btMatrix3x3.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
  3. This software is provided 'as-is', without any express or implied warranty.
  4. In no event will the authors be held liable for any damages arising from the use of this software.
  5. Permission is granted to anyone to use this software for any purpose,
  6. including commercial applications, and to alter it and redistribute it freely,
  7. subject to the following restrictions:
  8. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  9. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  10. 3. This notice may not be removed or altered from any source distribution.
  11. */
  12. #ifndef BT_MATRIX3x3_H
  13. #define BT_MATRIX3x3_H
  14. #include "btVector3.h"
  15. #include "btQuaternion.h"
  16. #ifdef BT_USE_DOUBLE_PRECISION
  17. #define btMatrix3x3Data btMatrix3x3DoubleData
  18. #else
  19. #define btMatrix3x3Data btMatrix3x3FloatData
  20. #endif //BT_USE_DOUBLE_PRECISION
  21. /**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
  22. * Make sure to only include a pure orthogonal matrix without scaling. */
  23. class btMatrix3x3 {
  24. ///Data storage for the matrix, each vector is a row of the matrix
  25. btVector3 m_el[3];
  26. public:
  27. /** @brief No initializaion constructor */
  28. btMatrix3x3 () {}
  29. // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
  30. /**@brief Constructor from Quaternion */
  31. explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); }
  32. /*
  33. template <typename btScalar>
  34. Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  35. {
  36. setEulerYPR(yaw, pitch, roll);
  37. }
  38. */
  39. /** @brief Constructor with row major formatting */
  40. btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  41. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  42. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  43. {
  44. setValue(xx, xy, xz,
  45. yx, yy, yz,
  46. zx, zy, zz);
  47. }
  48. /** @brief Copy constructor */
  49. SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
  50. {
  51. m_el[0] = other.m_el[0];
  52. m_el[1] = other.m_el[1];
  53. m_el[2] = other.m_el[2];
  54. }
  55. /** @brief Assignment Operator */
  56. SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
  57. {
  58. m_el[0] = other.m_el[0];
  59. m_el[1] = other.m_el[1];
  60. m_el[2] = other.m_el[2];
  61. return *this;
  62. }
  63. /** @brief Get a column of the matrix as a vector
  64. * @param i Column number 0 indexed */
  65. SIMD_FORCE_INLINE btVector3 getColumn(int i) const
  66. {
  67. return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
  68. }
  69. /** @brief Get a row of the matrix as a vector
  70. * @param i Row number 0 indexed */
  71. SIMD_FORCE_INLINE const btVector3& getRow(int i) const
  72. {
  73. btFullAssert(0 <= i && i < 3);
  74. return m_el[i];
  75. }
  76. /** @brief Get a mutable reference to a row of the matrix as a vector
  77. * @param i Row number 0 indexed */
  78. SIMD_FORCE_INLINE btVector3& operator[](int i)
  79. {
  80. btFullAssert(0 <= i && i < 3);
  81. return m_el[i];
  82. }
  83. /** @brief Get a const reference to a row of the matrix as a vector
  84. * @param i Row number 0 indexed */
  85. SIMD_FORCE_INLINE const btVector3& operator[](int i) const
  86. {
  87. btFullAssert(0 <= i && i < 3);
  88. return m_el[i];
  89. }
  90. /** @brief Multiply by the target matrix on the right
  91. * @param m Rotation matrix to be applied
  92. * Equivilant to this = this * m */
  93. btMatrix3x3& operator*=(const btMatrix3x3& m);
  94. /** @brief Set from a carray of btScalars
  95. * @param m A pointer to the beginning of an array of 9 btScalars */
  96. void setFromOpenGLSubMatrix(const btScalar *m)
  97. {
  98. m_el[0].setValue(m[0],m[4],m[8]);
  99. m_el[1].setValue(m[1],m[5],m[9]);
  100. m_el[2].setValue(m[2],m[6],m[10]);
  101. }
  102. /** @brief Set the values of the matrix explicitly (row major)
  103. * @param xx Top left
  104. * @param xy Top Middle
  105. * @param xz Top Right
  106. * @param yx Middle Left
  107. * @param yy Middle Middle
  108. * @param yz Middle Right
  109. * @param zx Bottom Left
  110. * @param zy Bottom Middle
  111. * @param zz Bottom Right*/
  112. void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
  113. const btScalar& yx, const btScalar& yy, const btScalar& yz,
  114. const btScalar& zx, const btScalar& zy, const btScalar& zz)
  115. {
  116. m_el[0].setValue(xx,xy,xz);
  117. m_el[1].setValue(yx,yy,yz);
  118. m_el[2].setValue(zx,zy,zz);
  119. }
  120. /** @brief Set the matrix from a quaternion
  121. * @param q The Quaternion to match */
  122. void setRotation(const btQuaternion& q)
  123. {
  124. btScalar d = q.length2();
  125. btFullAssert(d != btScalar(0.0));
  126. btScalar s = btScalar(2.0) / d;
  127. btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
  128. btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
  129. btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
  130. btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
  131. setValue(btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
  132. xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
  133. xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
  134. }
  135. /** @brief Set the matrix from euler angles using YPR around YXZ respectively
  136. * @param yaw Yaw about Y axis
  137. * @param pitch Pitch about X axis
  138. * @param roll Roll about Z axis
  139. */
  140. void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
  141. {
  142. setEulerZYX(roll, pitch, yaw);
  143. }
  144. /** @brief Set the matrix from euler angles YPR around ZYX axes
  145. * @param eulerX Roll about X axis
  146. * @param eulerY Pitch around Y axis
  147. * @param eulerZ Yaw aboud Z axis
  148. *
  149. * These angles are used to produce a rotation matrix. The euler
  150. * angles are applied in ZYX order. I.e a vector is first rotated
  151. * about X then Y and then Z
  152. **/
  153. void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
  154. ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
  155. btScalar ci ( btCos(eulerX));
  156. btScalar cj ( btCos(eulerY));
  157. btScalar ch ( btCos(eulerZ));
  158. btScalar si ( btSin(eulerX));
  159. btScalar sj ( btSin(eulerY));
  160. btScalar sh ( btSin(eulerZ));
  161. btScalar cc = ci * ch;
  162. btScalar cs = ci * sh;
  163. btScalar sc = si * ch;
  164. btScalar ss = si * sh;
  165. setValue(cj * ch, sj * sc - cs, sj * cc + ss,
  166. cj * sh, sj * ss + cc, sj * cs - sc,
  167. -sj, cj * si, cj * ci);
  168. }
  169. /**@brief Set the matrix to the identity */
  170. void setIdentity()
  171. {
  172. setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
  173. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  174. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  175. }
  176. static const btMatrix3x3& getIdentity()
  177. {
  178. static const btMatrix3x3 identityMatrix(btScalar(1.0), btScalar(0.0), btScalar(0.0),
  179. btScalar(0.0), btScalar(1.0), btScalar(0.0),
  180. btScalar(0.0), btScalar(0.0), btScalar(1.0));
  181. return identityMatrix;
  182. }
  183. /**@brief Fill the values of the matrix into a 9 element array
  184. * @param m The array to be filled */
  185. void getOpenGLSubMatrix(btScalar *m) const
  186. {
  187. m[0] = btScalar(m_el[0].x());
  188. m[1] = btScalar(m_el[1].x());
  189. m[2] = btScalar(m_el[2].x());
  190. m[3] = btScalar(0.0);
  191. m[4] = btScalar(m_el[0].y());
  192. m[5] = btScalar(m_el[1].y());
  193. m[6] = btScalar(m_el[2].y());
  194. m[7] = btScalar(0.0);
  195. m[8] = btScalar(m_el[0].z());
  196. m[9] = btScalar(m_el[1].z());
  197. m[10] = btScalar(m_el[2].z());
  198. m[11] = btScalar(0.0);
  199. }
  200. /**@brief Get the matrix represented as a quaternion
  201. * @param q The quaternion which will be set */
  202. void getRotation(btQuaternion& q) const
  203. {
  204. btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
  205. btScalar temp[4];
  206. if (trace > btScalar(0.0))
  207. {
  208. btScalar s = btSqrt(trace + btScalar(1.0));
  209. temp[3]=(s * btScalar(0.5));
  210. s = btScalar(0.5) / s;
  211. temp[0]=((m_el[2].y() - m_el[1].z()) * s);
  212. temp[1]=((m_el[0].z() - m_el[2].x()) * s);
  213. temp[2]=((m_el[1].x() - m_el[0].y()) * s);
  214. }
  215. else
  216. {
  217. int i = m_el[0].x() < m_el[1].y() ?
  218. (m_el[1].y() < m_el[2].z() ? 2 : 1) :
  219. (m_el[0].x() < m_el[2].z() ? 2 : 0);
  220. int j = (i + 1) % 3;
  221. int k = (i + 2) % 3;
  222. btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
  223. temp[i] = s * btScalar(0.5);
  224. s = btScalar(0.5) / s;
  225. temp[3] = (m_el[k][j] - m_el[j][k]) * s;
  226. temp[j] = (m_el[j][i] + m_el[i][j]) * s;
  227. temp[k] = (m_el[k][i] + m_el[i][k]) * s;
  228. }
  229. q.setValue(temp[0],temp[1],temp[2],temp[3]);
  230. }
  231. /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
  232. * @param yaw Yaw around Y axis
  233. * @param pitch Pitch around X axis
  234. * @param roll around Z axis */
  235. void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
  236. {
  237. // first use the normal calculus
  238. yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
  239. pitch = btScalar(btAsin(-m_el[2].x()));
  240. roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
  241. // on pitch = +/-HalfPI
  242. if (btFabs(pitch)==SIMD_HALF_PI)
  243. {
  244. if (yaw>0)
  245. yaw-=SIMD_PI;
  246. else
  247. yaw+=SIMD_PI;
  248. if (roll>0)
  249. roll-=SIMD_PI;
  250. else
  251. roll+=SIMD_PI;
  252. }
  253. };
  254. /**@brief Get the matrix represented as euler angles around ZYX
  255. * @param yaw Yaw around X axis
  256. * @param pitch Pitch around Y axis
  257. * @param roll around X axis
  258. * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
  259. void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
  260. {
  261. struct Euler
  262. {
  263. btScalar yaw;
  264. btScalar pitch;
  265. btScalar roll;
  266. };
  267. Euler euler_out;
  268. Euler euler_out2; //second solution
  269. //get the pointer to the raw data
  270. // Check that pitch is not at a singularity
  271. if (btFabs(m_el[2].x()) >= 1)
  272. {
  273. euler_out.yaw = 0;
  274. euler_out2.yaw = 0;
  275. // From difference of angles formula
  276. btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
  277. if (m_el[2].x() > 0) //gimbal locked up
  278. {
  279. euler_out.pitch = SIMD_PI / btScalar(2.0);
  280. euler_out2.pitch = SIMD_PI / btScalar(2.0);
  281. euler_out.roll = euler_out.pitch + delta;
  282. euler_out2.roll = euler_out.pitch + delta;
  283. }
  284. else // gimbal locked down
  285. {
  286. euler_out.pitch = -SIMD_PI / btScalar(2.0);
  287. euler_out2.pitch = -SIMD_PI / btScalar(2.0);
  288. euler_out.roll = -euler_out.pitch + delta;
  289. euler_out2.roll = -euler_out.pitch + delta;
  290. }
  291. }
  292. else
  293. {
  294. euler_out.pitch = - btAsin(m_el[2].x());
  295. euler_out2.pitch = SIMD_PI - euler_out.pitch;
  296. euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
  297. m_el[2].z()/btCos(euler_out.pitch));
  298. euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
  299. m_el[2].z()/btCos(euler_out2.pitch));
  300. euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
  301. m_el[0].x()/btCos(euler_out.pitch));
  302. euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
  303. m_el[0].x()/btCos(euler_out2.pitch));
  304. }
  305. if (solution_number == 1)
  306. {
  307. yaw = euler_out.yaw;
  308. pitch = euler_out.pitch;
  309. roll = euler_out.roll;
  310. }
  311. else
  312. {
  313. yaw = euler_out2.yaw;
  314. pitch = euler_out2.pitch;
  315. roll = euler_out2.roll;
  316. }
  317. }
  318. /**@brief Create a scaled copy of the matrix
  319. * @param s Scaling vector The elements of the vector will scale each column */
  320. btMatrix3x3 scaled(const btVector3& s) const
  321. {
  322. return btMatrix3x3(m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
  323. m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
  324. m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
  325. }
  326. /**@brief Return the determinant of the matrix */
  327. btScalar determinant() const;
  328. /**@brief Return the adjoint of the matrix */
  329. btMatrix3x3 adjoint() const;
  330. /**@brief Return the matrix with all values non negative */
  331. btMatrix3x3 absolute() const;
  332. /**@brief Return the transpose of the matrix */
  333. btMatrix3x3 transpose() const;
  334. /**@brief Return the inverse of the matrix */
  335. btMatrix3x3 inverse() const;
  336. btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
  337. btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
  338. SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
  339. {
  340. return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
  341. }
  342. SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
  343. {
  344. return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
  345. }
  346. SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
  347. {
  348. return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
  349. }
  350. /**@brief diagonalizes this matrix by the Jacobi method.
  351. * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
  352. * coordinate system, i.e., old_this = rot * new_this * rot^T.
  353. * @param threshold See iteration
  354. * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied
  355. * by the sum of the absolute values of the diagonal, or when maxSteps have been executed.
  356. *
  357. * Note that this matrix is assumed to be symmetric.
  358. */
  359. void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
  360. {
  361. rot.setIdentity();
  362. for (int step = maxSteps; step > 0; step--)
  363. {
  364. // find off-diagonal element [p][q] with largest magnitude
  365. int p = 0;
  366. int q = 1;
  367. int r = 2;
  368. btScalar max = btFabs(m_el[0][1]);
  369. btScalar v = btFabs(m_el[0][2]);
  370. if (v > max)
  371. {
  372. q = 2;
  373. r = 1;
  374. max = v;
  375. }
  376. v = btFabs(m_el[1][2]);
  377. if (v > max)
  378. {
  379. p = 1;
  380. q = 2;
  381. r = 0;
  382. max = v;
  383. }
  384. btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2]));
  385. if (max <= t)
  386. {
  387. if (max <= SIMD_EPSILON * t)
  388. {
  389. return;
  390. }
  391. step = 1;
  392. }
  393. // compute Jacobi rotation J which leads to a zero for element [p][q]
  394. btScalar mpq = m_el[p][q];
  395. btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
  396. btScalar theta2 = theta * theta;
  397. btScalar cos;
  398. btScalar sin;
  399. if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
  400. {
  401. t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
  402. : 1 / (theta - btSqrt(1 + theta2));
  403. cos = 1 / btSqrt(1 + t * t);
  404. sin = cos * t;
  405. }
  406. else
  407. {
  408. // approximation for large theta-value, i.e., a nearly diagonal matrix
  409. t = 1 / (theta * (2 + btScalar(0.5) / theta2));
  410. cos = 1 - btScalar(0.5) * t * t;
  411. sin = cos * t;
  412. }
  413. // apply rotation to matrix (this = J^T * this * J)
  414. m_el[p][q] = m_el[q][p] = 0;
  415. m_el[p][p] -= t * mpq;
  416. m_el[q][q] += t * mpq;
  417. btScalar mrp = m_el[r][p];
  418. btScalar mrq = m_el[r][q];
  419. m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq;
  420. m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp;
  421. // apply rotation to rot (rot = rot * J)
  422. for (int i = 0; i < 3; i++)
  423. {
  424. btVector3& row = rot[i];
  425. mrp = row[p];
  426. mrq = row[q];
  427. row[p] = cos * mrp - sin * mrq;
  428. row[q] = cos * mrq + sin * mrp;
  429. }
  430. }
  431. }
  432. /**@brief Calculate the matrix cofactor
  433. * @param r1 The first row to use for calculating the cofactor
  434. * @param c1 The first column to use for calculating the cofactor
  435. * @param r1 The second row to use for calculating the cofactor
  436. * @param c1 The second column to use for calculating the cofactor
  437. * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
  438. */
  439. btScalar cofac(int r1, int c1, int r2, int c2) const
  440. {
  441. return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
  442. }
  443. void serialize(struct btMatrix3x3Data& dataOut) const;
  444. void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
  445. void deSerialize(const struct btMatrix3x3Data& dataIn);
  446. void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
  447. void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
  448. };
  449. SIMD_FORCE_INLINE btMatrix3x3&
  450. btMatrix3x3::operator*=(const btMatrix3x3& m)
  451. {
  452. setValue(m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
  453. m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
  454. m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
  455. return *this;
  456. }
  457. SIMD_FORCE_INLINE btScalar
  458. btMatrix3x3::determinant() const
  459. {
  460. return btTriple((*this)[0], (*this)[1], (*this)[2]);
  461. }
  462. SIMD_FORCE_INLINE btMatrix3x3
  463. btMatrix3x3::absolute() const
  464. {
  465. return btMatrix3x3(
  466. btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
  467. btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
  468. btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
  469. }
  470. SIMD_FORCE_INLINE btMatrix3x3
  471. btMatrix3x3::transpose() const
  472. {
  473. return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
  474. m_el[0].y(), m_el[1].y(), m_el[2].y(),
  475. m_el[0].z(), m_el[1].z(), m_el[2].z());
  476. }
  477. SIMD_FORCE_INLINE btMatrix3x3
  478. btMatrix3x3::adjoint() const
  479. {
  480. return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
  481. cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
  482. cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
  483. }
  484. SIMD_FORCE_INLINE btMatrix3x3
  485. btMatrix3x3::inverse() const
  486. {
  487. btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
  488. btScalar det = (*this)[0].dot(co);
  489. btFullAssert(det != btScalar(0.0));
  490. btScalar s = btScalar(1.0) / det;
  491. return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
  492. co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
  493. co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
  494. }
  495. SIMD_FORCE_INLINE btMatrix3x3
  496. btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
  497. {
  498. return btMatrix3x3(
  499. m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
  500. m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
  501. m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
  502. m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(),
  503. m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(),
  504. m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(),
  505. m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(),
  506. m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(),
  507. m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z());
  508. }
  509. SIMD_FORCE_INLINE btMatrix3x3
  510. btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
  511. {
  512. return btMatrix3x3(
  513. m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
  514. m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
  515. m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
  516. }
  517. SIMD_FORCE_INLINE btVector3
  518. operator*(const btMatrix3x3& m, const btVector3& v)
  519. {
  520. return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
  521. }
  522. SIMD_FORCE_INLINE btVector3
  523. operator*(const btVector3& v, const btMatrix3x3& m)
  524. {
  525. return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
  526. }
  527. SIMD_FORCE_INLINE btMatrix3x3
  528. operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
  529. {
  530. return btMatrix3x3(
  531. m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
  532. m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
  533. m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
  534. }
  535. /*
  536. SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) {
  537. return btMatrix3x3(
  538. m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0],
  539. m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1],
  540. m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2],
  541. m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0],
  542. m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1],
  543. m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2],
  544. m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0],
  545. m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1],
  546. m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
  547. }
  548. */
  549. /**@brief Equality operator between two matrices
  550. * It will test all elements are equal. */
  551. SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
  552. {
  553. return ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
  554. m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
  555. m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
  556. }
  557. ///for serialization
  558. struct btMatrix3x3FloatData
  559. {
  560. btVector3FloatData m_el[3];
  561. };
  562. ///for serialization
  563. struct btMatrix3x3DoubleData
  564. {
  565. btVector3DoubleData m_el[3];
  566. };
  567. SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
  568. {
  569. for (int i=0;i<3;i++)
  570. m_el[i].serialize(dataOut.m_el[i]);
  571. }
  572. SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
  573. {
  574. for (int i=0;i<3;i++)
  575. m_el[i].serializeFloat(dataOut.m_el[i]);
  576. }
  577. SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
  578. {
  579. for (int i=0;i<3;i++)
  580. m_el[i].deSerialize(dataIn.m_el[i]);
  581. }
  582. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
  583. {
  584. for (int i=0;i<3;i++)
  585. m_el[i].deSerializeFloat(dataIn.m_el[i]);
  586. }
  587. SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
  588. {
  589. for (int i=0;i<3;i++)
  590. m_el[i].deSerializeDouble(dataIn.m_el[i]);
  591. }
  592. #endif //BT_MATRIX3x3_H