| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 |
- // Copyright (C) 2009-2019, Panagiotis Christopoulos Charitos and contributors.
- // All rights reserved.
- // Code licensed under the BSD License.
- // http://www.anki3d.org/LICENSE
- #include <anki/scene/components/LightComponent.h>
- #include <anki/scene/components/FrustumComponent.h>
- #include <anki/scene/SceneNode.h>
- #include <anki/scene/SceneGraph.h>
- #include <anki/scene/Octree.h>
- #include <anki/Collision.h>
- #include <shaders/glsl_cpp_common/ClusteredShading.h>
- namespace anki
- {
- LightComponent::LightComponent(LightComponentType type, U64 uuid)
- : SceneComponent(CLASS_TYPE)
- , m_uuid(uuid)
- , m_type(type)
- {
- ANKI_ASSERT(m_uuid > 0);
- switch(type)
- {
- case LightComponentType::POINT:
- m_point.m_radius = 1.0f;
- break;
- case LightComponentType::SPOT:
- setInnerAngle(toRad(45.0));
- setOuterAngle(toRad(30.0));
- m_spot.m_distance = 1.0f;
- m_spot.m_textureMat = Mat4::getIdentity();
- break;
- case LightComponentType::DIRECTIONAL:
- m_dir.m_sceneMax = Vec3(MIN_F32);
- m_dir.m_sceneMin = Vec3(MAX_F32);
- break;
- default:
- ANKI_ASSERT(0);
- }
- }
- Error LightComponent::update(SceneNode& node, Second prevTime, Second crntTime, Bool& updated)
- {
- updated = false;
- if(m_flags.get(DIRTY))
- {
- updated = true;
- }
- if(m_flags.get(TRF_DIRTY))
- {
- updated = true;
- if(m_type == LightComponentType::SPOT)
- {
- static const Mat4 biasMat4(0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0);
- Mat4 proj = Mat4::calculatePerspectiveProjectionMatrix(
- m_spot.m_outerAngle, m_spot.m_outerAngle, LIGHT_FRUSTUM_NEAR_PLANE, m_spot.m_distance);
- m_spot.m_textureMat = biasMat4 * proj * Mat4(m_trf.getInverse());
- }
- }
- m_flags.unset(DIRTY | TRF_DIRTY);
- // Update the scene bounds always
- if(m_type == LightComponentType::DIRECTIONAL)
- {
- node.getSceneGraph().getOctree().getActualSceneBounds(m_dir.m_sceneMin, m_dir.m_sceneMax);
- }
- return Error::NONE;
- }
- void LightComponent::setupDirectionalLightQueueElement(const FrustumComponent& frustumComp,
- DirectionalLightQueueElement& el,
- WeakArray<FrustumComponent> cascadeFrustumComponents) const
- {
- ANKI_ASSERT(m_type == LightComponentType::DIRECTIONAL);
- ANKI_ASSERT(cascadeFrustumComponents.getSize() <= MAX_SHADOW_CASCADES);
- const U shadowCascadeCount = cascadeFrustumComponents.getSize();
- el.m_drawCallback = m_drawCallback;
- el.m_drawCallbackUserData = m_drawCallbackUserData;
- el.m_uuid = m_uuid;
- el.m_diffuseColor = m_diffColor.xyz();
- el.m_direction = -m_trf.getRotation().getZAxis().xyz();
- el.m_shadowCascadeCount = shadowCascadeCount;
- // Compute the texture matrices
- if(shadowCascadeCount == 0)
- {
- return;
- }
- const Mat4 lightTrf(m_trf);
- if(frustumComp.getFrustumType() == FrustumType::PERSPECTIVE)
- {
- // Get some stuff
- const F32 fovX = frustumComp.getFovX();
- const F32 fovY = frustumComp.getFovY();
- const F32 far = frustumComp.getEffectiveShadowDistance();
- // Compute a sphere per cascade
- Array<Sphere, MAX_SHADOW_CASCADES> boundingSpheres;
- for(U i = 0; i < shadowCascadeCount; ++i)
- {
- const F32 cascadeFarNearDist = far / F32(shadowCascadeCount);
- // Compute the center of the sphere
- // ^ z
- // |
- // ----------|---------- A(a, -f)
- // \ | /
- // \ | /
- // \ C(0,z) /
- // \ | /
- // \ | /
- // \---|---/ B(b, -n)
- // \ | /
- // \ | /
- // v
- // --------------------------> x
- // |
- // The square distance of A-C is equal to B-C. Solve the equation to find the z.
- const F32 f = F32(i + 1) * cascadeFarNearDist; // Cascade far
- const F32 n = max(frustumComp.getNear(), F32(i) * cascadeFarNearDist); // Cascade near
- const F32 a = f * tan(fovY / 2.0f) * fovX / fovY;
- const F32 b = n * tan(fovY / 2.0f) * fovX / fovY;
- const F32 z = (b * b + n * n - a * a - f * f) / (2.0f * (f - n));
- ANKI_ASSERT(absolute((Vec2(a, -f) - Vec2(0, z)).getLength() - (Vec2(b, -n) - Vec2(0, z)).getLength())
- <= EPSILON * 100.0f);
- Vec3 C(0.0f, 0.0f, z); // Sphere center
- // Compute the radius of the sphere
- const Vec3 A(a, tan(fovY / 2.0f) * f, -f);
- const F32 r = (A - C).getLength();
- // Set the sphere
- boundingSpheres[i].setRadius(r);
- boundingSpheres[i].setCenter(frustumComp.getTransform().transform(C));
- }
- // Compute the matrices
- for(U i = 0; i < shadowCascadeCount; ++i)
- {
- const Sphere& sphere = boundingSpheres[i];
- const Vec3 sphereCenter = sphere.getCenter().xyz();
- const F32 sphereRadius = sphere.getRadius();
- const Vec3& lightDir = el.m_direction;
- const Vec3 sceneMin = m_dir.m_sceneMin - Vec3(sphereRadius); // Push the bounds a bit
- const Vec3 sceneMax = m_dir.m_sceneMax + Vec3(sphereRadius);
- // Compute the intersections with the scene bounds
- Vec3 eye;
- if(sphereCenter > sceneMin && sphereCenter < sceneMax)
- {
- // Inside the scene bounds
- const Aabb sceneBox(sceneMin, sceneMax);
- const F32 t = testCollisionInside(sceneBox, Ray(sphereCenter, -lightDir));
- eye = sphereCenter + t * (-lightDir);
- }
- else
- {
- eye = sphereCenter + sphereRadius * (-lightDir);
- }
- // Projection
- const F32 far = (eye - sphereCenter).getLength() + sphereRadius;
- Mat4 cascadeProjMat = Mat4::calculateOrthographicProjectionMatrix(
- sphereRadius, -sphereRadius, sphereRadius, -sphereRadius, LIGHT_FRUSTUM_NEAR_PLANE, far);
- // View
- Transform cascadeTransform = m_trf;
- cascadeTransform.setOrigin(eye.xyz0());
- const Mat4 cascadeViewMat = Mat4(cascadeTransform.getInverse());
- // Now it's time to stabilize the shadows by aligning the projection matrix
- {
- // Project a random fixed point to the light matrix
- const Vec4 randomPointAlmostLightSpace = (cascadeProjMat * cascadeViewMat) * Vec3(0.0f).xyz1();
- // Chose a random low shadowmap size and align the random point
- const F32 shadowmapSize = 128.0f;
- const F32 shadowmapSize2 = shadowmapSize / 2.0f; // Div with 2 because the projected point is in NDC
- const F32 alignedX = round(randomPointAlmostLightSpace.x() * shadowmapSize2) / shadowmapSize2;
- const F32 alignedY = round(randomPointAlmostLightSpace.y() * shadowmapSize2) / shadowmapSize2;
- const F32 dx = alignedX - randomPointAlmostLightSpace.x();
- const F32 dy = alignedY - randomPointAlmostLightSpace.y();
- // Fix the projection matrix by applying an offset
- Mat4 correctionTranslationMat = Mat4::getIdentity();
- correctionTranslationMat.setTranslationPart(Vec4(dx, dy, 0, 1.0f));
- cascadeProjMat = correctionTranslationMat * cascadeProjMat;
- }
- // Light matrix
- static const Mat4 biasMat4(
- 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
- el.m_textureMatrices[i] = biasMat4 * cascadeProjMat * cascadeViewMat;
- // Fill the frustum with the fixed projection parameters from the fixed projection matrix
- Plane plane;
- extractClipPlane(cascadeProjMat, FrustumPlaneType::LEFT, plane);
- const F32 left = plane.getOffset();
- extractClipPlane(cascadeProjMat, FrustumPlaneType::RIGHT, plane);
- const F32 right = -plane.getOffset();
- extractClipPlane(cascadeProjMat, FrustumPlaneType::TOP, plane);
- const F32 top = -plane.getOffset();
- extractClipPlane(cascadeProjMat, FrustumPlaneType::BOTTOM, plane);
- const F32 bottom = plane.getOffset();
- FrustumComponent& cascadeFrustumComp = cascadeFrustumComponents[i];
- cascadeFrustumComp.setOrthographic(LIGHT_FRUSTUM_NEAR_PLANE, far, right, left, top, bottom);
- cascadeFrustumComp.setTransform(cascadeTransform);
- }
- }
- else
- {
- ANKI_ASSERT(!"TODO");
- }
- }
- } // end namespace anki
|