ShaderProgramBinaryDumpMain.cpp 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. // Copyright (C) 2009-2022, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/ShaderCompiler/ShaderProgramCompiler.h>
  6. #include <AnKi/ShaderCompiler/MaliOfflineCompiler.h>
  7. #include <AnKi/ShaderCompiler/RadeonGpuAnalyzer.h>
  8. #include <AnKi/Util/ThreadHive.h>
  9. #include <AnKi/Util/System.h>
  10. using namespace anki;
  11. static const char* kUsage = R"(Dump the shader binary to stdout
  12. Usage: %s [options] input_shader_program_binary
  13. Options:
  14. -stats : Print performance statistics for all shaders. By default it doesn't
  15. )";
  16. static Error parseCommandLineArgs(WeakArray<char*> argv, Bool& dumpStats, StringRaii& filename)
  17. {
  18. // Parse config
  19. if(argv.getSize() < 2)
  20. {
  21. return Error::kUserData;
  22. }
  23. dumpStats = false;
  24. filename = argv[argv.getSize() - 1];
  25. for(U32 i = 1; i < argv.getSize() - 1; i++)
  26. {
  27. if(strcmp(argv[i], "-stats") == 0)
  28. {
  29. dumpStats = true;
  30. }
  31. }
  32. return Error::kNone;
  33. }
  34. Error dumpStats(const ShaderProgramBinary& bin)
  35. {
  36. HeapMemoryPool pool(allocAligned, nullptr);
  37. printf("\nOffline compilers stats:\n");
  38. fflush(stdout);
  39. class Stats
  40. {
  41. public:
  42. class
  43. {
  44. public:
  45. F64 m_fma;
  46. F64 m_cvt;
  47. F64 m_sfu;
  48. F64 m_loadStore;
  49. F64 m_varying;
  50. F64 m_texture;
  51. F64 m_workRegisters;
  52. F64 m_fp16ArithmeticPercentage;
  53. F64 m_spillingCount;
  54. } m_arm;
  55. class
  56. {
  57. public:
  58. F64 m_vgprCount;
  59. F64 m_sgprCount;
  60. F64 m_isaSize;
  61. } m_amd;
  62. Stats(F64 v)
  63. {
  64. m_arm.m_fma = m_arm.m_cvt = m_arm.m_sfu = m_arm.m_loadStore = m_arm.m_varying = m_arm.m_texture =
  65. m_arm.m_workRegisters = m_arm.m_fp16ArithmeticPercentage = m_arm.m_spillingCount = v;
  66. m_amd.m_vgprCount = m_amd.m_sgprCount = m_amd.m_isaSize = v;
  67. }
  68. Stats()
  69. : Stats(0.0)
  70. {
  71. }
  72. void op(const Stats& b, void (*func)(F64& a, F64 b))
  73. {
  74. func(m_arm.m_fma, b.m_arm.m_fma);
  75. func(m_arm.m_cvt, b.m_arm.m_cvt);
  76. func(m_arm.m_sfu, b.m_arm.m_sfu);
  77. func(m_arm.m_loadStore, b.m_arm.m_loadStore);
  78. func(m_arm.m_varying, b.m_arm.m_varying);
  79. func(m_arm.m_texture, b.m_arm.m_texture);
  80. func(m_arm.m_workRegisters, b.m_arm.m_workRegisters);
  81. func(m_arm.m_fp16ArithmeticPercentage, b.m_arm.m_fp16ArithmeticPercentage);
  82. func(m_arm.m_spillingCount, b.m_arm.m_spillingCount);
  83. func(m_amd.m_vgprCount, b.m_amd.m_vgprCount);
  84. func(m_amd.m_sgprCount, b.m_amd.m_sgprCount);
  85. func(m_amd.m_isaSize, b.m_amd.m_isaSize);
  86. }
  87. };
  88. class StageStats
  89. {
  90. public:
  91. Stats m_avgStats{0.0};
  92. Stats m_maxStats{-1.0};
  93. Stats m_minStats{kMaxF64};
  94. U32 m_spillingCount = 0;
  95. U32 m_count = 0;
  96. };
  97. class Ctx
  98. {
  99. public:
  100. HeapMemoryPool* m_pool = nullptr;
  101. DynamicArrayRaii<Stats> m_spirvStats{m_pool};
  102. DynamicArrayRaii<Atomic<U32>> m_spirvVisited{m_pool};
  103. Atomic<U32> m_variantCount = {0};
  104. const ShaderProgramBinary* m_bin = nullptr;
  105. Atomic<I32> m_error = {0};
  106. Ctx(HeapMemoryPool* pool)
  107. : m_pool(pool)
  108. {
  109. }
  110. };
  111. Ctx ctx(&pool);
  112. ctx.m_bin = &bin;
  113. ctx.m_spirvStats.create(bin.m_codeBlocks.getSize());
  114. ctx.m_spirvVisited.create(bin.m_codeBlocks.getSize());
  115. memset(ctx.m_spirvVisited.getBegin(), 0, ctx.m_spirvVisited.getSizeInBytes());
  116. ThreadHive hive(getCpuCoresCount(), &pool);
  117. ThreadHiveTaskCallback callback = [](void* userData, [[maybe_unused]] U32 threadId,
  118. [[maybe_unused]] ThreadHive& hive,
  119. [[maybe_unused]] ThreadHiveSemaphore* signalSemaphore) {
  120. Ctx& ctx = *static_cast<Ctx*>(userData);
  121. U32 variantIdx;
  122. while((variantIdx = ctx.m_variantCount.fetchAdd(1)) < ctx.m_bin->m_variants.getSize()
  123. && ctx.m_error.load() == 0)
  124. {
  125. const ShaderProgramBinaryVariant& variant = ctx.m_bin->m_variants[variantIdx];
  126. for(ShaderType shaderType : EnumIterable<ShaderType>())
  127. {
  128. const U32 codeblockIdx = variant.m_codeBlockIndices[shaderType];
  129. if(codeblockIdx == kMaxU32)
  130. {
  131. continue;
  132. }
  133. const Bool visited = ctx.m_spirvVisited[codeblockIdx].fetchAdd(1) != 0;
  134. if(visited)
  135. {
  136. continue;
  137. }
  138. const ShaderProgramBinaryCodeBlock& codeBlock = ctx.m_bin->m_codeBlocks[codeblockIdx];
  139. // Arm stats
  140. MaliOfflineCompilerOut maliocOut;
  141. Error err = runMaliOfflineCompiler(
  142. #if ANKI_OS_LINUX
  143. ANKI_SOURCE_DIRECTORY "/ThirdParty/Bin/Linux64/MaliOfflineCompiler/malioc",
  144. #elif ANKI_OS_WINDOWS
  145. ANKI_SOURCE_DIRECTORY "/ThirdParty/Bin/Windows64/MaliOfflineCompiler/malioc.exe",
  146. #else
  147. # error "Not supported"
  148. #endif
  149. codeBlock.m_binary, shaderType, *ctx.m_pool, maliocOut);
  150. if(err)
  151. {
  152. ANKI_LOGE("Mali offline compiler failed");
  153. ctx.m_error.store(1);
  154. break;
  155. }
  156. // AMD
  157. RgaOutput rgaOut = {};
  158. #if 0
  159. err = runRadeonGpuAnalyzer(
  160. # if ANKI_OS_LINUX
  161. ANKI_SOURCE_DIRECTORY "/ThirdParty/Bin/Linux64/RadeonGpuAnalyzer/rga",
  162. # elif ANKI_OS_WINDOWS
  163. ANKI_SOURCE_DIRECTORY "/ThirdParty/Bin/Windows64/RadeonGpuAnalyzer/rga.exe",
  164. # else
  165. # error "Not supported"
  166. # endif
  167. codeBlock.m_binary, shaderType, *ctx.m_pool, rgaOut);
  168. if(err)
  169. {
  170. ANKI_LOGE("Radeon GPU Analyzer compiler failed");
  171. ctx.m_error.store(1);
  172. break;
  173. }
  174. #endif
  175. // Write stats
  176. Stats& stats = ctx.m_spirvStats[codeblockIdx];
  177. stats.m_arm.m_fma = maliocOut.m_fma;
  178. stats.m_arm.m_cvt = maliocOut.m_cvt;
  179. stats.m_arm.m_sfu = maliocOut.m_sfu;
  180. stats.m_arm.m_loadStore = maliocOut.m_loadStore;
  181. stats.m_arm.m_varying = maliocOut.m_varying;
  182. stats.m_arm.m_texture = maliocOut.m_texture;
  183. stats.m_arm.m_workRegisters = maliocOut.m_workRegisters;
  184. stats.m_arm.m_fp16ArithmeticPercentage = maliocOut.m_fp16ArithmeticPercentage;
  185. stats.m_arm.m_spillingCount = (maliocOut.m_spilling) ? 1.0 : 0.0;
  186. stats.m_amd.m_vgprCount = F64(rgaOut.m_vgprCount);
  187. stats.m_amd.m_sgprCount = F64(rgaOut.m_sgprCount);
  188. stats.m_amd.m_isaSize = F64(rgaOut.m_isaSize);
  189. }
  190. if(variantIdx > 0 && ((variantIdx + 1) % 32) == 0)
  191. {
  192. printf("Processed %u out of %u variants\n", variantIdx + 1, ctx.m_bin->m_variants.getSize());
  193. }
  194. } // while
  195. };
  196. for(U32 i = 0; i < hive.getThreadCount(); ++i)
  197. {
  198. hive.submitTask(callback, &ctx);
  199. }
  200. hive.waitAllTasks();
  201. if(ctx.m_error.load() != 0)
  202. {
  203. return Error::kFunctionFailed;
  204. }
  205. // Cather the results
  206. Array<StageStats, U32(ShaderType::kCount)> allStageStats;
  207. for(const ShaderProgramBinaryVariant& variant : bin.m_variants)
  208. {
  209. for(ShaderType stage : EnumIterable<ShaderType>())
  210. {
  211. if(variant.m_codeBlockIndices[stage] == kMaxU32)
  212. {
  213. continue;
  214. }
  215. const Stats& stats = ctx.m_spirvStats[variant.m_codeBlockIndices[stage]];
  216. StageStats& allStats = allStageStats[stage];
  217. ++allStats.m_count;
  218. allStats.m_avgStats.op(stats, [](F64& a, F64 b) {
  219. a += b;
  220. });
  221. allStats.m_minStats.op(stats, [](F64& a, F64 b) {
  222. a = min(a, b);
  223. });
  224. allStats.m_maxStats.op(stats, [](F64& a, F64 b) {
  225. a = max(a, b);
  226. });
  227. }
  228. }
  229. // Print
  230. for(ShaderType shaderType : EnumIterable<ShaderType>())
  231. {
  232. const StageStats& stage = allStageStats[shaderType];
  233. if(stage.m_count == 0)
  234. {
  235. continue;
  236. }
  237. printf("Stage %u\n", U32(shaderType));
  238. printf(" Arm shaders spilling regs %u\n", stage.m_spillingCount);
  239. const F64 countf = F64(stage.m_count);
  240. const Stats& avg = stage.m_avgStats;
  241. printf(" Average:\n");
  242. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n",
  243. avg.m_arm.m_workRegisters / countf, avg.m_arm.m_fma / countf, avg.m_arm.m_cvt / countf,
  244. avg.m_arm.m_sfu / countf, avg.m_arm.m_loadStore / countf, avg.m_arm.m_varying / countf,
  245. avg.m_arm.m_texture / countf, avg.m_arm.m_fp16ArithmeticPercentage / countf);
  246. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", avg.m_amd.m_vgprCount / countf, avg.m_amd.m_sgprCount / countf,
  247. avg.m_amd.m_isaSize / countf);
  248. const Stats& maxs = stage.m_maxStats;
  249. printf(" Max:\n");
  250. printf(" Arm: Regs %f FMA %f CVT %f SFU %f LS %f VAR %f TEX %f FP16 %f%%\n", maxs.m_arm.m_workRegisters,
  251. maxs.m_arm.m_fma, maxs.m_arm.m_cvt, maxs.m_arm.m_sfu, maxs.m_arm.m_loadStore, maxs.m_arm.m_varying,
  252. maxs.m_arm.m_texture, maxs.m_arm.m_fp16ArithmeticPercentage);
  253. printf(" AMD: VGPR %f SGPR %f ISA size %f\n", maxs.m_amd.m_vgprCount, maxs.m_amd.m_sgprCount,
  254. maxs.m_amd.m_isaSize);
  255. }
  256. return Error::kNone;
  257. }
  258. Error dump(CString fname, Bool bDumpStats)
  259. {
  260. HeapMemoryPool pool(allocAligned, nullptr);
  261. ShaderProgramBinaryWrapper binw(&pool);
  262. ANKI_CHECK(binw.deserializeFromFile(fname));
  263. StringRaii txt(&pool);
  264. dumpShaderProgramBinary(binw.getBinary(), txt);
  265. printf("%s\n", txt.cstr());
  266. if(bDumpStats)
  267. {
  268. ANKI_CHECK(dumpStats(binw.getBinary()));
  269. }
  270. return Error::kNone;
  271. }
  272. int main(int argc, char** argv)
  273. {
  274. HeapMemoryPool pool(allocAligned, nullptr);
  275. StringRaii filename(&pool);
  276. Bool dumpStats;
  277. if(parseCommandLineArgs(WeakArray<char*>(argv, argc), dumpStats, filename))
  278. {
  279. ANKI_LOGE(kUsage, argv[0]);
  280. return 1;
  281. }
  282. const Error err = dump(filename, dumpStats);
  283. if(err)
  284. {
  285. ANKI_LOGE("Can't dump due to an error. Bye");
  286. return 1;
  287. }
  288. return 0;
  289. }