.COLLISION_EVERY = 5
  181. p.belt = [
  182. (p.RAD_HIGH-p.THICK, p.H, -1,0), # x y norm
  183. (p.RAD_HIGH , p.H, 0,1),
  184. (p.RAD_HIGH+p.THICK, p.H, +1,0),
  185. (p.RAD_LOW+p.THICK, p.THICK, +1,0),
  186. (p.RAD_LOW , 0, 0,-1),
  187. ( 0, 0, 0,-1),
  188. ( 0, p.THICK, 0,1),
  189. (p.RAD_LOW-p.THICK, p.THICK, 0,1),
  190. (p.RAD_LOW-p.THICK, 3*p.THICK,-1,0),
  191. ]
  192. p.belt.reverse()
  193. p.belt_simple = [
  194. (p.RAD_HIGH-p.THICK, p.H),
  195. (p.RAD_HIGH+p.THICK, p.H),
  196. (p.RAD_LOW , 0),
  197. (p.RAD_LOW-p.THICK , 0)
  198. ]
  199. obj = Obj("pan_tefal.obj")
  200. obj.out.write("usemtl pan_tefal\n")
  201. generate_plate(p, obj, "pan_tefal-collision%02i.obj")
  202. def plate():
  203. p = RotationFigureParams()
  204. p.RAD_LOW = 0.110/2
  205. p.RAD_HIGH = 0.190/2
  206. p.H = 0.060
  207. p.THICK = 0.003
  208. p.N_VIZ = 30
  209. p.COLLISION_EVERY = 5
  210. p.belt = [
  211. (p.RAD_HIGH-p.THICK, p.H, -0.9,0.5), # x y norm
  212. (p.RAD_HIGH , p.H, 0,1),
  213. (p.RAD_HIGH+p.THICK, p.H, +1,0),
  214. (p.RAD_LOW+p.THICK, p.THICK, +1,0),
  215. (p.RAD_LOW , 0, 0,-1),
  216. ( 0, 0, 0,-1),
  217. ( 0, p.THICK, 0,1),
  218. (p.RAD_LOW-3*p.THICK, p.THICK, 0,1),
  219. (p.RAD_LOW-p.THICK, 3*p.THICK,-0.5,1.0),
  220. ]
  221. p.belt.reverse()
  222. p.belt_simple = [
  223. (p.RAD_HIGH-p.THICK, p.H),
  224. (p.RAD_HIGH+p.THICK, p.H),
  225. (p.RAD_LOW , 0),
  226. (p.RAD_LOW-p.THICK , 0)
  227. ]
  228. obj = Obj("plate.obj")
  229. obj.out.write("usemtl solid_color\n")
  230. generate_plate(p, obj, "plate-collision%02i.obj")
  231. plate()