Renderer.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Renderer.h>
  6. #include <AnKi/Util/Tracer.h>
  7. #include <AnKi/Core/CVarSet.h>
  8. #include <AnKi/Util/HighRezTimer.h>
  9. #include <AnKi/Collision/Aabb.h>
  10. #include <AnKi/Collision/Plane.h>
  11. #include <AnKi/Collision/Functions.h>
  12. #include <AnKi/Shaders/Include/ClusteredShadingTypes.h>
  13. #include <AnKi/Core/GpuMemory/GpuSceneBuffer.h>
  14. #include <AnKi/Scene/Components/CameraComponent.h>
  15. #include <AnKi/Scene/Components/LightComponent.h>
  16. #include <AnKi/Renderer/ProbeReflections.h>
  17. #include <AnKi/Renderer/GBuffer.h>
  18. #include <AnKi/Renderer/GBufferPost.h>
  19. #include <AnKi/Renderer/LightShading.h>
  20. #include <AnKi/Renderer/ShadowMapping.h>
  21. #include <AnKi/Renderer/FinalComposite.h>
  22. #include <AnKi/Renderer/Bloom.h>
  23. #include <AnKi/Renderer/Tonemapping.h>
  24. #include <AnKi/Renderer/ForwardShading.h>
  25. #include <AnKi/Renderer/LensFlare.h>
  26. #include <AnKi/Renderer/Dbg.h>
  27. #include <AnKi/Renderer/DownscaleBlur.h>
  28. #include <AnKi/Renderer/VolumetricFog.h>
  29. #include <AnKi/Renderer/DepthDownscale.h>
  30. #include <AnKi/Renderer/TemporalAA.h>
  31. #include <AnKi/Renderer/UiStage.h>
  32. #include <AnKi/Renderer/VolumetricLightingAccumulation.h>
  33. #include <AnKi/Renderer/IndirectDiffuseProbes.h>
  34. #include <AnKi/Renderer/ShadowmapsResolve.h>
  35. #include <AnKi/Renderer/RtShadows.h>
  36. #include <AnKi/Renderer/AccelerationStructureBuilder.h>
  37. #include <AnKi/Renderer/MotionVectors.h>
  38. #include <AnKi/Renderer/Scale.h>
  39. #include <AnKi/Renderer/VrsSriGeneration.h>
  40. #include <AnKi/Renderer/PrimaryNonRenderableVisibility.h>
  41. #include <AnKi/Renderer/ClusterBinning.h>
  42. #include <AnKi/Renderer/Ssao.h>
  43. #include <AnKi/Renderer/Ssr.h>
  44. #include <AnKi/Renderer/Sky.h>
  45. #include <AnKi/Core/StatsSet.h>
  46. namespace anki {
  47. static NumericCVar<F32> g_internalRenderScalingCVar(CVarSubsystem::kRenderer, "InternalRenderScaling", 1.0f, 0.5f, 1.0f,
  48. "A factor over the requested swapchain resolution. Applies to all passes up to TAA");
  49. NumericCVar<F32> g_renderScalingCVar(CVarSubsystem::kRenderer, "RenderScaling", 1.0f, 0.5f, 8.0f,
  50. "A factor over the requested swapchain resolution. Applies to post-processing and UI");
  51. static NumericCVar<U32> g_zSplitCountCVar(CVarSubsystem::kRenderer, "ZSplitCount", 64, 8, kMaxZsplitCount, "Clusterer number of Z splits");
  52. static NumericCVar<U8> g_textureAnisotropyCVar(CVarSubsystem::kRenderer, "TextureAnisotropy", (ANKI_PLATFORM_MOBILE) ? 1 : 16, 1, 16,
  53. "Texture anisotropy for the main passes");
  54. BoolCVar g_preferComputeCVar(CVarSubsystem::kRenderer, "PreferCompute", !ANKI_PLATFORM_MOBILE, "Prefer compute shaders");
  55. static BoolCVar g_highQualityHdrCVar(CVarSubsystem::kRenderer, "HighQualityHdr", !ANKI_PLATFORM_MOBILE,
  56. "If true use R16G16B16 for HDR images. Alternatively use B10G11R11");
  57. BoolCVar g_vrsLimitTo2x2CVar(CVarSubsystem::kRenderer, "VrsLimitTo2x2", false, "If true the max rate will be 2x2");
  58. BoolCVar g_vrsCVar(CVarSubsystem::kRenderer, "Vrs", true, "Enable VRS in multiple passes");
  59. BoolCVar g_rayTracedShadowsCVar(CVarSubsystem::kRenderer, "RayTracedShadows", true,
  60. "Enable or not ray traced shadows. Ignored if RT is not supported");
  61. NumericCVar<U8> g_shadowCascadeCountCVar(CVarSubsystem::kRenderer, "ShadowCascadeCount", (ANKI_PLATFORM_MOBILE) ? 3 : kMaxShadowCascades, 1,
  62. kMaxShadowCascades, "Max number of shadow cascades for directional lights");
  63. NumericCVar<F32> g_shadowCascade0DistanceCVar(CVarSubsystem::kRenderer, "ShadowCascade0Distance", 18.0, 1.0, kMaxF32,
  64. "The distance of the 1st cascade");
  65. NumericCVar<F32> g_shadowCascade1DistanceCVar(CVarSubsystem::kRenderer, "ShadowCascade1Distance", (ANKI_PLATFORM_MOBILE) ? 80.0f : 40.0, 1.0, kMaxF32,
  66. "The distance of the 2nd cascade");
  67. NumericCVar<F32> g_shadowCascade2DistanceCVar(CVarSubsystem::kRenderer, "ShadowCascade2Distance", (ANKI_PLATFORM_MOBILE) ? 150.0f : 80.0, 1.0,
  68. kMaxF32, "The distance of the 3rd cascade");
  69. NumericCVar<F32> g_shadowCascade3DistanceCVar(CVarSubsystem::kRenderer, "ShadowCascade3Distance", 200.0, 1.0, kMaxF32,
  70. "The distance of the 4th cascade");
  71. NumericCVar<F32> g_lod0MaxDistanceCVar(CVarSubsystem::kRenderer, "Lod0MaxDistance", 20.0f, 1.0f, kMaxF32,
  72. "Distance that will be used to calculate the LOD 0");
  73. NumericCVar<F32> g_lod1MaxDistanceCVar(CVarSubsystem::kRenderer, "Lod1MaxDistance", 40.0f, 2.0f, kMaxF32,
  74. "Distance that will be used to calculate the LOD 1");
  75. static StatCounter g_primitivesDrawnStatVar(StatCategory::kRenderer, "Primitives drawn", StatFlag::kMainThreadUpdates | StatFlag::kZeroEveryFrame);
  76. /// Generate a Halton jitter in [-0.5, 0.5]
  77. static Vec2 generateJitter(U32 frame)
  78. {
  79. // Halton jitter
  80. Vec2 result(0.0f);
  81. constexpr U32 baseX = 2;
  82. U32 index = frame + 1;
  83. F32 invBase = 1.0f / baseX;
  84. F32 fraction = invBase;
  85. while(index > 0)
  86. {
  87. result.x() += F32(index % baseX) * fraction;
  88. index /= baseX;
  89. fraction *= invBase;
  90. }
  91. constexpr U32 baseY = 3;
  92. index = frame + 1;
  93. invBase = 1.0f / baseY;
  94. fraction = invBase;
  95. while(index > 0)
  96. {
  97. result.y() += F32(index % baseY) * fraction;
  98. index /= baseY;
  99. fraction *= invBase;
  100. }
  101. result.x() -= 0.5f;
  102. result.y() -= 0.5f;
  103. return result;
  104. }
  105. Renderer::Renderer()
  106. {
  107. }
  108. Renderer::~Renderer()
  109. {
  110. }
  111. Error Renderer::init(UVec2 swapchainSize, StackMemoryPool* framePool)
  112. {
  113. ANKI_TRACE_SCOPED_EVENT(RInit);
  114. m_framePool = framePool;
  115. const Error err = initInternal(swapchainSize);
  116. if(err)
  117. {
  118. ANKI_R_LOGE("Failed to initialize the renderer");
  119. }
  120. return err;
  121. }
  122. Error Renderer::initInternal(UVec2 swapchainResolution)
  123. {
  124. m_frameCount = 0;
  125. // Set from the config
  126. m_postProcessResolution = UVec2(Vec2(swapchainResolution) * g_renderScalingCVar.get());
  127. alignRoundDown(2, m_postProcessResolution.x());
  128. alignRoundDown(2, m_postProcessResolution.y());
  129. m_internalResolution = UVec2(Vec2(m_postProcessResolution) * g_internalRenderScalingCVar.get());
  130. alignRoundDown(2, m_internalResolution.x());
  131. alignRoundDown(2, m_internalResolution.y());
  132. ANKI_R_LOGI("Initializing offscreen renderer. Resolution %ux%u. Internal resolution %ux%u", m_postProcessResolution.x(),
  133. m_postProcessResolution.y(), m_internalResolution.x(), m_internalResolution.y());
  134. m_tileCounts.x() = (m_internalResolution.x() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  135. m_tileCounts.y() = (m_internalResolution.y() + kClusteredShadingTileSize - 1) / kClusteredShadingTileSize;
  136. m_zSplitCount = g_zSplitCountCVar.get();
  137. // A few sanity checks
  138. if(m_internalResolution.x() < 64 || m_internalResolution.y() < 64)
  139. {
  140. ANKI_R_LOGE("Incorrect sizes");
  141. return Error::kUserData;
  142. }
  143. ANKI_CHECK(ResourceManager::getSingleton().loadResource("ShaderBinaries/ClearTextureCompute.ankiprogbin", m_clearTexComputeProg));
  144. // Dummy resources
  145. {
  146. TextureInitInfo texinit("RendererDummy");
  147. texinit.m_width = texinit.m_height = 4;
  148. texinit.m_usage = TextureUsageBit::kAllSampled | TextureUsageBit::kStorageComputeWrite;
  149. texinit.m_format = Format::kR8G8B8A8_Unorm;
  150. TexturePtr tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  151. TextureViewInitInfo viewinit(tex.get());
  152. m_dummyTexView2d = GrManager::getSingleton().newTextureView(viewinit);
  153. texinit.m_depth = 4;
  154. texinit.m_type = TextureType::k3D;
  155. tex = createAndClearRenderTarget(texinit, TextureUsageBit::kAllSampled);
  156. viewinit = TextureViewInitInfo(tex.get());
  157. m_dummyTexView3d = GrManager::getSingleton().newTextureView(viewinit);
  158. m_dummyBuff = GrManager::getSingleton().newBuffer(
  159. BufferInitInfo(1024, BufferUsageBit::kAllUniform | BufferUsageBit::kAllStorage, BufferMapAccessBit::kNone, "Dummy"));
  160. }
  161. // Init the stages
  162. #define ANKI_RENDERER_OBJECT_DEF(name, name2, initCondition) \
  163. if(initCondition) \
  164. { \
  165. m_##name2.reset(newInstance<name>(RendererMemoryPool::getSingleton())); \
  166. ANKI_CHECK(m_##name2->init()); \
  167. }
  168. #include <AnKi/Renderer/RendererObject.def.h>
  169. // Init samplers
  170. {
  171. SamplerInitInfo sinit("NearestNearestClamp");
  172. sinit.m_addressing = SamplingAddressing::kClamp;
  173. sinit.m_mipmapFilter = SamplingFilter::kNearest;
  174. sinit.m_minMagFilter = SamplingFilter::kNearest;
  175. m_samplers.m_nearestNearestClamp = GrManager::getSingleton().newSampler(sinit);
  176. sinit.setName("TrilinearClamp");
  177. sinit.m_minMagFilter = SamplingFilter::kLinear;
  178. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  179. m_samplers.m_trilinearClamp = GrManager::getSingleton().newSampler(sinit);
  180. sinit.setName("TrilinearRepeat");
  181. sinit.m_addressing = SamplingAddressing::kRepeat;
  182. m_samplers.m_trilinearRepeat = GrManager::getSingleton().newSampler(sinit);
  183. if(g_textureAnisotropyCVar.get() <= 1u)
  184. {
  185. m_samplers.m_trilinearRepeatAniso = m_samplers.m_trilinearRepeat;
  186. }
  187. else
  188. {
  189. sinit.setName("TrilinearRepeatAniso");
  190. sinit.m_anisotropyLevel = g_textureAnisotropyCVar.get();
  191. m_samplers.m_trilinearRepeatAniso = GrManager::getSingleton().newSampler(sinit);
  192. }
  193. sinit.setName("TrilinearRepeatAnisoRezScalingBias");
  194. F32 scalingMipBias = log2(F32(m_internalResolution.x()) / F32(m_postProcessResolution.x()));
  195. if(getScale().getUsingGrUpscaler())
  196. {
  197. // DLSS wants more bias
  198. scalingMipBias -= 1.0f;
  199. }
  200. sinit.m_lodBias = scalingMipBias;
  201. m_samplers.m_trilinearRepeatAnisoResolutionScalingBias = GrManager::getSingleton().newSampler(sinit);
  202. sinit = {};
  203. sinit.setName("TrilinearClampShadow");
  204. sinit.m_minMagFilter = SamplingFilter::kLinear;
  205. sinit.m_mipmapFilter = SamplingFilter::kLinear;
  206. sinit.m_compareOperation = CompareOperation::kLessEqual;
  207. m_samplers.m_trilinearClampShadow = GrManager::getSingleton().newSampler(sinit);
  208. }
  209. for(U32 i = 0; i < m_jitterOffsets.getSize(); ++i)
  210. {
  211. m_jitterOffsets[i] = generateJitter(i);
  212. }
  213. ANKI_CHECK(m_visibility.init());
  214. ANKI_CHECK(m_nonRenderablesVisibility.init());
  215. ANKI_CHECK(m_asVisibility.init());
  216. ANKI_CHECK(m_hzbGenerator.init());
  217. ANKI_CHECK(m_sceneDrawer.init());
  218. return Error::kNone;
  219. }
  220. Error Renderer::populateRenderGraph(RenderingContext& ctx)
  221. {
  222. #if ANKI_STATS_ENABLED
  223. updatePipelineStats();
  224. #endif
  225. const CameraComponent& cam = SceneGraph::getSingleton().getActiveCameraNode().getFirstComponentOfType<CameraComponent>();
  226. ctx.m_prevMatrices = m_prevMatrices;
  227. ctx.m_matrices.m_cameraTransform = Mat3x4(cam.getFrustum().getWorldTransform());
  228. ctx.m_matrices.m_view = cam.getFrustum().getViewMatrix();
  229. ctx.m_matrices.m_projection = cam.getFrustum().getProjectionMatrix();
  230. ctx.m_matrices.m_viewProjection = cam.getFrustum().getViewProjectionMatrix();
  231. Vec2 jitter = m_jitterOffsets[m_frameCount & (m_jitterOffsets.getSize() - 1)]; // In [-0.5, 0.5]
  232. jitter *= 2.0f; // In [-1, 1]
  233. const Vec2 ndcPixelSize = 1.0f / Vec2(m_internalResolution);
  234. jitter *= ndcPixelSize;
  235. ctx.m_matrices.m_jitter = Mat4::getIdentity();
  236. ctx.m_matrices.m_jitter.setTranslationPart(Vec3(jitter, 0.0f));
  237. ctx.m_matrices.m_jitterOffsetNdc = jitter;
  238. ctx.m_matrices.m_projectionJitter = ctx.m_matrices.m_jitter * ctx.m_matrices.m_projection;
  239. ctx.m_matrices.m_viewProjectionJitter = ctx.m_matrices.m_projectionJitter * Mat4(ctx.m_matrices.m_view, Vec4(0.0f, 0.0f, 0.0f, 1.0f));
  240. ctx.m_matrices.m_invertedViewProjectionJitter = ctx.m_matrices.m_viewProjectionJitter.getInverse();
  241. ctx.m_matrices.m_invertedViewProjection = ctx.m_matrices.m_viewProjection.getInverse();
  242. ctx.m_matrices.m_invertedProjectionJitter = ctx.m_matrices.m_projectionJitter.getInverse();
  243. ctx.m_matrices.m_reprojection = ctx.m_prevMatrices.m_viewProjection * ctx.m_matrices.m_invertedViewProjection;
  244. ctx.m_matrices.m_unprojectionParameters = ctx.m_matrices.m_projection.extractPerspectiveUnprojectionParams();
  245. ctx.m_cameraNear = cam.getNear();
  246. ctx.m_cameraFar = cam.getFar();
  247. // Allocate global constants
  248. GlobalRendererUniforms* globalUnis;
  249. ctx.m_globalRenderingUniformsBuffer = RebarTransientMemoryPool::getSingleton().allocateFrame(1, globalUnis);
  250. // Import RTs first
  251. m_downscaleBlur->importRenderTargets(ctx);
  252. m_tonemapping->importRenderTargets(ctx);
  253. m_vrsSriGeneration->importRenderTargets(ctx);
  254. m_gbuffer->importRenderTargets(ctx);
  255. // Populate render graph. WARNING Watch the order
  256. gpuSceneCopy(ctx);
  257. m_primaryNonRenderableVisibility->populateRenderGraph(ctx);
  258. if(m_accelerationStructureBuilder)
  259. {
  260. m_accelerationStructureBuilder->populateRenderGraph(ctx);
  261. }
  262. m_gbuffer->populateRenderGraph(ctx);
  263. m_shadowMapping->populateRenderGraph(ctx);
  264. m_clusterBinning2->populateRenderGraph(ctx);
  265. m_sky->populateRenderGraph(ctx);
  266. m_indirectDiffuseProbes->populateRenderGraph(ctx);
  267. m_probeReflections->populateRenderGraph(ctx);
  268. m_volumetricLightingAccumulation->populateRenderGraph(ctx);
  269. m_motionVectors->populateRenderGraph(ctx);
  270. m_gbufferPost->populateRenderGraph(ctx);
  271. m_depthDownscale->populateRenderGraph(ctx);
  272. m_ssr->populateRenderGraph(ctx);
  273. if(m_rtShadows)
  274. {
  275. m_rtShadows->populateRenderGraph(ctx);
  276. }
  277. m_shadowmapsResolve->populateRenderGraph(ctx);
  278. m_volumetricFog->populateRenderGraph(ctx);
  279. m_lensFlare->populateRenderGraph(ctx);
  280. m_ssao->populateRenderGraph(ctx);
  281. m_forwardShading->populateRenderGraph(ctx); // This may feel out of place but it's only visibility. Keep it just before light shading
  282. m_lightShading->populateRenderGraph(ctx);
  283. if(!getScale().getUsingGrUpscaler())
  284. {
  285. m_temporalAA->populateRenderGraph(ctx);
  286. }
  287. m_vrsSriGeneration->populateRenderGraph(ctx);
  288. m_scale->populateRenderGraph(ctx);
  289. m_downscaleBlur->populateRenderGraph(ctx);
  290. m_tonemapping->populateRenderGraph(ctx);
  291. m_bloom->populateRenderGraph(ctx);
  292. m_dbg->populateRenderGraph(ctx);
  293. m_finalComposite->populateRenderGraph(ctx);
  294. writeGlobalRendererConstants(ctx, *globalUnis);
  295. return Error::kNone;
  296. }
  297. void Renderer::writeGlobalRendererConstants(RenderingContext& ctx, GlobalRendererUniforms& unis)
  298. {
  299. ANKI_TRACE_SCOPED_EVENT(RWriteGlobalRendererConstants);
  300. unis.m_renderingSize = Vec2(F32(m_internalResolution.x()), F32(m_internalResolution.y()));
  301. unis.m_time = F32(HighRezTimer::getCurrentTime());
  302. unis.m_frame = m_frameCount & kMaxU32;
  303. Plane nearPlane;
  304. extractClipPlane(ctx.m_matrices.m_viewProjection, FrustumPlaneType::kNear, nearPlane);
  305. unis.m_nearPlaneWSpace = Vec4(nearPlane.getNormal().xyz(), nearPlane.getOffset());
  306. unis.m_near = ctx.m_cameraNear;
  307. unis.m_far = ctx.m_cameraFar;
  308. unis.m_cameraPosition = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz();
  309. unis.m_tileCounts = m_tileCounts;
  310. unis.m_zSplitCount = m_zSplitCount;
  311. unis.m_zSplitCountOverFrustumLength = F32(m_zSplitCount) / (ctx.m_cameraFar - ctx.m_cameraNear);
  312. unis.m_zSplitMagic.x() = (ctx.m_cameraNear - ctx.m_cameraFar) / (ctx.m_cameraNear * F32(m_zSplitCount));
  313. unis.m_zSplitMagic.y() = ctx.m_cameraFar / (ctx.m_cameraNear * F32(m_zSplitCount));
  314. unis.m_lightVolumeLastZSplit = min(g_volumetricLightingAccumulationFinalZSplitCVar.get() - 1, m_zSplitCount);
  315. unis.m_reflectionProbesMipCount = F32(m_probeReflections->getReflectionTextureMipmapCount());
  316. unis.m_matrices = ctx.m_matrices;
  317. unis.m_previousMatrices = ctx.m_prevMatrices;
  318. // Directional light
  319. const LightComponent* dirLight = SceneGraph::getSingleton().getDirectionalLight();
  320. if(dirLight)
  321. {
  322. DirectionalLight& out = unis.m_directionalLight;
  323. const U32 shadowCascadeCount = (dirLight->getShadowEnabled()) ? g_shadowCascadeCountCVar.get() : 0;
  324. out.m_diffuseColor = dirLight->getDiffuseColor().xyz();
  325. out.m_power = dirLight->getLightPower();
  326. out.m_shadowCascadeCount_31bit_active_1bit = shadowCascadeCount << 1u;
  327. out.m_shadowCascadeCount_31bit_active_1bit |= 1;
  328. out.m_direction = dirLight->getDirection();
  329. out.m_shadowCascadeDistances = Vec4(g_shadowCascade0DistanceCVar.get(), g_shadowCascade1DistanceCVar.get(),
  330. g_shadowCascade2DistanceCVar.get(), g_shadowCascade3DistanceCVar.get());
  331. for(U cascade = 0; cascade < shadowCascadeCount; ++cascade)
  332. {
  333. ANKI_ASSERT(ctx.m_dirLightTextureMatrices[cascade] != Mat4::getZero());
  334. out.m_textureMatrices[cascade] = ctx.m_dirLightTextureMatrices[cascade];
  335. }
  336. }
  337. else
  338. {
  339. unis.m_directionalLight.m_shadowCascadeCount_31bit_active_1bit = 0;
  340. }
  341. }
  342. void Renderer::finalize(const RenderingContext& ctx, Fence* fence)
  343. {
  344. ++m_frameCount;
  345. m_prevMatrices = ctx.m_matrices;
  346. m_readbaks.endFrame(fence);
  347. }
  348. TextureInitInfo Renderer::create2DRenderTargetInitInfo(U32 w, U32 h, Format format, TextureUsageBit usage, CString name)
  349. {
  350. ANKI_ASSERT(!!(usage & TextureUsageBit::kFramebufferWrite) || !!(usage & TextureUsageBit::kStorageComputeWrite));
  351. TextureInitInfo init(name);
  352. init.m_width = w;
  353. init.m_height = h;
  354. init.m_depth = 1;
  355. init.m_layerCount = 1;
  356. init.m_type = TextureType::k2D;
  357. init.m_format = format;
  358. init.m_mipmapCount = 1;
  359. init.m_samples = 1;
  360. init.m_usage = usage;
  361. return init;
  362. }
  363. RenderTargetDescription Renderer::create2DRenderTargetDescription(U32 w, U32 h, Format format, CString name)
  364. {
  365. RenderTargetDescription init(name);
  366. init.m_width = w;
  367. init.m_height = h;
  368. init.m_depth = 1;
  369. init.m_layerCount = 1;
  370. init.m_type = TextureType::k2D;
  371. init.m_format = format;
  372. init.m_mipmapCount = 1;
  373. init.m_samples = 1;
  374. init.m_usage = TextureUsageBit::kNone;
  375. return init;
  376. }
  377. TexturePtr Renderer::createAndClearRenderTarget(const TextureInitInfo& inf, TextureUsageBit initialUsage, const ClearValue& clearVal)
  378. {
  379. ANKI_ASSERT(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite) || !!(inf.m_usage & TextureUsageBit::kStorageComputeWrite));
  380. const U faceCount = (inf.m_type == TextureType::kCube || inf.m_type == TextureType::kCubeArray) ? 6 : 1;
  381. Bool useCompute = false;
  382. if(!!(inf.m_usage & TextureUsageBit::kFramebufferWrite))
  383. {
  384. useCompute = false;
  385. }
  386. else if(!!(inf.m_usage & TextureUsageBit::kStorageComputeWrite))
  387. {
  388. useCompute = true;
  389. }
  390. else
  391. {
  392. ANKI_ASSERT(!"Can't handle that");
  393. }
  394. // Create tex
  395. TexturePtr tex = GrManager::getSingleton().newTexture(inf);
  396. // Clear all surfaces
  397. CommandBufferInitInfo cmdbinit;
  398. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  399. if((inf.m_mipmapCount * faceCount * inf.m_layerCount * 4) < kCommandBufferSmallBatchMaxCommands)
  400. {
  401. cmdbinit.m_flags |= CommandBufferFlag::kSmallBatch;
  402. }
  403. CommandBufferPtr cmdb = GrManager::getSingleton().newCommandBuffer(cmdbinit);
  404. for(U32 mip = 0; mip < inf.m_mipmapCount; ++mip)
  405. {
  406. for(U32 face = 0; face < faceCount; ++face)
  407. {
  408. for(U32 layer = 0; layer < inf.m_layerCount; ++layer)
  409. {
  410. TextureSurfaceInfo surf(mip, face, layer);
  411. if(!useCompute)
  412. {
  413. RenderTarget rt;
  414. rt.m_clearValue = clearVal;
  415. TextureViewPtr view;
  416. if(getFormatInfo(inf.m_format).isDepthStencil())
  417. {
  418. DepthStencilAspectBit aspect = DepthStencilAspectBit::kNone;
  419. if(getFormatInfo(inf.m_format).isDepth())
  420. {
  421. aspect |= DepthStencilAspectBit::kDepth;
  422. }
  423. if(getFormatInfo(inf.m_format).isStencil())
  424. {
  425. aspect |= DepthStencilAspectBit::kStencil;
  426. }
  427. view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf, aspect));
  428. rt.m_aspect = aspect;
  429. rt.m_view = view.get();
  430. }
  431. else
  432. {
  433. view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  434. rt.m_view = view.get();
  435. }
  436. TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, surf};
  437. barrier.m_subresource.m_depthStencilAspect = tex->getDepthStencilAspect();
  438. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  439. if(getFormatInfo(inf.m_format).isDepthStencil())
  440. {
  441. cmdb->beginRenderPass({}, &rt);
  442. }
  443. else
  444. {
  445. cmdb->beginRenderPass({rt});
  446. }
  447. cmdb->endRenderPass();
  448. if(!!initialUsage)
  449. {
  450. barrier.m_previousUsage = TextureUsageBit::kFramebufferWrite;
  451. barrier.m_nextUsage = initialUsage;
  452. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  453. }
  454. }
  455. else
  456. {
  457. // Compute
  458. ShaderProgramResourceVariantInitInfo variantInitInfo(m_clearTexComputeProg);
  459. variantInitInfo.addMutation("TEXTURE_DIMENSIONS", I32((inf.m_type == TextureType::k3D) ? 3 : 2));
  460. const FormatInfo formatInfo = getFormatInfo(inf.m_format);
  461. I32 componentType = 0;
  462. if(formatInfo.m_shaderType == 0)
  463. {
  464. componentType = 0;
  465. }
  466. else if(formatInfo.m_shaderType == 1)
  467. {
  468. componentType = 1;
  469. }
  470. else
  471. {
  472. ANKI_ASSERT(!"Not supported");
  473. }
  474. variantInitInfo.addMutation("COMPONENT_TYPE", componentType);
  475. const ShaderProgramResourceVariant* variant;
  476. m_clearTexComputeProg->getOrCreateVariant(variantInitInfo, variant);
  477. cmdb->bindShaderProgram(&variant->getProgram());
  478. cmdb->setPushConstants(&clearVal.m_colorf[0], sizeof(clearVal.m_colorf));
  479. TextureViewPtr view = GrManager::getSingleton().newTextureView(TextureViewInitInfo(tex.get(), surf));
  480. cmdb->bindStorageTexture(0, 0, view.get());
  481. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kNone, TextureUsageBit::kStorageComputeWrite, surf};
  482. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  483. UVec3 wgSize;
  484. wgSize.x() = (8 - 1 + (tex->getWidth() >> mip)) / 8;
  485. wgSize.y() = (8 - 1 + (tex->getHeight() >> mip)) / 8;
  486. wgSize.z() = (inf.m_type == TextureType::k3D) ? ((8 - 1 + (tex->getDepth() >> mip)) / 8) : 1;
  487. cmdb->dispatchCompute(wgSize.x(), wgSize.y(), wgSize.z());
  488. if(!!initialUsage)
  489. {
  490. const TextureBarrierInfo barrier = {tex.get(), TextureUsageBit::kStorageComputeWrite, initialUsage, surf};
  491. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  492. }
  493. }
  494. }
  495. }
  496. }
  497. cmdb->endRecording();
  498. FencePtr fence;
  499. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  500. fence->clientWait(10.0_sec);
  501. return tex;
  502. }
  503. void Renderer::registerDebugRenderTarget(RendererObject* obj, CString rtName)
  504. {
  505. #if ANKI_ASSERTIONS_ENABLED
  506. for(const DebugRtInfo& inf : m_debugRts)
  507. {
  508. ANKI_ASSERT(inf.m_rtName != rtName && "Choose different name");
  509. }
  510. #endif
  511. ANKI_ASSERT(obj);
  512. DebugRtInfo inf;
  513. inf.m_obj = obj;
  514. inf.m_rtName = rtName;
  515. m_debugRts.emplaceBack(std::move(inf));
  516. }
  517. Bool Renderer::getCurrentDebugRenderTarget(Array<RenderTargetHandle, kMaxDebugRenderTargets>& handles, ShaderProgramPtr& optionalShaderProgram)
  518. {
  519. if(m_currentDebugRtName.isEmpty()) [[likely]]
  520. {
  521. return false;
  522. }
  523. RendererObject* obj = nullptr;
  524. for(const DebugRtInfo& inf : m_debugRts)
  525. {
  526. if(inf.m_rtName == m_currentDebugRtName)
  527. {
  528. obj = inf.m_obj;
  529. }
  530. }
  531. if(obj)
  532. {
  533. obj->getDebugRenderTarget(m_currentDebugRtName, handles, optionalShaderProgram);
  534. return true;
  535. }
  536. else
  537. {
  538. ANKI_R_LOGE("Debug rendertarget doesn't exist: %s", m_currentDebugRtName.cstr());
  539. m_currentDebugRtName = {};
  540. return false;
  541. }
  542. }
  543. void Renderer::setCurrentDebugRenderTarget(CString rtName)
  544. {
  545. m_currentDebugRtName.destroy();
  546. if(!rtName.isEmpty() && rtName.getLength() > 0)
  547. {
  548. m_currentDebugRtName = rtName;
  549. }
  550. }
  551. Format Renderer::getHdrFormat() const
  552. {
  553. Format out;
  554. if(!g_highQualityHdrCVar.get())
  555. {
  556. out = Format::kB10G11R11_Ufloat_Pack32;
  557. }
  558. else if(GrManager::getSingleton().getDeviceCapabilities().m_unalignedBbpTextureFormats)
  559. {
  560. out = Format::kR16G16B16_Sfloat;
  561. }
  562. else
  563. {
  564. out = Format::kR16G16B16A16_Sfloat;
  565. }
  566. return out;
  567. }
  568. Format Renderer::getDepthNoStencilFormat() const
  569. {
  570. if(ANKI_PLATFORM_MOBILE)
  571. {
  572. return Format::kX8D24_Unorm_Pack32;
  573. }
  574. else
  575. {
  576. return Format::kD32_Sfloat;
  577. }
  578. }
  579. void Renderer::gpuSceneCopy(RenderingContext& ctx)
  580. {
  581. RenderGraphDescription& rgraph = ctx.m_renderGraphDescr;
  582. m_runCtx.m_gpuSceneHandle =
  583. rgraph.importBuffer(GpuSceneBuffer::getSingleton().getBufferView(), GpuSceneBuffer::getSingleton().getBuffer().getBufferUsage());
  584. if(GpuSceneMicroPatcher::getSingleton().patchingIsNeeded())
  585. {
  586. ComputeRenderPassDescription& rpass = rgraph.newComputeRenderPass("GPU scene patching");
  587. rpass.newBufferDependency(m_runCtx.m_gpuSceneHandle, BufferUsageBit::kStorageComputeWrite);
  588. rpass.setWork([](RenderPassWorkContext& rgraphCtx) {
  589. GpuSceneMicroPatcher::getSingleton().patchGpuScene(*rgraphCtx.m_commandBuffer);
  590. });
  591. }
  592. }
  593. #if ANKI_STATS_ENABLED
  594. void Renderer::updatePipelineStats()
  595. {
  596. RendererDynamicArray<PipelineQueryPtr>& arr = m_pipelineQueries[m_frameCount % kMaxFramesInFlight];
  597. U64 sum = 0;
  598. for(PipelineQueryPtr& q : arr)
  599. {
  600. U64 value;
  601. const PipelineQueryResult res = q->getResult(value);
  602. if(res == PipelineQueryResult::kNotAvailable)
  603. {
  604. ANKI_R_LOGW("Pipeline query result is not available");
  605. }
  606. else
  607. {
  608. sum += value;
  609. }
  610. }
  611. arr.destroy();
  612. g_primitivesDrawnStatVar.set(sum);
  613. }
  614. #endif
  615. } // end namespace anki