IndirectDiffuseProbes.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/RenderQueue.h>
  8. #include <AnKi/Core/CVarSet.h>
  9. #include <AnKi/Util/Tracer.h>
  10. #include <AnKi/Collision/Aabb.h>
  11. #include <AnKi/Collision/Functions.h>
  12. namespace anki {
  13. static NumericCVar<U32> g_indirectDiffuseProbeTileResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeTileResolution",
  14. (ANKI_PLATFORM_MOBILE) ? 16 : 32, 8, 32, "GI tile resolution");
  15. static NumericCVar<U32> g_indirectDiffuseProbeShadowMapResolutionCVar(CVarSubsystem::kRenderer, "IndirectDiffuseProbeShadowMapResolution", 128, 4,
  16. 2048, "GI shadowmap resolution");
  17. class IndirectDiffuseProbes::InternalContext
  18. {
  19. public:
  20. IndirectDiffuseProbes* m_gi = nullptr;
  21. RenderingContext* m_ctx = nullptr;
  22. GlobalIlluminationProbeQueueElementForRefresh* m_probeToUpdateThisFrame = nullptr;
  23. Array<RenderTargetHandle, kGBufferColorRenderTargetCount> m_gbufferColorRts;
  24. RenderTargetHandle m_gbufferDepthRt;
  25. RenderTargetHandle m_shadowsRt;
  26. RenderTargetHandle m_lightShadingRt;
  27. RenderTargetHandle m_irradianceVolume;
  28. Array<GpuVisibilityOutput, 6> m_gbufferVisOut;
  29. Array<GpuVisibilityOutput, 6> m_shadowsVisOut;
  30. static void foo()
  31. {
  32. static_assert(std::is_trivially_destructible<InternalContext>::value, "See file");
  33. }
  34. };
  35. RenderTargetHandle IndirectDiffuseProbes::getCurrentlyRefreshedVolumeRt() const
  36. {
  37. ANKI_ASSERT(m_giCtx && m_giCtx->m_irradianceVolume.isValid());
  38. return m_giCtx->m_irradianceVolume;
  39. }
  40. Bool IndirectDiffuseProbes::hasCurrentlyRefreshedVolumeRt() const
  41. {
  42. return m_giCtx != nullptr;
  43. }
  44. Error IndirectDiffuseProbes::init()
  45. {
  46. const Error err = initInternal();
  47. if(err)
  48. {
  49. ANKI_R_LOGE("Failed to initialize global illumination");
  50. }
  51. return err;
  52. }
  53. Error IndirectDiffuseProbes::initInternal()
  54. {
  55. m_tileSize = g_indirectDiffuseProbeTileResolutionCVar.get();
  56. ANKI_CHECK(initGBuffer());
  57. ANKI_CHECK(initLightShading());
  58. ANKI_CHECK(initShadowMapping());
  59. ANKI_CHECK(initIrradiance());
  60. return Error::kNone;
  61. }
  62. Error IndirectDiffuseProbes::initGBuffer()
  63. {
  64. // Create RT descriptions
  65. {
  66. RenderTargetDescription texinit =
  67. getRenderer().create2DRenderTargetDescription(m_tileSize * 6, m_tileSize, kGBufferColorRenderTargetFormats[0], "GI GBuffer");
  68. // Create color RT descriptions
  69. for(U32 i = 0; i < kGBufferColorRenderTargetCount; ++i)
  70. {
  71. texinit.m_format = kGBufferColorRenderTargetFormats[i];
  72. m_gbuffer.m_colorRtDescrs[i] = texinit;
  73. m_gbuffer.m_colorRtDescrs[i].setName(RendererString().sprintf("GI GBuff Col #%u", i).toCString());
  74. m_gbuffer.m_colorRtDescrs[i].bake();
  75. }
  76. // Create depth RT
  77. texinit.m_format = getRenderer().getDepthNoStencilFormat();
  78. texinit.setName("GI GBuff Depth");
  79. m_gbuffer.m_depthRtDescr = texinit;
  80. m_gbuffer.m_depthRtDescr.bake();
  81. }
  82. // Create FB descr
  83. {
  84. m_gbuffer.m_fbDescr.m_colorAttachmentCount = kGBufferColorRenderTargetCount;
  85. for(U j = 0; j < kGBufferColorRenderTargetCount; ++j)
  86. {
  87. m_gbuffer.m_fbDescr.m_colorAttachments[j].m_loadOperation = AttachmentLoadOperation::kClear;
  88. }
  89. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  90. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  91. m_gbuffer.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  92. m_gbuffer.m_fbDescr.bake();
  93. }
  94. return Error::kNone;
  95. }
  96. Error IndirectDiffuseProbes::initShadowMapping()
  97. {
  98. const U32 resolution = g_indirectDiffuseProbeShadowMapResolutionCVar.get();
  99. ANKI_ASSERT(resolution > 8);
  100. // RT descr
  101. m_shadowMapping.m_rtDescr =
  102. getRenderer().create2DRenderTargetDescription(resolution * 6, resolution, getRenderer().getDepthNoStencilFormat(), "GI SM");
  103. m_shadowMapping.m_rtDescr.bake();
  104. // FB descr
  105. m_shadowMapping.m_fbDescr.m_colorAttachmentCount = 0;
  106. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_aspect = DepthStencilAspectBit::kDepth;
  107. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0f;
  108. m_shadowMapping.m_fbDescr.m_depthStencilAttachment.m_loadOperation = AttachmentLoadOperation::kClear;
  109. m_shadowMapping.m_fbDescr.bake();
  110. return Error::kNone;
  111. }
  112. Error IndirectDiffuseProbes::initLightShading()
  113. {
  114. // Init RT descr
  115. {
  116. m_lightShading.m_rtDescr = getRenderer().create2DRenderTargetDescription(m_tileSize * 6, m_tileSize, getRenderer().getHdrFormat(), "GI LS");
  117. m_lightShading.m_rtDescr.bake();
  118. }
  119. // Create FB descr
  120. {
  121. m_lightShading.m_fbDescr.m_colorAttachmentCount = 1;
  122. m_lightShading.m_fbDescr.m_colorAttachments[0].m_loadOperation = AttachmentLoadOperation::kClear;
  123. m_lightShading.m_fbDescr.bake();
  124. }
  125. // Init deferred
  126. ANKI_CHECK(m_lightShading.m_deferred.init());
  127. return Error::kNone;
  128. }
  129. Error IndirectDiffuseProbes::initIrradiance()
  130. {
  131. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/IrradianceDice.ankiprogbin", m_irradiance.m_prog));
  132. ShaderProgramResourceVariantInitInfo variantInitInfo(m_irradiance.m_prog);
  133. variantInitInfo.addMutation("WORKGROUP_SIZE_XY", m_tileSize);
  134. variantInitInfo.addMutation("LIGHT_SHADING_TEX", 0);
  135. variantInitInfo.addMutation("STORE_LOCATION", 0);
  136. variantInitInfo.addMutation("SECOND_BOUNCE", 1);
  137. const ShaderProgramResourceVariant* variant;
  138. m_irradiance.m_prog->getOrCreateVariant(variantInitInfo, variant);
  139. m_irradiance.m_grProg.reset(&variant->getProgram());
  140. return Error::kNone;
  141. }
  142. void IndirectDiffuseProbes::populateRenderGraph(RenderingContext& rctx)
  143. {
  144. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  145. if(rctx.m_renderQueue->m_giProbeForRefresh == nullptr) [[likely]]
  146. {
  147. m_giCtx = nullptr;
  148. return;
  149. }
  150. InternalContext* giCtx = newInstance<InternalContext>(*rctx.m_tempPool);
  151. m_giCtx = giCtx;
  152. giCtx->m_gi = this;
  153. giCtx->m_ctx = &rctx;
  154. giCtx->m_probeToUpdateThisFrame = rctx.m_renderQueue->m_giProbeForRefresh;
  155. RenderGraphDescription& rgraph = rctx.m_renderGraphDescr;
  156. // GBuffer visibility
  157. for(U32 i = 0; i < 6; ++i)
  158. {
  159. const RenderQueue& queue = *giCtx->m_probeToUpdateThisFrame->m_renderQueues[i];
  160. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  161. getRenderer().getGpuVisibility().populateRenderGraph("GI GBuffer visibility", RenderingTechnique::kGBuffer, queue.m_viewProjectionMatrix,
  162. queue.m_cameraTransform.getTranslationPart().xyz(), lodDistances, nullptr, rgraph,
  163. giCtx->m_gbufferVisOut[i]);
  164. }
  165. // GBuffer
  166. {
  167. // RTs
  168. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  169. {
  170. giCtx->m_gbufferColorRts[i] = rgraph.newRenderTarget(m_gbuffer.m_colorRtDescrs[i]);
  171. }
  172. giCtx->m_gbufferDepthRt = rgraph.newRenderTarget(m_gbuffer.m_depthRtDescr);
  173. // Pass
  174. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI GBuffer");
  175. pass.setFramebufferInfo(m_gbuffer.m_fbDescr, giCtx->m_gbufferColorRts, giCtx->m_gbufferDepthRt);
  176. pass.setWork(6, [this](RenderPassWorkContext& rgraphCtx) {
  177. runGBufferInThread(rgraphCtx);
  178. });
  179. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  180. {
  181. pass.newTextureDependency(giCtx->m_gbufferColorRts[i], TextureUsageBit::kFramebufferWrite);
  182. }
  183. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  184. pass.newTextureDependency(giCtx->m_gbufferDepthRt, TextureUsageBit::kAllFramebuffer, subresource);
  185. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(),
  186. BufferUsageBit::kStorageGeometryRead | BufferUsageBit::kStorageFragmentRead);
  187. for(U32 i = 0; i < 6; ++i)
  188. {
  189. pass.newBufferDependency(giCtx->m_gbufferVisOut[i].m_mdiDrawCountsHandle, BufferUsageBit::kIndirectDraw);
  190. }
  191. }
  192. // Shadow visibility. Optional
  193. const Bool hasShadows = giCtx->m_probeToUpdateThisFrame->m_renderQueues[0]->m_directionalLight.m_uuid
  194. && giCtx->m_probeToUpdateThisFrame->m_renderQueues[0]->m_directionalLight.m_shadowCascadeCount > 0;
  195. if(hasShadows)
  196. {
  197. for(U32 i = 0; i < 6; ++i)
  198. {
  199. const RenderQueue& queue = *giCtx->m_probeToUpdateThisFrame->m_renderQueues[i]->m_directionalLight.m_shadowRenderQueues[0];
  200. Array<F32, kMaxLodCount - 1> lodDistances = {1000.0f, 1001.0f}; // Something far to force detailed LODs
  201. getRenderer().getGpuVisibility().populateRenderGraph("GI shadows visibility", RenderingTechnique::kDepth, queue.m_viewProjectionMatrix,
  202. queue.m_cameraTransform.getTranslationPart().xyz(), lodDistances, nullptr, rgraph,
  203. giCtx->m_shadowsVisOut[i]);
  204. }
  205. }
  206. // Shadow pass. Optional
  207. if(hasShadows)
  208. {
  209. // Update light matrices
  210. for(U i = 0; i < 6; ++i)
  211. {
  212. ANKI_ASSERT(giCtx->m_probeToUpdateThisFrame->m_renderQueues[i]->m_directionalLight.m_uuid
  213. && giCtx->m_probeToUpdateThisFrame->m_renderQueues[i]->m_directionalLight.m_shadowCascadeCount == 1);
  214. const F32 xScale = 1.0f / 6.0f;
  215. const F32 yScale = 1.0f;
  216. const F32 xOffset = F32(i) * (1.0f / 6.0f);
  217. const F32 yOffset = 0.0f;
  218. const Mat4 atlasMtx(xScale, 0.0f, 0.0f, xOffset, 0.0f, yScale, 0.0f, yOffset, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
  219. Mat4& lightMat = giCtx->m_probeToUpdateThisFrame->m_renderQueues[i]->m_directionalLight.m_textureMatrices[0];
  220. lightMat = atlasMtx * lightMat;
  221. }
  222. // RT
  223. giCtx->m_shadowsRt = rgraph.newRenderTarget(m_shadowMapping.m_rtDescr);
  224. // Pass
  225. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI shadows");
  226. pass.setFramebufferInfo(m_shadowMapping.m_fbDescr, {}, giCtx->m_shadowsRt);
  227. pass.setWork(6, [this](RenderPassWorkContext& rgraphCtx) {
  228. runShadowmappingInThread(rgraphCtx);
  229. });
  230. TextureSubresourceInfo subresource(DepthStencilAspectBit::kDepth);
  231. pass.newTextureDependency(giCtx->m_shadowsRt, TextureUsageBit::kAllFramebuffer, subresource);
  232. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(),
  233. BufferUsageBit::kStorageGeometryRead | BufferUsageBit::kStorageFragmentRead);
  234. for(U32 i = 0; i < 6; ++i)
  235. {
  236. pass.newBufferDependency(giCtx->m_shadowsVisOut[i].m_mdiDrawCountsHandle, BufferUsageBit::kIndirectDraw);
  237. }
  238. }
  239. else
  240. {
  241. giCtx->m_shadowsRt = {};
  242. }
  243. // Light shading pass
  244. {
  245. // RT
  246. giCtx->m_lightShadingRt = rgraph.newRenderTarget(m_lightShading.m_rtDescr);
  247. // Pass
  248. GraphicsRenderPassDescription& pass = rgraph.newGraphicsRenderPass("GI light shading");
  249. pass.setFramebufferInfo(m_lightShading.m_fbDescr, {giCtx->m_lightShadingRt});
  250. pass.setWork(1, [this](RenderPassWorkContext& rgraphCtx) {
  251. runLightShading(rgraphCtx);
  252. });
  253. pass.newTextureDependency(giCtx->m_lightShadingRt, TextureUsageBit::kFramebufferWrite);
  254. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  255. {
  256. pass.newTextureDependency(giCtx->m_gbufferColorRts[i], TextureUsageBit::kSampledFragment);
  257. }
  258. pass.newTextureDependency(giCtx->m_gbufferDepthRt, TextureUsageBit::kSampledFragment, TextureSubresourceInfo(DepthStencilAspectBit::kDepth));
  259. if(giCtx->m_shadowsRt.isValid())
  260. {
  261. pass.newTextureDependency(giCtx->m_shadowsRt, TextureUsageBit::kSampledFragment);
  262. }
  263. }
  264. // Irradiance pass. First & 2nd bounce
  265. {
  266. m_giCtx->m_irradianceVolume = rgraph.importRenderTarget(m_giCtx->m_probeToUpdateThisFrame->m_volumeTexture, TextureUsageBit::kNone);
  267. ComputeRenderPassDescription& pass = rgraph.newComputeRenderPass("GI irradiance");
  268. pass.setWork([this](RenderPassWorkContext& rgraphCtx) {
  269. runIrradiance(rgraphCtx);
  270. });
  271. pass.newTextureDependency(giCtx->m_lightShadingRt, TextureUsageBit::kSampledCompute);
  272. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  273. {
  274. pass.newTextureDependency(giCtx->m_gbufferColorRts[i], TextureUsageBit::kSampledCompute);
  275. }
  276. pass.newTextureDependency(m_giCtx->m_irradianceVolume, TextureUsageBit::kImageComputeWrite);
  277. }
  278. }
  279. void IndirectDiffuseProbes::runGBufferInThread(RenderPassWorkContext& rgraphCtx) const
  280. {
  281. ANKI_ASSERT(m_giCtx->m_probeToUpdateThisFrame);
  282. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  283. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  284. const GlobalIlluminationProbeQueueElementForRefresh& probe = *m_giCtx->m_probeToUpdateThisFrame;
  285. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  286. const U32 viewportX = faceIdx * m_tileSize;
  287. cmdb.setViewport(viewportX, 0, m_tileSize, m_tileSize);
  288. cmdb.setScissor(viewportX, 0, m_tileSize, m_tileSize);
  289. const RenderQueue& rqueue = *probe.m_renderQueues[faceIdx];
  290. RenderableDrawerArguments args;
  291. args.m_viewMatrix = rqueue.m_viewMatrix;
  292. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  293. args.m_viewProjectionMatrix = rqueue.m_viewProjectionMatrix;
  294. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  295. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  296. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeat.get();
  297. args.fillMdi(m_giCtx->m_gbufferVisOut[faceIdx]);
  298. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  299. // It's secondary, no need to restore the state
  300. }
  301. void IndirectDiffuseProbes::runShadowmappingInThread(RenderPassWorkContext& rgraphCtx) const
  302. {
  303. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  304. const InternalContext& giCtx = *m_giCtx;
  305. ANKI_ASSERT(giCtx.m_probeToUpdateThisFrame);
  306. const GlobalIlluminationProbeQueueElementForRefresh& probe = *giCtx.m_probeToUpdateThisFrame;
  307. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  308. cmdb.setPolygonOffset(kShadowsPolygonOffsetFactor, kShadowsPolygonOffsetUnits);
  309. const U32 faceIdx = rgraphCtx.m_currentSecondLevelCommandBufferIndex;
  310. ANKI_ASSERT(probe.m_renderQueues[faceIdx]);
  311. const RenderQueue& faceRenderQueue = *probe.m_renderQueues[faceIdx];
  312. ANKI_ASSERT(faceRenderQueue.m_directionalLight.hasShadow());
  313. ANKI_ASSERT(faceRenderQueue.m_directionalLight.m_shadowRenderQueues[0]);
  314. const RenderQueue& cascadeRenderQueue = *faceRenderQueue.m_directionalLight.m_shadowRenderQueues[0];
  315. const U32 rez = m_shadowMapping.m_rtDescr.m_height;
  316. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  317. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  318. RenderableDrawerArguments args;
  319. args.m_viewMatrix = cascadeRenderQueue.m_viewMatrix;
  320. args.m_cameraTransform = Mat3x4::getIdentity(); // Don't care
  321. args.m_viewProjectionMatrix = cascadeRenderQueue.m_viewProjectionMatrix;
  322. args.m_previousViewProjectionMatrix = Mat4::getIdentity(); // Don't care
  323. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAniso.get();
  324. args.m_renderingTechinuqe = RenderingTechnique::kDepth;
  325. args.fillMdi(giCtx.m_shadowsVisOut[faceIdx]);
  326. getRenderer().getSceneDrawer().drawMdi(args, cmdb);
  327. // It's secondary, no need to restore the state
  328. }
  329. void IndirectDiffuseProbes::runLightShading(RenderPassWorkContext& rgraphCtx)
  330. {
  331. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  332. InternalContext& giCtx = *m_giCtx;
  333. ANKI_ASSERT(giCtx.m_probeToUpdateThisFrame);
  334. const GlobalIlluminationProbeQueueElementForRefresh& probe = *giCtx.m_probeToUpdateThisFrame;
  335. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  336. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  337. {
  338. ANKI_ASSERT(probe.m_renderQueues[faceIdx]);
  339. const RenderQueue& rqueue = *probe.m_renderQueues[faceIdx];
  340. const U32 rez = m_tileSize;
  341. cmdb.setScissor(rez * faceIdx, 0, rez, rez);
  342. cmdb.setViewport(rez * faceIdx, 0, rez, rez);
  343. // Draw light shading
  344. TraditionalDeferredLightShadingDrawInfo dsInfo;
  345. dsInfo.m_viewProjectionMatrix = rqueue.m_viewProjectionMatrix;
  346. dsInfo.m_invViewProjectionMatrix = rqueue.m_viewProjectionMatrix.getInverse();
  347. dsInfo.m_cameraPosWSpace = rqueue.m_cameraTransform.getTranslationPart().xyz1();
  348. dsInfo.m_viewport = UVec4(faceIdx * m_tileSize, 0, m_tileSize, m_tileSize);
  349. dsInfo.m_gbufferTexCoordsScale = Vec2(1.0f / F32(m_tileSize * 6), 1.0f / F32(m_tileSize));
  350. dsInfo.m_gbufferTexCoordsBias = Vec2(0.0f, 0.0f);
  351. dsInfo.m_lightbufferTexCoordsBias = Vec2(-F32(faceIdx), 0.0f);
  352. dsInfo.m_lightbufferTexCoordsScale = Vec2(1.0f / F32(m_tileSize), 1.0f / F32(m_tileSize));
  353. dsInfo.m_cameraNear = rqueue.m_cameraNear;
  354. dsInfo.m_cameraFar = rqueue.m_cameraFar;
  355. dsInfo.m_directionalLight = (rqueue.m_directionalLight.isEnabled()) ? &rqueue.m_directionalLight : nullptr;
  356. dsInfo.m_pointLights = rqueue.m_pointLights;
  357. dsInfo.m_spotLights = rqueue.m_spotLights;
  358. dsInfo.m_commandBuffer = &cmdb;
  359. dsInfo.m_gbufferRenderTargets[0] = giCtx.m_gbufferColorRts[0];
  360. dsInfo.m_gbufferRenderTargets[1] = giCtx.m_gbufferColorRts[1];
  361. dsInfo.m_gbufferRenderTargets[2] = giCtx.m_gbufferColorRts[2];
  362. dsInfo.m_gbufferDepthRenderTarget = giCtx.m_gbufferDepthRt;
  363. if(dsInfo.m_directionalLight && dsInfo.m_directionalLight->hasShadow())
  364. {
  365. dsInfo.m_directionalLightShadowmapRenderTarget = giCtx.m_shadowsRt;
  366. }
  367. dsInfo.m_renderpassContext = &rgraphCtx;
  368. dsInfo.m_skybox = &giCtx.m_ctx->m_renderQueue->m_skybox;
  369. m_lightShading.m_deferred.drawLights(dsInfo);
  370. }
  371. }
  372. void IndirectDiffuseProbes::runIrradiance(RenderPassWorkContext& rgraphCtx)
  373. {
  374. ANKI_TRACE_SCOPED_EVENT(RIndirectDiffuse);
  375. InternalContext& giCtx = *m_giCtx;
  376. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  377. ANKI_ASSERT(giCtx.m_probeToUpdateThisFrame);
  378. const GlobalIlluminationProbeQueueElementForRefresh& probe = *giCtx.m_probeToUpdateThisFrame;
  379. cmdb.bindShaderProgram(m_irradiance.m_grProg.get());
  380. // Bind resources
  381. cmdb.bindSampler(0, 0, getRenderer().getSamplers().m_nearestNearestClamp.get());
  382. rgraphCtx.bindColorTexture(0, 1, giCtx.m_lightShadingRt);
  383. for(U32 i = 0; i < kGBufferColorRenderTargetCount - 1; ++i)
  384. {
  385. rgraphCtx.bindColorTexture(0, 2, giCtx.m_gbufferColorRts[i], i);
  386. }
  387. rgraphCtx.bindImage(0, 3, giCtx.m_irradianceVolume, TextureSubresourceInfo());
  388. class
  389. {
  390. public:
  391. IVec3 m_volumeTexel;
  392. I32 m_nextTexelOffsetInU;
  393. } unis;
  394. unis.m_volumeTexel = IVec3(probe.m_cellToRefresh.x(), probe.m_cellToRefresh.y(), probe.m_cellToRefresh.z());
  395. unis.m_nextTexelOffsetInU = probe.m_cellCounts.x();
  396. cmdb.setPushConstants(&unis, sizeof(unis));
  397. // Dispatch
  398. cmdb.dispatchCompute(1, 1, 1);
  399. }
  400. } // end namespace anki