| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- /*
- Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #ifndef BT_MATRIX3x3_H
- #define BT_MATRIX3x3_H
- #include "btVector3.h"
- #include "btQuaternion.h"
- #ifdef BT_USE_DOUBLE_PRECISION
- #define btMatrix3x3Data btMatrix3x3DoubleData
- #else
- #define btMatrix3x3Data btMatrix3x3FloatData
- #endif //BT_USE_DOUBLE_PRECISION
- /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
- * Make sure to only include a pure orthogonal matrix without scaling. */
- class btMatrix3x3 {
- ///Data storage for the matrix, each vector is a row of the matrix
- btVector3 m_el[3];
- public:
- /** @brief No initializaion constructor */
- btMatrix3x3 () {}
- // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
- /**@brief Constructor from Quaternion */
- explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
- /*
- template <typename btScalar>
- Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- setEulerYPR(yaw, pitch, roll);
- }
- */
- /** @brief Constructor with row major formatting */
- btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
- {
- setValue(xx, xy, xz,
- yx, yy, yz,
- zx, zy, zz);
- }
- /** @brief Copy constructor */
- SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
- {
- m_el[0] = other.m_el[0];
- m_el[1] = other.m_el[1];
- m_el[2] = other.m_el[2];
- }
- /** @brief Assignment Operator */
- SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
- {
- m_el[0] = other.m_el[0];
- m_el[1] = other.m_el[1];
- m_el[2] = other.m_el[2];
- return *this;
- }
- /** @brief Get a column of the matrix as a vector
- * @param i Column number 0 indexed */
- SIMD_FORCE_INLINE btVector3 getColumn(int i) const
- {
- return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
- }
- /** @brief Get a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE const btVector3& getRow(int i) const
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
- /** @brief Get a mutable reference to a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE btVector3& operator[](int i)
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
- /** @brief Get a const reference to a row of the matrix as a vector
- * @param i Row number 0 indexed */
- SIMD_FORCE_INLINE const btVector3& operator[](int i) const
- {
- btFullAssert(0 <= i && i < 3);
- return m_el[i];
- }
- /** @brief Multiply by the target matrix on the right
- * @param m Rotation matrix to be applied
- * Equivilant to this = this * m */
- btMatrix3x3& operator*=(const btMatrix3x3& m);
- /** @brief Set from a carray of btScalars
- * @param m A pointer to the beginning of an array of 9 btScalars */
- void setFromOpenGLSubMatrix(const btScalar *m)
- {
- m_el[0].setValue(m[0],m[4],m[8]);
- m_el[1].setValue(m[1],m[5],m[9]);
- m_el[2].setValue(m[2],m[6],m[10]);
- }
- /** @brief Set the values of the matrix explicitly (row major)
- * @param xx Top left
- * @param xy Top Middle
- * @param xz Top Right
- * @param yx Middle Left
- * @param yy Middle Middle
- * @param yz Middle Right
- * @param zx Bottom Left
- * @param zy Bottom Middle
- * @param zz Bottom Right*/
- void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
- {
- m_el[0].setValue(xx,xy,xz);
- m_el[1].setValue(yx,yy,yz);
- m_el[2].setValue(zx,zy,zz);
- }
- /** @brief Set the matrix from a quaternion
- * @param q The Quaternion to match */
- void setRotation(const btQuaternion& q)
- {
- btScalar d = q.length2();
- btFullAssert(d != btScalar(0.0));
- btScalar s = btScalar(2.0) / d;
- btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
- btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
- btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
- btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
- setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
- xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
- xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
- }
- /** @brief Set the matrix from euler angles using YPR around YXZ respectively
- * @param yaw Yaw about Y axis
- * @param pitch Pitch about X axis
- * @param roll Roll about Z axis
- */
- void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
- setEulerZYX(roll, pitch, yaw);
- }
- /** @brief Set the matrix from euler angles YPR around ZYX axes
- * @param eulerX Roll about X axis
- * @param eulerY Pitch around Y axis
- * @param eulerZ Yaw aboud Z axis
- *
- * These angles are used to produce a rotation matrix. The euler
- * angles are applied in ZYX order. I.e a vector is first rotated
- * about X then Y and then Z
- **/
- void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
- ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
- btScalar ci ( btCos(eulerX));
- btScalar cj ( btCos(eulerY));
- btScalar ch ( btCos(eulerZ));
- btScalar si ( btSin(eulerX));
- btScalar sj ( btSin(eulerY));
- btScalar sh ( btSin(eulerZ));
- btScalar cc = ci * ch;
- btScalar cs = ci * sh;
- btScalar sc = si * ch;
- btScalar ss = si * sh;
- setValue(cj * ch, sj * sc - cs, sj * cc + ss,
- cj * sh, sj * ss + cc, sj * cs - sc,
- -sj, cj * si, cj * ci);
- }
- /**@brief Set the matrix to the identity */
- void setIdentity()
- {
- setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
- }
- static const btMatrix3x3& getIdentity()
- {
- static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
- return identityMatrix;
- }
- /**@brief Fill the values of the matrix into a 9 element array
- * @param m The array to be filled */
- void getOpenGLSubMatrix(btScalar *m) const
- {
- m[0] = btScalar(m_el[0].x());
- m[1] = btScalar(m_el[1].x());
- m[2] = btScalar(m_el[2].x());
- m[3] = btScalar(0.0);
- m[4] = btScalar(m_el[0].y());
- m[5] = btScalar(m_el[1].y());
- m[6] = btScalar(m_el[2].y());
- m[7] = btScalar(0.0);
- m[8] = btScalar(m_el[0].z());
- m[9] = btScalar(m_el[1].z());
- m[10] = btScalar(m_el[2].z());
- m[11] = btScalar(0.0);
- }
- /**@brief Get the matrix represented as a quaternion
- * @param q The quaternion which will be set */
- void getRotation(btQuaternion& q) const
- {
- btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
- btScalar temp[4];
- if (trace > btScalar(0.0))
- {
- btScalar s = btSqrt(trace + btScalar(1.0));
- temp[3]=(s * btScalar(0.5));
- s = btScalar(0.5) / s;
- temp[0]=((m_el[2].y() - m_el[1].z()) * s);
- temp[1]=((m_el[0].z() - m_el[2].x()) * s);
- temp[2]=((m_el[1].x() - m_el[0].y()) * s);
- }
- else
- {
- int i = m_el[0].x() < m_el[1].y() ?
- (m_el[1].y() < m_el[2].z() ? 2 : 1) :
- (m_el[0].x() < m_el[2].z() ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
- btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
- temp[i] = s * btScalar(0.5);
- s = btScalar(0.5) / s;
- temp[3] = (m_el[k][j] - m_el[j][k]) * s;
- temp[j] = (m_el[j][i] + m_el[i][j]) * s;
- temp[k] = (m_el[k][i] + m_el[i][k]) * s;
- }
- q.setValue(temp[0],temp[1],temp[2],temp[3]);
- }
- /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
- * @param yaw Yaw around Y axis
- * @param pitch Pitch around X axis
- * @param roll around Z axis */
- void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
- {
- // first use the normal calculus
- yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
- pitch = btScalar(btAsin(-m_el[2].x()));
- roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
- // on pitch = +/-HalfPI
- if (btFabs(pitch)==SIMD_HALF_PI)
- {
- if (yaw>0)
- yaw-=SIMD_PI;
- else
- yaw+=SIMD_PI;
- if (roll>0)
- roll-=SIMD_PI;
- else
- roll+=SIMD_PI;
- }
- };
- /**@brief Get the matrix represented as euler angles around ZYX
- * @param yaw Yaw around X axis
- * @param pitch Pitch around Y axis
- * @param roll around X axis
- * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
- void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
- {
- struct Euler
- {
- btScalar yaw;
- btScalar pitch;
- btScalar roll;
- };
- Euler euler_out;
- Euler euler_out2; //second solution
- //get the pointer to the raw data
- // Check that pitch is not at a singularity
- if (btFabs(m_el[2].x()) >= 1)
- {
- euler_out.yaw = 0;
- euler_out2.yaw = 0;
- // From difference of angles formula
- btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
- if (m_el[2].x() > 0) //gimbal locked up
- {
- euler_out.pitch = SIMD_PI / btScalar(2.0);
- euler_out2.pitch = SIMD_PI / btScalar(2.0);
- euler_out.roll = euler_out.pitch + delta;
- euler_out2.roll = euler_out.pitch + delta;
- }
- else // gimbal locked down
- {
- euler_out.pitch = -SIMD_PI / btScalar(2.0);
- euler_out2.pitch = -SIMD_PI / btScalar(2.0);
- euler_out.roll = -euler_out.pitch + delta;
- euler_out2.roll = -euler_out.pitch + delta;
- }
- }
- else
- {
- euler_out.pitch = - btAsin(m_el[2].x());
- euler_out2.pitch = SIMD_PI - euler_out.pitch;
- euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
- m_el[2].z()/btCos(euler_out.pitch));
- euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
- m_el[2].z()/btCos(euler_out2.pitch));
- euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
- m_el[0].x()/btCos(euler_out.pitch));
- euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
- m_el[0].x()/btCos(euler_out2.pitch));
- }
- if (solution_number == 1)
- {
- yaw = euler_out.yaw;
- pitch = euler_out.pitch;
- roll = euler_out.roll;
- }
- else
- {
- yaw = euler_out2.yaw;
- pitch = euler_out2.pitch;
- roll = euler_out2.roll;
- }
- }
- /**@brief Create a scaled copy of the matrix
- * @param s Scaling vector The elements of the vector will scale each column */
- btMatrix3x3 scaled(const btVector3& s) const
- {
- return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
- m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
- m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
- }
- /**@brief Return the determinant of the matrix */
- btScalar determinant() const;
- /**@brief Return the adjoint of the matrix */
- btMatrix3x3 adjoint() const;
- /**@brief Return the matrix with all values non negative */
- btMatrix3x3 absolute() const;
- /**@brief Return the transpose of the matrix */
- btMatrix3x3 transpose() const;
- /**@brief Return the inverse of the matrix */
- btMatrix3x3 inverse() const;
- btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
- btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
- SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
- {
- return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
- }
- SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
- {
- return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
- }
- SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
- {
- return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
- }
- /**@brief diagonalizes this matrix by the Jacobi method.
- * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
- * coordinate system, i.e., old_this = rot * new_this * rot^T.
- * @param threshold See iteration
- * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
- * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
- *
- * Note that this matrix is assumed to be symmetric.
- */
- void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
- {
- rot.setIdentity();
- for (int step = maxSteps; step > 0; step--)
- {
- // find off-diagonal element [p][q] with largest magnitude
- int p = 0;
- int q = 1;
- int r = 2;
- btScalar max = btFabs(m_el[0][1]);
- btScalar v = btFabs(m_el[0][2]);
- if (v > max)
- {
- q = 2;
- r = 1;
- max = v;
- }
- v = btFabs(m_el[1][2]);
- if (v > max)
- {
- p = 1;
- q = 2;
- r = 0;
- max = v;
- }
- btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
- if (max <= t)
- {
- if (max <= SIMD_EPSILON * t)
- {
- return;
- }
- step = 1;
- }
- // compute Jacobi rotation J which leads to a zero for element [p][q]
- btScalar mpq = m_el[p][q];
- btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
- btScalar theta2 = theta * theta;
- btScalar cos;
- btScalar sin;
- if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
- {
- t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
- : 1 / (theta - btSqrt(1 + theta2));
- cos = 1 / btSqrt(1 + t * t);
- sin = cos * t;
- }
- else
- {
- // approximation for large theta-value, i.e., a nearly diagonal matrix
- t = 1 / (theta * (2 + btScalar(0.5) / theta2));
- cos = 1 - btScalar(0.5) * t * t;
- sin = cos * t;
- }
- // apply rotation to matrix (this = J^T * this * J)
- m_el[p][q] = m_el[q][p] = 0;
- m_el[p][p] -= t * mpq;
- m_el[q][q] += t * mpq;
- btScalar mrp = m_el[r][p];
- btScalar mrq = m_el[r][q];
- m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
- m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
- // apply rotation to rot (rot = rot * J)
- for (int i = 0; i < 3; i++)
- {
- btVector3& row = rot[i];
- mrp = row[p];
- mrq = row[q];
- row[p] = cos * mrp - sin * mrq;
- row[q] = cos * mrq + sin * mrp;
- }
- }
- }
- /**@brief Calculate the matrix cofactor
- * @param r1 The first row to use for calculating the cofactor
- * @param c1 The first column to use for calculating the cofactor
- * @param r1 The second row to use for calculating the cofactor
- * @param c1 The second column to use for calculating the cofactor
- * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
- */
- btScalar cofac(int r1, int c1, int r2, int c2) const
- {
- return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
- }
- void serialize(struct btMatrix3x3Data& dataOut) const;
- void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
- void deSerialize(const struct btMatrix3x3Data& dataIn);
- void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
- void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
- };
- SIMD_FORCE_INLINE btMatrix3x3&
- btMatrix3x3::operator*=(const btMatrix3x3& m)
- {
- setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
- m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
- m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
- return *this;
- }
- SIMD_FORCE_INLINE btScalar
- btMatrix3x3::determinant() const
- {
- return btTriple((*this)[0], (*this)[1], (*this)[2]);
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::absolute() const
- {
- return btMatrix3x3(
- btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
- btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
- btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::transpose() const
- {
- return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
- m_el[0].y(), m_el[1].y(), m_el[2].y(),
- m_el[0].z(), m_el[1].z(), m_el[2].z());
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::adjoint() const
- {
- return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
- cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
- cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::inverse() const
- {
- btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
- btScalar det = (*this)[0].dot(co);
- btFullAssert(det != btScalar(0.0));
- btScalar s = btScalar(1.0) / det;
- return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
- {
- return btMatrix3x3(
- m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
- m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
- m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
- m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
- m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
- m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
- m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
- m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
- m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
- }
- SIMD_FORCE_INLINE btMatrix3x3
- btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
- {
- return btMatrix3x3(
- m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
- m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
- m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
- }
- SIMD_FORCE_INLINE btVector3
- operator*(const btMatrix3x3& m, const btVector3& v)
- {
- return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
- }
- SIMD_FORCE_INLINE btVector3
- operator*(const btVector3& v, const btMatrix3x3& m)
- {
- return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
- }
- SIMD_FORCE_INLINE btMatrix3x3
- operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
- {
- return btMatrix3x3(
- m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
- m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
- m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
- }
- /*
- SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
- return btMatrix3x3(
- m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
- m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
- m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
- m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
- m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
- m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
- m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
- m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
- m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
- }
- */
- /**@brief Equality operator between two matrices
- * It will test all elements are equal. */
- SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
- {
- return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
- m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
- m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
- }
- ///for serialization
- struct btMatrix3x3FloatData
- {
- btVector3FloatData m_el[3];
- };
- ///for serialization
- struct btMatrix3x3DoubleData
- {
- btVector3DoubleData m_el[3];
- };
-
- SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
- {
- for (int i=0;i<3;i++)
- m_el[i].serialize(dataOut.m_el[i]);
- }
- SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
- {
- for (int i=0;i<3;i++)
- m_el[i].serializeFloat(dataOut.m_el[i]);
- }
- SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
- {
- for (int i=0;i<3;i++)
- m_el[i].deSerialize(dataIn.m_el[i]);
- }
- SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
- {
- for (int i=0;i<3;i++)
- m_el[i].deSerializeFloat(dataIn.m_el[i]);
- }
- SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
- {
- for (int i=0;i<3;i++)
- m_el[i].deSerializeDouble(dataIn.m_el[i]);
- }
- #endif //BT_MATRIX3x3_H
|