Gr.cpp 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633
  1. // Copyright (C) 2009-2023, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <Tests/Framework/Framework.h>
  6. #include <Tests/Gr/GrCommon.h>
  7. #include <AnKi/Gr.h>
  8. #include <AnKi/Window/NativeWindow.h>
  9. #include <AnKi/Window/Input.h>
  10. #include <AnKi/Core/CVarSet.h>
  11. #include <AnKi/Core/GpuMemory/RebarTransientMemoryPool.h>
  12. #include <AnKi/Util/HighRezTimer.h>
  13. #include <AnKi/Resource/TransferGpuAllocator.h>
  14. #include <AnKi/ShaderCompiler/ShaderProgramParser.h>
  15. #include <AnKi/Collision/Aabb.h>
  16. #include <AnKi/Util/WeakArray.h>
  17. #include <ctime>
  18. using namespace anki;
  19. const U WIDTH = 1024;
  20. const U HEIGHT = 768;
  21. static const char* VERT_QUAD_STRIP_SRC = R"(
  22. out gl_PerVertex
  23. {
  24. vec4 gl_Position;
  25. };
  26. layout(location = 0) out Vec2 out_uv;
  27. void main()
  28. {
  29. const vec2 POSITIONS[4] = vec2[](vec2(-1.0, -1.0), vec2(1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0));
  30. gl_Position = vec4(POSITIONS[gl_VertexID % 4], 0.0, 1.0);
  31. out_uv = gl_Position.xy / 2.0 + 0.5;
  32. })";
  33. static const char* VERT_UBO_SRC = R"(
  34. out gl_PerVertex
  35. {
  36. vec4 gl_Position;
  37. };
  38. layout(set = 0, binding = 0) uniform u0_
  39. {
  40. vec4 u_color[3];
  41. };
  42. layout(set = 0, binding = 1) uniform u1_
  43. {
  44. vec4 u_rotation2d;
  45. };
  46. layout(location = 0) out vec3 out_color;
  47. void main()
  48. {
  49. out_color = u_color[gl_VertexID].rgb;
  50. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  51. mat2 rot = mat2(
  52. u_rotation2d.x, u_rotation2d.y, u_rotation2d.z, u_rotation2d.w);
  53. vec2 pos = rot * POSITIONS[gl_VertexID % 3];
  54. gl_Position = vec4(pos, 0.0, 1.0);
  55. })";
  56. static const char* VERT_INP_SRC = R"(
  57. layout(location = 0) in vec3 in_position;
  58. layout(location = 1) in vec3 in_color0;
  59. layout(location = 2) in vec3 in_color1;
  60. out gl_PerVertex
  61. {
  62. vec4 gl_Position;
  63. };
  64. layout(location = 0) out vec3 out_color0;
  65. layout(location = 1) out vec3 out_color1;
  66. void main()
  67. {
  68. gl_Position = vec4(in_position, 1.0);
  69. out_color0 = in_color0;
  70. out_color1 = in_color1;
  71. })";
  72. static const char* VERT_QUAD_SRC = R"(
  73. out gl_PerVertex
  74. {
  75. vec4 gl_Position;
  76. };
  77. layout(location = 0) out vec2 out_uv;
  78. void main()
  79. {
  80. const vec2 POSITIONS[6] =
  81. vec2[](vec2(-1.0, 1.0), vec2(-1.0, -1.0), vec2(1.0, -1.0),
  82. vec2(1.0, -1.0), vec2(1.0, 1.0), vec2(-1.0, 1.0));
  83. gl_Position = vec4(POSITIONS[gl_VertexID], 0.0, 1.0);
  84. out_uv = POSITIONS[gl_VertexID] / 2.0 + 0.5;
  85. })";
  86. static const char* VERT_MRT_SRC = R"(
  87. out gl_PerVertex
  88. {
  89. vec4 gl_Position;
  90. };
  91. layout(location = 0) in vec3 in_pos;
  92. layout(set = 0, binding = 0, std140, row_major) uniform u0_
  93. {
  94. mat4 u_mvp;
  95. };
  96. void main()
  97. {
  98. gl_Position = u_mvp * vec4(in_pos, 1.0);
  99. })";
  100. static const char* FRAG_UBO_SRC = R"(layout (location = 0) out vec4 out_color;
  101. layout(location = 0) in vec3 in_color;
  102. void main()
  103. {
  104. out_color = vec4(in_color, 1.0);
  105. })";
  106. static const char* FRAG_INP_SRC = R"(layout (location = 0) out vec4 out_color;
  107. layout(location = 0) in vec3 in_color0;
  108. layout(location = 1) in vec3 in_color1;
  109. void main()
  110. {
  111. out_color = vec4(in_color0 + in_color1, 1.0);
  112. })";
  113. static const char* FRAG_TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  114. layout(location = 0) in vec2 in_uv;
  115. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  116. void main()
  117. {
  118. out_color = texture(u_tex0, in_uv);
  119. })";
  120. static const char* FRAG_TEX3D_SRC = R"(layout (location = 0) out vec4 out_color;
  121. layout(set = 0, binding = 0) uniform u0_
  122. {
  123. vec4 u_uv;
  124. };
  125. layout(set = 0, binding = 1) uniform sampler3D u_tex;
  126. void main()
  127. {
  128. out_color = textureLod(u_tex, u_uv.xyz, u_uv.w);
  129. })";
  130. static const char* FRAG_MRT_SRC = R"(layout (location = 0) out vec4 out_color0;
  131. layout (location = 1) out vec4 out_color1;
  132. layout(set = 0, binding = 1, std140) uniform u1_
  133. {
  134. vec4 u_color0;
  135. vec4 u_color1;
  136. };
  137. void main()
  138. {
  139. out_color0 = u_color0;
  140. out_color1 = u_color1;
  141. })";
  142. static const char* FRAG_MRT2_SRC = R"(layout (location = 0) out vec4 out_color;
  143. layout(location = 0) in vec2 in_uv;
  144. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  145. layout(set = 0, binding = 2) uniform sampler2D u_tex1;
  146. void main()
  147. {
  148. vec2 uv = in_uv;
  149. #ifdef ANKI_VK
  150. uv.y = 1.0 - uv.y;
  151. #endif
  152. float factor = uv.x;
  153. vec3 col0 = texture(u_tex0, uv).rgb;
  154. vec3 col1 = texture(u_tex1, uv).rgb;
  155. out_color = vec4(col1 + col0, 1.0);
  156. })";
  157. static const char* FRAG_SIMPLE_TEX_SRC = R"(
  158. layout (location = 0) out vec4 out_color;
  159. layout(location = 0) in vec2 in_uv;
  160. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  161. void main()
  162. {
  163. out_color = textureLod(u_tex0, in_uv, 1.0);
  164. })";
  165. static const char* COMP_WRITE_IMAGE_SRC = R"(
  166. layout(set = 0, binding = 0, rgba8) writeonly uniform image2D u_img;
  167. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  168. layout(set = 1, binding = 0) buffer ss1_
  169. {
  170. vec4 u_color;
  171. };
  172. void main()
  173. {
  174. imageStore(u_img, ivec2(gl_WorkGroupID.x, gl_WorkGroupID.y), u_color);
  175. })";
  176. static NativeWindow* g_win = nullptr;
  177. static GrManager* g_gr = nullptr;
  178. static RebarTransientMemoryPool* stagingMem = nullptr;
  179. static Input* input = nullptr;
  180. #define COMMON_BEGIN() \
  181. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr); \
  182. ShaderCompilerMemoryPool::allocateSingleton(allocAligned, nullptr); \
  183. g_windowWidthCVar.set(WIDTH); \
  184. g_windowHeightCVar.set(HEIGHT); \
  185. g_validationCVar.set(true); \
  186. g_vsyncCVar.set(false); \
  187. g_debugMarkersCVar.set(true); \
  188. g_win = createWindow(); \
  189. ANKI_TEST_EXPECT_NO_ERR(Input::allocateSingleton().init()); \
  190. g_gr = createGrManager(g_win); \
  191. RebarTransientMemoryPool::allocateSingleton().init(); \
  192. stagingMem = &RebarTransientMemoryPool::getSingleton(); \
  193. TransferGpuAllocator* transfAlloc = new TransferGpuAllocator(); \
  194. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->init(128_MB)); \
  195. while(true) \
  196. {
  197. #define COMMON_END() \
  198. break; \
  199. } \
  200. g_gr->finish(); \
  201. delete transfAlloc; \
  202. RebarTransientMemoryPool::freeSingleton(); \
  203. GrManager::freeSingleton(); \
  204. Input::freeSingleton(); \
  205. NativeWindow::freeSingleton(); \
  206. ShaderCompilerMemoryPool::freeSingleton(); \
  207. DefaultMemoryPool::freeSingleton(); \
  208. g_win = nullptr; \
  209. g_gr = nullptr;
  210. static void* setUniforms(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  211. {
  212. void* ptr;
  213. const RebarAllocation token = stagingMem->allocateFrame(size, ptr);
  214. cmdb->bindUniformBuffer(set, binding, token);
  215. return ptr;
  216. }
  217. static void* setStorage(PtrSize size, CommandBufferPtr& cmdb, U32 set, U32 binding)
  218. {
  219. void* ptr;
  220. const RebarAllocation token = stagingMem->allocateFrame(size, ptr);
  221. cmdb->bindStorageBuffer(set, binding, token);
  222. return ptr;
  223. }
  224. #define SET_UNIFORMS(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setUniforms(size_, cmdb_, set_, binding_))
  225. #define SET_STORAGE(type_, size_, cmdb_, set_, binding_) static_cast<type_>(setStorage(size_, cmdb_, set_, binding_))
  226. #define UPLOAD_TEX_SURFACE(cmdb_, tex_, surf_, ptr_, size_, handle_) \
  227. do \
  228. { \
  229. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  230. void* f = handle_.getMappedMemory(); \
  231. memcpy(f, ptr_, size_); \
  232. TextureViewPtr view = g_gr->newTextureView(TextureViewInitInfo(tex_.get(), surf_)); \
  233. cmdb_->copyBufferToTextureView(&handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view.get()); \
  234. } while(0)
  235. #define UPLOAD_TEX_VOL(cmdb_, tex_, vol_, ptr_, size_, handle_) \
  236. do \
  237. { \
  238. ANKI_TEST_EXPECT_NO_ERR(transfAlloc->allocate(size_, handle_)); \
  239. void* f = handle_.getMappedMemory(); \
  240. memcpy(f, ptr_, size_); \
  241. TextureViewPtr view = g_gr->newTextureView(TextureViewInitInfo(tex_.get(), vol_)); \
  242. cmdb_->copyBufferToTextureView(&handle_.getBuffer(), handle_.getOffset(), handle_.getRange(), view.get()); \
  243. } while(0)
  244. constexpr Format kDsFormat = Format::kD24_Unorm_S8_Uint;
  245. static ShaderProgramPtr createProgram(CString vertSrc, CString fragSrc, GrManager& gr)
  246. {
  247. ShaderPtr vert = createShader(vertSrc, ShaderType::kVertex, gr);
  248. ShaderPtr frag = createShader(fragSrc, ShaderType::kFragment, gr);
  249. ShaderProgramInitInfo inf;
  250. inf.m_graphicsShaders[ShaderType::kVertex] = vert.get();
  251. inf.m_graphicsShaders[ShaderType::kFragment] = frag.get();
  252. return gr.newShaderProgram(inf);
  253. }
  254. static void createCube(GrManager& gr, BufferPtr& verts, BufferPtr& indices)
  255. {
  256. static const Array<F32, 8 * 3> pos = {{1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1}};
  257. static const Array<U16, 6 * 2 * 3> idx = {
  258. {0, 1, 3, 3, 1, 2, 1, 5, 6, 1, 6, 2, 7, 4, 0, 7, 0, 3, 6, 5, 7, 7, 5, 4, 0, 4, 5, 0, 5, 1, 3, 2, 6, 3, 6, 7}};
  259. verts = gr.newBuffer(BufferInitInfo(sizeof(pos), BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  260. void* mapped = verts->map(0, sizeof(pos), BufferMapAccessBit::kWrite);
  261. memcpy(mapped, &pos[0], sizeof(pos));
  262. verts->unmap();
  263. indices = gr.newBuffer(BufferInitInfo(sizeof(idx), BufferUsageBit::kIndex, BufferMapAccessBit::kWrite));
  264. mapped = indices->map(0, sizeof(idx), BufferMapAccessBit::kWrite);
  265. memcpy(mapped, &idx[0], sizeof(idx));
  266. indices->unmap();
  267. }
  268. static void presentBarrierA(CommandBufferPtr cmdb, TexturePtr presentTex)
  269. {
  270. TextureBarrierInfo barrier;
  271. barrier.m_previousUsage = TextureUsageBit::kNone;
  272. barrier.m_nextUsage = TextureUsageBit::kFramebufferWrite;
  273. barrier.m_texture = presentTex.get();
  274. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  275. }
  276. static void presentBarrierB(CommandBufferPtr cmdb, TexturePtr presentTex)
  277. {
  278. TextureBarrierInfo barrier;
  279. barrier.m_previousUsage = TextureUsageBit::kFramebufferWrite;
  280. barrier.m_nextUsage = TextureUsageBit::kPresent;
  281. barrier.m_texture = presentTex.get();
  282. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  283. }
  284. static void setTextureSurfaceBarrier(CommandBufferPtr& cmdb, TexturePtr tex, TextureUsageBit before, TextureUsageBit after,
  285. const TextureSurfaceInfo& surf)
  286. {
  287. TextureBarrierInfo barrier;
  288. barrier.m_previousUsage = before;
  289. barrier.m_nextUsage = after;
  290. barrier.m_texture = tex.get();
  291. barrier.m_subresource = surf;
  292. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  293. }
  294. static void setTextureBarrier(CommandBufferPtr& cmdb, TexturePtr tex, TextureUsageBit before, TextureUsageBit after,
  295. const TextureSubresourceInfo& subresource)
  296. {
  297. TextureBarrierInfo barrier;
  298. barrier.m_previousUsage = before;
  299. barrier.m_nextUsage = after;
  300. barrier.m_texture = tex.get();
  301. barrier.m_subresource = subresource;
  302. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  303. }
  304. static void setTextureVolumeBarrier(CommandBufferPtr& cmdb, TexturePtr tex, TextureUsageBit before, TextureUsageBit after,
  305. const TextureVolumeInfo& vol)
  306. {
  307. TextureBarrierInfo barrier;
  308. barrier.m_previousUsage = before;
  309. barrier.m_nextUsage = after;
  310. barrier.m_texture = tex.get();
  311. barrier.m_subresource = vol;
  312. cmdb->setPipelineBarrier({&barrier, 1}, {}, {});
  313. }
  314. static void setBufferBarrier(CommandBufferPtr cmdb, BufferPtr buffer, BufferUsageBit before, BufferUsageBit after, PtrSize offset, PtrSize range)
  315. {
  316. BufferBarrierInfo barrier;
  317. barrier.m_previousUsage = before;
  318. barrier.m_nextUsage = after;
  319. barrier.m_bufferView = BufferView(buffer.get(), offset, range);
  320. cmdb->setPipelineBarrier({}, {&barrier, 1}, {});
  321. }
  322. static void setAccelerationStructureBarrier(CommandBufferPtr cmdb, AccelerationStructurePtr as, AccelerationStructureUsageBit before,
  323. AccelerationStructureUsageBit after)
  324. {
  325. AccelerationStructureBarrierInfo barrier;
  326. barrier.m_previousUsage = before;
  327. barrier.m_nextUsage = after;
  328. barrier.m_as = as.get();
  329. cmdb->setPipelineBarrier({}, {}, {&barrier, 1});
  330. }
  331. ANKI_TEST(Gr, GrManager)
  332. {
  333. g_validationCVar.set(true);
  334. DefaultMemoryPool::allocateSingleton(allocAligned, nullptr);
  335. g_win = createWindow();
  336. ANKI_TEST_EXPECT_NO_ERR(Input::allocateSingleton().init());
  337. g_gr = createGrManager(g_win);
  338. GrManager::freeSingleton();
  339. Input::freeSingleton();
  340. NativeWindow::freeSingleton();
  341. DefaultMemoryPool::freeSingleton();
  342. }
  343. ANKI_TEST(Gr, Shader)
  344. {
  345. COMMON_BEGIN()
  346. ShaderPtr shader = createShader(FRAG_MRT_SRC, ShaderType::kFragment, *g_gr);
  347. COMMON_END()
  348. }
  349. ANKI_TEST(Gr, ShaderProgram)
  350. {
  351. COMMON_BEGIN()
  352. constexpr const char* kVertSrc = R"(
  353. out gl_PerVertex
  354. {
  355. vec4 gl_Position;
  356. };
  357. void main()
  358. {
  359. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  360. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  361. })";
  362. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  363. void main()
  364. {
  365. out_color = vec4(0.5);
  366. })";
  367. ShaderProgramPtr ppline = createProgram(kVertSrc, kFragSrc, *g_gr);
  368. COMMON_END()
  369. }
  370. ANKI_TEST(Gr, ClearScreen)
  371. {
  372. COMMON_BEGIN()
  373. ANKI_TEST_LOGI("Expect to see a magenta background");
  374. constexpr U kIterations = 100;
  375. U iterations = kIterations;
  376. while(iterations--)
  377. {
  378. HighRezTimer timer;
  379. timer.start();
  380. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  381. CommandBufferInitInfo cinit;
  382. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  383. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  384. presentBarrierA(cmdb, presentTex);
  385. TextureViewInitInfo init;
  386. init.m_texture = presentTex.get();
  387. TextureViewPtr view = g_gr->newTextureView(init);
  388. RenderTarget rt;
  389. rt.m_view = view.get();
  390. const F32 col = 1.0f - F32(iterations) / F32(kIterations);
  391. rt.m_clearValue.m_colorf = {col, 0.0f, col, 1.0f};
  392. cmdb->beginRenderPass({rt});
  393. cmdb->endRenderPass();
  394. presentBarrierB(cmdb, presentTex);
  395. cmdb->endRecording();
  396. GrManager::getSingleton().submit(cmdb.get());
  397. g_gr->swapBuffers();
  398. timer.stop();
  399. const F32 TICK = 1.0f / 30.0f;
  400. if(timer.getElapsedTime() < TICK)
  401. {
  402. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  403. }
  404. }
  405. COMMON_END()
  406. }
  407. ANKI_TEST(Gr, SimpleDrawcall)
  408. {
  409. #if 0
  410. COMMON_BEGIN()
  411. constexpr const char* kVertSrc = R"(
  412. out gl_PerVertex
  413. {
  414. vec4 gl_Position;
  415. };
  416. void main()
  417. {
  418. const vec2 POSITIONS[3] = vec2[](vec2(-1.0, 1.0), vec2(0.0, -1.0), vec2(1.0, 1.0));
  419. gl_Position = vec4(POSITIONS[gl_VertexID % 3], 0.0, 1.0);
  420. })";
  421. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  422. void main()
  423. {
  424. out_color = vec4(0.5);
  425. })";
  426. ANKI_TEST_LOGI("Expect to see a grey triangle");
  427. ShaderProgramPtr prog = createProgram(kVertSrc, kFragSrc, *g_gr);
  428. const U ITERATIONS = 200;
  429. for(U i = 0; i < ITERATIONS; ++i)
  430. {
  431. HighRezTimer timer;
  432. timer.start();
  433. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  434. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  435. CommandBufferInitInfo cinit;
  436. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  437. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  438. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  439. cmdb->bindShaderProgram(prog.get());
  440. presentBarrierA(cmdb, presentTex);
  441. TextureViewInitInfo init;
  442. init.m_texture = presentTex.get();
  443. TextureViewPtr view = g_gr->newTextureView(init);
  444. RenderTarget rt;
  445. rt.m_view = view.get();
  446. cmdb->beginRenderPass({rt});
  447. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  448. cmdb->endRenderPass();
  449. presentBarrierB(cmdb, presentTex);
  450. cmdb->endRecording();
  451. GrManager::getSingleton().submit(cmdb.get());
  452. g_gr->swapBuffers();
  453. timer.stop();
  454. const F32 TICK = 1.0f / 30.0f;
  455. if(timer.getElapsedTime() < TICK)
  456. {
  457. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  458. }
  459. }
  460. COMMON_END()
  461. #endif
  462. }
  463. ANKI_TEST(Gr, ViewportAndScissor)
  464. {
  465. #if 0
  466. COMMON_BEGIN()
  467. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. The clear color will change and affect only"
  468. "the area around the quad");
  469. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, FRAG_SRC, *gr);
  470. srand(time(nullptr));
  471. Array<FramebufferPtr, 4> fb;
  472. for(FramebufferPtr& f : fb)
  473. {
  474. FramebufferInitInfo fbinit;
  475. fbinit.m_colorAttachmentCount = 1;
  476. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{randFloat(1.0), randFloat(1.0), randFloat(1.0), 1.0}};
  477. f = gr->newFramebuffer(fbinit);
  478. }
  479. static const Array2d<U, 4, 4> VIEWPORTS = {{{{0, 0, WIDTH / 2, HEIGHT / 2}},
  480. {{WIDTH / 2, 0, WIDTH / 2, HEIGHT / 2}},
  481. {{WIDTH / 2, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}},
  482. {{0, HEIGHT / 2, WIDTH / 2, HEIGHT / 2}}}};
  483. const U ITERATIONS = 400;
  484. const U SCISSOR_MARGIN = 20;
  485. const U RENDER_AREA_MARGIN = 10;
  486. for(U i = 0; i < ITERATIONS; ++i)
  487. {
  488. HighRezTimer timer;
  489. timer.start();
  490. gr->beginFrame();
  491. CommandBufferInitInfo cinit;
  492. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  493. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  494. U idx = (i / 30) % 4;
  495. auto vp = VIEWPORTS[idx];
  496. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  497. cmdb->setScissor(
  498. vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  499. cmdb->bindShaderProgram(prog);
  500. cmdb->beginRenderPass(fb[i % 4],
  501. {},
  502. {},
  503. vp[0] + RENDER_AREA_MARGIN,
  504. vp[1] + RENDER_AREA_MARGIN,
  505. vp[2] - RENDER_AREA_MARGIN * 2,
  506. vp[3] - RENDER_AREA_MARGIN * 2);
  507. cmdb->draw(PrimitiveTopology::TRIANGLE_STRIP, 4);
  508. cmdb->endRenderPass();
  509. cmdb->flush();
  510. gr->swapBuffers();
  511. timer.stop();
  512. const F32 TICK = 1.0f / 30.0f;
  513. if(timer.getElapsedTime() < TICK)
  514. {
  515. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  516. }
  517. }
  518. COMMON_END()
  519. #endif
  520. }
  521. ANKI_TEST(Gr, ViewportAndScissorOffscreen)
  522. {
  523. #if 0
  524. srand(U32(time(nullptr)));
  525. COMMON_BEGIN()
  526. constexpr const char* kFragSrc = R"(layout (location = 0) out vec4 out_color;
  527. void main()
  528. {
  529. out_color = vec4(0.5);
  530. })";
  531. ANKI_TEST_LOGI("Expect to see a grey quad appearing in the 4 corners. "
  532. "Around that quad is a border that changes color. "
  533. "The quads appear counter-clockwise");
  534. ShaderProgramPtr prog = createProgram(VERT_QUAD_STRIP_SRC, kFragSrc, *g_gr);
  535. ShaderProgramPtr blitProg = createProgram(VERT_QUAD_SRC, FRAG_TEX_SRC, *g_gr);
  536. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  537. const U RT_WIDTH = 32;
  538. const U RT_HEIGHT = 16;
  539. TextureInitInfo init;
  540. init.m_depth = 1;
  541. init.m_format = COL_FORMAT;
  542. init.m_usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kAllFramebuffer;
  543. init.m_height = RT_HEIGHT;
  544. init.m_width = RT_WIDTH;
  545. init.m_mipmapCount = 1;
  546. init.m_depth = 1;
  547. init.m_layerCount = 1;
  548. init.m_samples = 1;
  549. init.m_type = TextureType::k2D;
  550. TexturePtr rt = g_gr->newTexture(init);
  551. TextureViewInitInfo viewInit(rt.get());
  552. TextureViewPtr texView = g_gr->newTextureView(viewInit);
  553. Array<FramebufferPtr, 4> fb;
  554. for(FramebufferPtr& f : fb)
  555. {
  556. TextureViewInitInfo viewInf(rt.get());
  557. TextureViewPtr view = g_gr->newTextureView(viewInf);
  558. FramebufferInitInfo fbinit;
  559. fbinit.m_colorAttachmentCount = 1;
  560. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {
  561. {getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), getRandomRange(0.0f, 1.0f), 1.0}};
  562. fbinit.m_colorAttachments[0].m_textureView = view;
  563. f = g_gr->newFramebuffer(fbinit);
  564. }
  565. SamplerInitInfo samplerInit;
  566. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  567. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  568. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  569. static const Array2d<U32, 4, 4> VIEWPORTS = {{{{0, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  570. {{RT_WIDTH / 2, 0, RT_WIDTH / 2, RT_HEIGHT / 2}},
  571. {{RT_WIDTH / 2, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}},
  572. {{0, RT_HEIGHT / 2, RT_WIDTH / 2, RT_HEIGHT / 2}}}};
  573. const U32 ITERATIONS = 400;
  574. const U32 SCISSOR_MARGIN = 2;
  575. const U32 RENDER_AREA_MARGIN = 1;
  576. for(U32 i = 0; i < ITERATIONS; ++i)
  577. {
  578. HighRezTimer timer;
  579. timer.start();
  580. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  581. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  582. if(i == 0)
  583. {
  584. CommandBufferInitInfo cinit;
  585. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  586. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  587. cmdb->setViewport(0, 0, RT_WIDTH, RT_HEIGHT);
  588. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, TextureSurfaceInfo(0, 0, 0, 0));
  589. cmdb->beginRenderPass(fb[0].get(), {{TextureUsageBit::kFramebufferWrite}}, {});
  590. cmdb->endRenderPass();
  591. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kFramebufferWrite, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  592. cmdb->endRecording();
  593. GrManager::getSingleton().submit(cmdb.get());
  594. }
  595. CommandBufferInitInfo cinit;
  596. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  597. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  598. // Draw offscreen
  599. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kSampledFragment, TextureUsageBit::kFramebufferWrite, TextureSurfaceInfo(0, 0, 0, 0));
  600. auto vp = VIEWPORTS[(i / 30) % 4];
  601. cmdb->setViewport(vp[0], vp[1], vp[2], vp[3]);
  602. cmdb->setScissor(vp[0] + SCISSOR_MARGIN, vp[1] + SCISSOR_MARGIN, vp[2] - SCISSOR_MARGIN * 2, vp[3] - SCISSOR_MARGIN * 2);
  603. cmdb->bindShaderProgram(prog.get());
  604. cmdb->beginRenderPass(fb[i % 4].get(), {{TextureUsageBit::kFramebufferWrite}}, {}, vp[0] + RENDER_AREA_MARGIN, vp[1] + RENDER_AREA_MARGIN,
  605. vp[2] - RENDER_AREA_MARGIN * 2, vp[3] - RENDER_AREA_MARGIN * 2);
  606. cmdb->draw(PrimitiveTopology::kTriangleStrip, 4);
  607. cmdb->endRenderPass();
  608. // Draw onscreen
  609. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  610. cmdb->setScissor(0, 0, g_win->getWidth(), g_win->getHeight());
  611. cmdb->bindShaderProgram(blitProg.get());
  612. setTextureSurfaceBarrier(cmdb, rt, TextureUsageBit::kFramebufferWrite, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  613. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  614. presentBarrierA(cmdb, presentTex);
  615. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  616. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  617. cmdb->endRenderPass();
  618. presentBarrierB(cmdb, presentTex);
  619. cmdb->endRecording();
  620. GrManager::getSingleton().submit(cmdb.get());
  621. g_gr->swapBuffers();
  622. timer.stop();
  623. const F32 TICK = 1.0f / 30.0f;
  624. if(timer.getElapsedTime() < TICK)
  625. {
  626. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  627. }
  628. }
  629. COMMON_END()
  630. #endif
  631. }
  632. ANKI_TEST(Gr, Buffer)
  633. {
  634. COMMON_BEGIN()
  635. BufferInitInfo buffInit("a");
  636. buffInit.m_size = 512;
  637. buffInit.m_usage = BufferUsageBit::kAllUniform;
  638. buffInit.m_mapAccess = BufferMapAccessBit::kNone;
  639. BufferPtr a = g_gr->newBuffer(buffInit);
  640. buffInit.setName("b");
  641. buffInit.m_size = 64;
  642. buffInit.m_usage = BufferUsageBit::kAllStorage;
  643. buffInit.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  644. BufferPtr b = g_gr->newBuffer(buffInit);
  645. void* ptr = b->map(0, 64, BufferMapAccessBit::kWrite);
  646. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  647. U8 ptr2[64];
  648. memset(ptr, 0xCC, 64);
  649. memset(ptr2, 0xCC, 64);
  650. b->unmap();
  651. ptr = b->map(0, 64, BufferMapAccessBit::kRead);
  652. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  653. ANKI_TEST_EXPECT_EQ(memcmp(ptr, ptr2, 64), 0);
  654. b->unmap();
  655. COMMON_END()
  656. }
  657. ANKI_TEST(Gr, DrawWithUniforms)
  658. {
  659. #if 0
  660. COMMON_BEGIN()
  661. // A non-uploaded buffer
  662. BufferPtr b = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4) * 3, BufferUsageBit::kAllUniform, BufferMapAccessBit::kWrite));
  663. Vec4* ptr = static_cast<Vec4*>(b->map(0, sizeof(Vec4) * 3, BufferMapAccessBit::kWrite));
  664. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  665. ptr[0] = Vec4(1.0, 0.0, 0.0, 0.0);
  666. ptr[1] = Vec4(0.0, 1.0, 0.0, 0.0);
  667. ptr[2] = Vec4(0.0, 0.0, 1.0, 0.0);
  668. b->unmap();
  669. // Prog
  670. constexpr const char* kUboVert = R"(
  671. struct A
  672. {
  673. float4 m_color[3];
  674. };
  675. [[vk::binding(0)]] ConstantBuffer<A> g_color;
  676. struct B
  677. {
  678. float4 m_rotation2d;
  679. };
  680. [[vk::binding(1)]] ConstantBuffer<B> g_rotation2d;
  681. struct VertOut
  682. {
  683. float4 m_svPosition : SV_POSITION;
  684. float3 m_color : COLOR;
  685. };
  686. VertOut main(uint svVertexId : SV_VERTEXID)
  687. {
  688. VertOut o;
  689. o.m_color = g_color.m_color[svVertexId].xyz;
  690. const float2 kPositions[3] = {float2(-1.0, 1.0), float2(0.0, -1.0), float2(1.0, 1.0)};
  691. float2x2 rot = float2x2(
  692. g_rotation2d.m_rotation2d.x, g_rotation2d.m_rotation2d.y, g_rotation2d.m_rotation2d.z, g_rotation2d.m_rotation2d.w);
  693. float2 pos = mul(rot, kPositions[svVertexId % 3]);
  694. o.m_svPosition = float4(pos, 0.0, 1.0);
  695. return o;
  696. })";
  697. constexpr const char* kUboFrag = R"(
  698. struct VertOut
  699. {
  700. float4 m_svPosition : SV_POSITION;
  701. float3 m_color : COLOR;
  702. };
  703. float4 main(VertOut i) : SV_TARGET0
  704. {
  705. return float4(i.m_color, 1.0);
  706. })";
  707. ShaderProgramPtr prog = createProgram(kUboVert, kUboFrag, *g_gr);
  708. const U ITERATION_COUNT = 100;
  709. U iterations = ITERATION_COUNT;
  710. while(iterations--)
  711. {
  712. HighRezTimer timer;
  713. timer.start();
  714. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  715. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  716. CommandBufferInitInfo cinit;
  717. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  718. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  719. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  720. cmdb->bindShaderProgram(prog.get());
  721. presentBarrierA(cmdb, presentTex);
  722. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  723. cmdb->bindUniformBuffer(0, 0, b.get(), 0, kMaxPtrSize);
  724. // Uploaded buffer
  725. Vec4* rotMat = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 1);
  726. F32 angle = toRad(360.0f / F32(ITERATION_COUNT) * F32(iterations));
  727. (*rotMat)[0] = cos(angle);
  728. (*rotMat)[1] = -sin(angle);
  729. (*rotMat)[2] = sin(angle);
  730. (*rotMat)[3] = cos(angle);
  731. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  732. cmdb->endRenderPass();
  733. presentBarrierB(cmdb, presentTex);
  734. cmdb->endRecording();
  735. GrManager::getSingleton().submit(cmdb.get());
  736. g_gr->swapBuffers();
  737. timer.stop();
  738. const F32 TICK = 1.0f / 30.0f;
  739. if(timer.getElapsedTime() < TICK)
  740. {
  741. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  742. }
  743. }
  744. COMMON_END()
  745. #endif
  746. }
  747. ANKI_TEST(Gr, DrawWithVertex)
  748. {
  749. #if 0
  750. COMMON_BEGIN()
  751. // The buffers
  752. struct Vert
  753. {
  754. Vec3 m_pos;
  755. Array<U8, 4> m_color;
  756. };
  757. static_assert(sizeof(Vert) == sizeof(Vec4), "See file");
  758. BufferPtr b = g_gr->newBuffer(BufferInitInfo(sizeof(Vert) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  759. Vert* ptr = static_cast<Vert*>(b->map(0, sizeof(Vert) * 3, BufferMapAccessBit::kWrite));
  760. ANKI_TEST_EXPECT_NEQ(ptr, nullptr);
  761. ptr[0].m_pos = Vec3(-1.0, 1.0, 0.0);
  762. ptr[1].m_pos = Vec3(0.0, -1.0, 0.0);
  763. ptr[2].m_pos = Vec3(1.0, 1.0, 0.0);
  764. ptr[0].m_color = {{255, 0, 0}};
  765. ptr[1].m_color = {{0, 255, 0}};
  766. ptr[2].m_color = {{0, 0, 255}};
  767. b->unmap();
  768. BufferPtr c = g_gr->newBuffer(BufferInitInfo(sizeof(Vec3) * 3, BufferUsageBit::kVertex, BufferMapAccessBit::kWrite));
  769. Vec3* otherColor = static_cast<Vec3*>(c->map(0, sizeof(Vec3) * 3, BufferMapAccessBit::kWrite));
  770. otherColor[0] = Vec3(0.0, 1.0, 1.0);
  771. otherColor[1] = Vec3(1.0, 0.0, 1.0);
  772. otherColor[2] = Vec3(1.0, 1.0, 0.0);
  773. c->unmap();
  774. // Prog
  775. ShaderProgramPtr prog = createProgram(VERT_INP_SRC, FRAG_INP_SRC, *g_gr);
  776. U iterations = 100;
  777. while(iterations--)
  778. {
  779. HighRezTimer timer;
  780. timer.start();
  781. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  782. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  783. CommandBufferInitInfo cinit;
  784. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  785. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  786. cmdb->bindVertexBuffer(0, b.get(), 0, sizeof(Vert));
  787. cmdb->bindVertexBuffer(1, c.get(), 0, sizeof(Vec3));
  788. cmdb->setVertexAttribute(VertexAttribute::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  789. cmdb->setVertexAttribute(VertexAttribute::kColor, 0, Format::kR8G8B8_Unorm, sizeof(Vec3));
  790. cmdb->setVertexAttribute(VertexAttribute::kMisc0, 1, Format::kR32G32B32_Sfloat, 0);
  791. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  792. cmdb->setPolygonOffset(0.0, 0.0);
  793. cmdb->bindShaderProgram(prog.get());
  794. presentBarrierA(cmdb, presentTex);
  795. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  796. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  797. cmdb->endRenderPass();
  798. presentBarrierB(cmdb, presentTex);
  799. cmdb->endRecording();
  800. GrManager::getSingleton().submit(cmdb.get());
  801. g_gr->swapBuffers();
  802. timer.stop();
  803. const F32 TICK = 1.0f / 30.0f;
  804. if(timer.getElapsedTime() < TICK)
  805. {
  806. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  807. }
  808. }
  809. COMMON_END()
  810. #endif
  811. }
  812. ANKI_TEST(Gr, Sampler)
  813. {
  814. COMMON_BEGIN()
  815. SamplerInitInfo init;
  816. SamplerPtr b = g_gr->newSampler(init);
  817. COMMON_END()
  818. }
  819. ANKI_TEST(Gr, Texture)
  820. {
  821. COMMON_BEGIN()
  822. TextureInitInfo init;
  823. init.m_depth = 1;
  824. init.m_format = Format::kR8G8B8_Unorm;
  825. init.m_usage = TextureUsageBit::kSampledFragment;
  826. init.m_height = 4;
  827. init.m_width = 4;
  828. init.m_mipmapCount = 2;
  829. init.m_depth = 1;
  830. init.m_layerCount = 1;
  831. init.m_samples = 1;
  832. init.m_type = TextureType::k2D;
  833. TexturePtr b = g_gr->newTexture(init);
  834. TextureViewInitInfo view(b.get());
  835. TextureViewPtr v = g_gr->newTextureView(view);
  836. COMMON_END()
  837. }
  838. ANKI_TEST(Gr, DrawWithTexture)
  839. {
  840. #if 0
  841. COMMON_BEGIN()
  842. //
  843. // Create sampler
  844. //
  845. SamplerInitInfo samplerInit;
  846. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  847. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  848. samplerInit.m_addressing = SamplingAddressing::kClamp;
  849. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  850. //
  851. // Create texture A
  852. //
  853. TextureInitInfo init;
  854. init.m_depth = 1;
  855. init.m_format = Format::kR8G8B8_Unorm;
  856. init.m_usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kTransferDestination;
  857. init.m_height = 2;
  858. init.m_width = 2;
  859. init.m_mipmapCount = 2;
  860. init.m_samples = 1;
  861. init.m_depth = 1;
  862. init.m_layerCount = 1;
  863. init.m_type = TextureType::k2D;
  864. TexturePtr a = g_gr->newTexture(init);
  865. TextureViewPtr aView = g_gr->newTextureView(TextureViewInitInfo(a.get()));
  866. //
  867. // Create texture B
  868. //
  869. init.m_width = 4;
  870. init.m_height = 4;
  871. init.m_mipmapCount = 3;
  872. init.m_usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kTransferDestination | TextureUsageBit::kGenerateMipmaps;
  873. TexturePtr b = g_gr->newTexture(init);
  874. TextureViewPtr bView = g_gr->newTextureView(TextureViewInitInfo(b.get()));
  875. //
  876. // Upload all textures
  877. //
  878. Array<U8, 2 * 2 * 3> mip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 0, 255}};
  879. Array<U8, 3> mip1 = {{128, 128, 128}};
  880. Array<U8, 4 * 4 * 3> bmip0 = {{255, 0, 0, 0, 255, 0, 0, 0, 255, 255, 255, 0, 255, 0, 255, 0, 255, 255, 255, 255, 255, 128, 0, 0, 0,
  881. 128, 0, 0, 0, 128, 128, 128, 0, 128, 0, 128, 0, 128, 128, 128, 128, 128, 255, 128, 0, 0, 128, 255}};
  882. CommandBufferInitInfo cmdbinit;
  883. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork;
  884. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  885. // Set barriers
  886. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSampledFragment, TextureUsageBit::kTransferDestination, TextureSurfaceInfo(0, 0, 0, 0));
  887. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kSampledFragment, TextureUsageBit::kTransferDestination, TextureSurfaceInfo(1, 0, 0, 0));
  888. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, TextureSurfaceInfo(0, 0, 0, 0));
  889. TransferGpuAllocatorHandle handle0, handle1, handle2;
  890. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  891. UPLOAD_TEX_SURFACE(cmdb, a, TextureSurfaceInfo(1, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  892. UPLOAD_TEX_SURFACE(cmdb, b, TextureSurfaceInfo(0, 0, 0, 0), &bmip0[0], sizeof(bmip0), handle2);
  893. // Gen mips
  894. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kTransferDestination, TextureUsageBit::kGenerateMipmaps, TextureSurfaceInfo(0, 0, 0, 0));
  895. cmdb->generateMipmaps2d(g_gr->newTextureView(TextureViewInitInfo(b.get())).get());
  896. // Set barriers
  897. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  898. setTextureSurfaceBarrier(cmdb, a, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(1, 0, 0, 0));
  899. for(U32 i = 0; i < 3; ++i)
  900. {
  901. setTextureSurfaceBarrier(cmdb, b, TextureUsageBit::kGenerateMipmaps, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(i, 0, 0, 0));
  902. }
  903. FencePtr fence;
  904. cmdb->endRecording();
  905. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  906. transfAlloc->release(handle0, fence);
  907. transfAlloc->release(handle1, fence);
  908. transfAlloc->release(handle2, fence);
  909. //
  910. // Create prog
  911. //
  912. static const char* FRAG_2TEX_SRC = R"(layout (location = 0) out vec4 out_color;
  913. layout(location = 0) in vec2 in_uv;
  914. layout(set = 0, binding = 0) uniform sampler2D u_tex0;
  915. layout(set = 0, binding = 1) uniform sampler2D u_tex1;
  916. layout(push_constant) uniform b_pc
  917. {
  918. Vec4 u_viewport;
  919. };
  920. void main()
  921. {
  922. if(gl_FragCoord.x < u_viewport.x / 2.0)
  923. {
  924. if(gl_FragCoord.y < u_viewport.y / 2.0)
  925. {
  926. vec2 uv = in_uv * 2.0;
  927. out_color = textureLod(u_tex0, uv, 0.0);
  928. }
  929. else
  930. {
  931. vec2 uv = in_uv * 2.0 - vec2(0.0, 1.0);
  932. out_color = textureLod(u_tex0, uv, 1.0);
  933. }
  934. }
  935. else
  936. {
  937. if(gl_FragCoord.y < u_viewport.y / 2.0)
  938. {
  939. vec2 uv = in_uv * 2.0 - vec2(1.0, 0.0);
  940. out_color = textureLod(u_tex1, uv, 0.0);
  941. }
  942. else
  943. {
  944. vec2 uv = in_uv * 2.0 - vec2(1.0, 1.0);
  945. out_color = textureLod(u_tex1, uv, 1.0);
  946. }
  947. }
  948. })";
  949. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_2TEX_SRC, *g_gr);
  950. //
  951. // Draw
  952. //
  953. const U ITERATION_COUNT = 200;
  954. U iterations = ITERATION_COUNT;
  955. while(iterations--)
  956. {
  957. HighRezTimer timer;
  958. timer.start();
  959. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  960. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  961. CommandBufferInitInfo cinit;
  962. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  963. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  964. cmdb->setViewport(0, 0, g_win->getWidth(), g_win->getHeight());
  965. cmdb->bindShaderProgram(prog.get());
  966. presentBarrierA(cmdb, presentTex);
  967. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  968. Vec4 pc(F32(g_win->getWidth()), F32(g_win->getHeight()), 0.0f, 0.0f);
  969. cmdb->setPushConstants(&pc, sizeof(pc));
  970. // cmdb->bindTextureAndSampler(0, 0, aView.get(), sampler.get());
  971. // cmdb->bindTextureAndSampler(0, 1, bView.get(), sampler.get());
  972. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  973. cmdb->endRenderPass();
  974. presentBarrierB(cmdb, presentTex);
  975. cmdb->endRecording();
  976. GrManager::getSingleton().submit(cmdb.get());
  977. g_gr->swapBuffers();
  978. timer.stop();
  979. const F32 TICK = 1.0f / 30.0f;
  980. if(timer.getElapsedTime() < TICK)
  981. {
  982. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  983. }
  984. }
  985. COMMON_END()
  986. #endif
  987. }
  988. static void drawOffscreenDrawcalls([[maybe_unused]] GrManager& gr, ShaderProgramPtr prog, CommandBufferPtr cmdb, U32 viewPortSize,
  989. BufferPtr indexBuff, BufferPtr vertBuff)
  990. {
  991. static F32 ang = -2.5f;
  992. ang += toRad(2.5f);
  993. Mat4 viewMat(Vec3(0.0, 0.0, 5.0), Mat3::getIdentity(), Vec3(1.0f));
  994. viewMat.invert();
  995. Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(60.0f), toRad(60.0f), 0.1f, 100.0f);
  996. Mat4 modelMat(Vec3(-0.5, -0.5, 0.0), Mat3(Euler(ang, ang / 2.0f, ang / 3.0f)), Vec3(1.0f));
  997. Mat4* mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  998. *mvp = projMat * viewMat * modelMat;
  999. Vec4* color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  1000. *color++ = Vec4(1.0, 0.0, 0.0, 0.0);
  1001. *color = Vec4(0.0, 1.0, 0.0, 0.0);
  1002. cmdb->bindVertexBuffer(0, BufferView(vertBuff.get()), sizeof(Vec3));
  1003. cmdb->setVertexAttribute(VertexAttribute::kPosition, 0, Format::kR32G32B32_Sfloat, 0);
  1004. cmdb->bindShaderProgram(prog.get());
  1005. cmdb->bindIndexBuffer(BufferView(indexBuff.get()), IndexType::kU16);
  1006. cmdb->setViewport(0, 0, viewPortSize, viewPortSize);
  1007. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  1008. // 2nd draw
  1009. modelMat = Mat4(Vec3(0.5, 0.5, 0.0), Mat3(Euler(ang * 2.0f, ang, ang / 3.0f * 2.0f)), Vec3(1.0f));
  1010. mvp = SET_UNIFORMS(Mat4*, sizeof(*mvp), cmdb, 0, 0);
  1011. *mvp = projMat * viewMat * modelMat;
  1012. color = SET_UNIFORMS(Vec4*, sizeof(*color) * 2, cmdb, 0, 1);
  1013. *color++ = Vec4(0.0, 0.0, 1.0, 0.0);
  1014. *color = Vec4(0.0, 1.0, 1.0, 0.0);
  1015. cmdb->drawIndexed(PrimitiveTopology::kTriangles, 6 * 2 * 3);
  1016. }
  1017. static void drawOffscreen(GrManager& gr)
  1018. {
  1019. #if 0
  1020. //
  1021. // Create textures
  1022. //
  1023. SamplerInitInfo samplerInit;
  1024. samplerInit.m_minMagFilter = SamplingFilter::kLinear;
  1025. samplerInit.m_mipmapFilter = SamplingFilter::kLinear;
  1026. SamplerPtr sampler = gr.newSampler(samplerInit);
  1027. const Format COL_FORMAT = Format::kR8G8B8A8_Unorm;
  1028. const U TEX_SIZE = 256;
  1029. TextureInitInfo init;
  1030. init.m_format = COL_FORMAT;
  1031. init.m_usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kAllFramebuffer;
  1032. init.m_height = TEX_SIZE;
  1033. init.m_width = TEX_SIZE;
  1034. init.m_type = TextureType::k2D;
  1035. TexturePtr col0 = gr.newTexture(init);
  1036. TexturePtr col1 = gr.newTexture(init);
  1037. TextureViewPtr col0View = gr.newTextureView(TextureViewInitInfo(col0.get()));
  1038. TextureViewPtr col1View = gr.newTextureView(TextureViewInitInfo(col1.get()));
  1039. init.m_format = kDsFormat;
  1040. TexturePtr dp = gr.newTexture(init);
  1041. //
  1042. // Create FB
  1043. //
  1044. FramebufferInitInfo fbinit;
  1045. fbinit.m_colorAttachmentCount = 2;
  1046. fbinit.m_colorAttachments[0].m_textureView = gr.newTextureView(TextureViewInitInfo(col0.get()));
  1047. fbinit.m_colorAttachments[0].m_clearValue.m_colorf = {{0.1f, 0.0f, 0.0f, 0.0f}};
  1048. fbinit.m_colorAttachments[1].m_textureView = gr.newTextureView(TextureViewInitInfo(col1.get()));
  1049. fbinit.m_colorAttachments[1].m_clearValue.m_colorf = {{0.0f, 0.1f, 0.0f, 0.0f}};
  1050. TextureViewInitInfo viewInit(dp.get());
  1051. viewInit.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  1052. fbinit.m_depthStencilAttachment.m_textureView = gr.newTextureView(viewInit);
  1053. fbinit.m_depthStencilAttachment.m_clearValue.m_depthStencil.m_depth = 1.0;
  1054. FramebufferPtr fb = gr.newFramebuffer(fbinit);
  1055. //
  1056. // Create buffs
  1057. //
  1058. BufferPtr verts, indices;
  1059. createCube(gr, verts, indices);
  1060. //
  1061. // Create progs
  1062. //
  1063. ShaderProgramPtr prog = createProgram(VERT_MRT_SRC, FRAG_MRT_SRC, gr);
  1064. ShaderProgramPtr resolveProg = createProgram(VERT_QUAD_SRC, FRAG_MRT2_SRC, gr);
  1065. //
  1066. // Draw
  1067. //
  1068. const U ITERATION_COUNT = 200;
  1069. U iterations = ITERATION_COUNT;
  1070. while(iterations--)
  1071. {
  1072. HighRezTimer timer;
  1073. timer.start();
  1074. CommandBufferInitInfo cinit;
  1075. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1076. CommandBufferPtr cmdb = gr.newCommandBuffer(cinit);
  1077. cmdb->setPolygonOffset(0.0, 0.0);
  1078. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, TextureSurfaceInfo(0, 0, 0, 0));
  1079. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, TextureSurfaceInfo(0, 0, 0, 0));
  1080. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kNone, TextureUsageBit::kAllFramebuffer, TextureSurfaceInfo(0, 0, 0, 0));
  1081. cmdb->beginRenderPass(fb.get(), {{TextureUsageBit::kFramebufferWrite, TextureUsageBit::kFramebufferWrite}}, TextureUsageBit::kAllFramebuffer);
  1082. drawOffscreenDrawcalls(gr, prog, cmdb, TEX_SIZE, indices, verts);
  1083. cmdb->endRenderPass();
  1084. setTextureSurfaceBarrier(cmdb, col0, TextureUsageBit::kFramebufferWrite, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  1085. setTextureSurfaceBarrier(cmdb, col1, TextureUsageBit::kFramebufferWrite, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  1086. setTextureSurfaceBarrier(cmdb, dp, TextureUsageBit::kAllFramebuffer, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  1087. // Draw quad
  1088. TexturePtr presentTex = gr.acquireNextPresentableTexture();
  1089. FramebufferPtr dfb = createColorFb(gr, presentTex);
  1090. presentBarrierA(cmdb, presentTex);
  1091. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  1092. cmdb->bindShaderProgram(resolveProg.get());
  1093. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1094. // cmdb->bindTextureAndSampler(0, 0, col0View.get(), sampler.get());
  1095. // cmdb->bindTextureAndSampler(0, 2, col1View.get(), sampler.get());
  1096. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1097. cmdb->endRenderPass();
  1098. presentBarrierB(cmdb, presentTex);
  1099. cmdb->endRecording();
  1100. GrManager::getSingleton().submit(cmdb.get());
  1101. // End
  1102. gr.swapBuffers();
  1103. timer.stop();
  1104. const F32 TICK = 1.0f / 30.0f;
  1105. if(timer.getElapsedTime() < TICK)
  1106. {
  1107. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1108. }
  1109. }
  1110. #endif
  1111. }
  1112. ANKI_TEST(Gr, DrawOffscreen)
  1113. {
  1114. COMMON_BEGIN()
  1115. drawOffscreen(*g_gr);
  1116. COMMON_END()
  1117. }
  1118. ANKI_TEST(Gr, ImageLoadStore)
  1119. {
  1120. #if 0
  1121. COMMON_BEGIN()
  1122. SamplerInitInfo samplerInit;
  1123. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1124. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1125. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1126. TextureInitInfo init;
  1127. init.m_width = init.m_height = 4;
  1128. init.m_mipmapCount = 2;
  1129. init.m_usage = TextureUsageBit::kTransferDestination | TextureUsageBit::kAllSampled | TextureUsageBit::kStorageComputeWrite;
  1130. init.m_type = TextureType::k2D;
  1131. init.m_format = Format::kR8G8B8A8_Unorm;
  1132. TexturePtr tex = g_gr->newTexture(init);
  1133. TextureViewInitInfo viewInit(tex.get());
  1134. viewInit.m_firstMipmap = 1;
  1135. viewInit.m_mipmapCount = 1;
  1136. TextureViewPtr view = g_gr->newTextureView(viewInit);
  1137. // Prog
  1138. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_SIMPLE_TEX_SRC, *g_gr);
  1139. // Create shader & compute prog
  1140. ShaderPtr shader = createShader(COMP_WRITE_IMAGE_SRC, ShaderType::kCompute, *g_gr);
  1141. ShaderProgramInitInfo sprogInit;
  1142. sprogInit.m_computeShader = shader.get();
  1143. ShaderProgramPtr compProg = g_gr->newShaderProgram(sprogInit);
  1144. // Write texture data
  1145. CommandBufferInitInfo cmdbinit;
  1146. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1147. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, TextureSurfaceInfo(0, 0, 0, 0));
  1148. ClearValue clear;
  1149. clear.m_colorf = {{0.0, 1.0, 0.0, 1.0}};
  1150. TextureViewInitInfo viewInit2(tex.get(), TextureSurfaceInfo(0, 0, 0, 0));
  1151. cmdb->clearTextureView(g_gr->newTextureView(viewInit2).get(), clear);
  1152. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(0, 0, 0, 0));
  1153. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, TextureSurfaceInfo(1, 0, 0, 0));
  1154. clear.m_colorf = {{0.0, 0.0, 1.0, 1.0}};
  1155. TextureViewInitInfo viewInit3(tex.get(), TextureSurfaceInfo(1, 0, 0, 0));
  1156. cmdb->clearTextureView(g_gr->newTextureView(viewInit3).get(), clear);
  1157. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kTransferDestination, TextureUsageBit::kStorageComputeWrite, TextureSurfaceInfo(1, 0, 0, 0));
  1158. cmdb->endRecording();
  1159. GrManager::getSingleton().submit(cmdb.get());
  1160. const U ITERATION_COUNT = 100;
  1161. U iterations = ITERATION_COUNT;
  1162. while(iterations--)
  1163. {
  1164. HighRezTimer timer;
  1165. timer.start();
  1166. CommandBufferInitInfo cinit;
  1167. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1168. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1169. // Write image
  1170. Vec4* col = SET_STORAGE(Vec4*, sizeof(*col), cmdb, 1, 0);
  1171. *col = Vec4(F32(iterations) / F32(ITERATION_COUNT));
  1172. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kStorageComputeWrite, TextureSurfaceInfo(1, 0, 0, 0));
  1173. cmdb->bindShaderProgram(compProg.get());
  1174. cmdb->bindStorageTexture(0, 0, view.get());
  1175. cmdb->dispatchCompute(WIDTH / 2, HEIGHT / 2, 1);
  1176. setTextureSurfaceBarrier(cmdb, tex, TextureUsageBit::kStorageComputeWrite, TextureUsageBit::kSampledFragment, TextureSurfaceInfo(1, 0, 0, 0));
  1177. // Present image
  1178. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1179. cmdb->bindShaderProgram(prog.get());
  1180. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1181. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1182. presentBarrierA(cmdb, presentTex);
  1183. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  1184. // cmdb->bindTextureAndSampler(0, 0, g_gr->newTextureView(TextureViewInitInfo(tex.get())).get(), sampler.get());
  1185. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1186. cmdb->endRenderPass();
  1187. presentBarrierB(cmdb, presentTex);
  1188. cmdb->endRecording();
  1189. GrManager::getSingleton().submit(cmdb.get());
  1190. // End
  1191. g_gr->swapBuffers();
  1192. timer.stop();
  1193. const F32 TICK = 1.0f / 30.0f;
  1194. if(timer.getElapsedTime() < TICK)
  1195. {
  1196. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1197. }
  1198. }
  1199. COMMON_END()
  1200. #endif
  1201. }
  1202. ANKI_TEST(Gr, 3DTextures)
  1203. {
  1204. #if 0
  1205. COMMON_BEGIN()
  1206. SamplerInitInfo samplerInit;
  1207. samplerInit.m_minMagFilter = SamplingFilter::kNearest;
  1208. samplerInit.m_mipmapFilter = SamplingFilter::kBase;
  1209. samplerInit.m_addressing = SamplingAddressing::kClamp;
  1210. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1211. //
  1212. // Create texture A
  1213. //
  1214. TextureInitInfo init;
  1215. init.m_depth = 1;
  1216. init.m_format = Format::kR8G8B8A8_Unorm;
  1217. init.m_usage = TextureUsageBit::kSampledFragment | TextureUsageBit::kTransferDestination;
  1218. init.m_height = 2;
  1219. init.m_width = 2;
  1220. init.m_mipmapCount = 2;
  1221. init.m_samples = 1;
  1222. init.m_depth = 2;
  1223. init.m_layerCount = 1;
  1224. init.m_type = TextureType::k3D;
  1225. TexturePtr a = g_gr->newTexture(init);
  1226. //
  1227. // Upload all textures
  1228. //
  1229. Array<U8, 2 * 2 * 2 * 4> mip0 = {
  1230. {255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 255, 255, 0, 0, 255, 0, 255, 0, 0, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0, 0}};
  1231. Array<U8, 4> mip1 = {{128, 128, 128, 0}};
  1232. CommandBufferInitInfo cmdbinit;
  1233. cmdbinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1234. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbinit);
  1235. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, TextureVolumeInfo(0));
  1236. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, TextureVolumeInfo(1));
  1237. TransferGpuAllocatorHandle handle0, handle1;
  1238. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(0), &mip0[0], sizeof(mip0), handle0);
  1239. UPLOAD_TEX_VOL(cmdb, a, TextureVolumeInfo(1), &mip1[0], sizeof(mip1), handle1);
  1240. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledFragment, TextureVolumeInfo(0));
  1241. setTextureVolumeBarrier(cmdb, a, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledFragment, TextureVolumeInfo(1));
  1242. FencePtr fence;
  1243. cmdb->endRecording();
  1244. GrManager::getSingleton().submit(cmdb.get(), {}, &fence);
  1245. transfAlloc->release(handle0, fence);
  1246. transfAlloc->release(handle1, fence);
  1247. //
  1248. // Rest
  1249. //
  1250. ShaderProgramPtr prog = createProgram(VERT_QUAD_SRC, FRAG_TEX3D_SRC, *g_gr);
  1251. static Array<Vec4, 9> TEX_COORDS_LOD = {{Vec4(0, 0, 0, 0), Vec4(1, 0, 0, 0), Vec4(0, 1, 0, 0), Vec4(1, 1, 0, 0), Vec4(0, 0, 1, 0),
  1252. Vec4(1, 0, 1, 0), Vec4(0, 1, 1, 0), Vec4(1, 1, 1, 0), Vec4(0, 0, 0, 1)}};
  1253. const U ITERATION_COUNT = 100;
  1254. U iterations = ITERATION_COUNT;
  1255. while(iterations--)
  1256. {
  1257. HighRezTimer timer;
  1258. timer.start();
  1259. CommandBufferInitInfo cinit;
  1260. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1261. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1262. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1263. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1264. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1265. presentBarrierA(cmdb, presentTex);
  1266. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  1267. cmdb->bindShaderProgram(prog.get());
  1268. Vec4* uv = SET_UNIFORMS(Vec4*, sizeof(Vec4), cmdb, 0, 0);
  1269. U32 idx = U32((F32(ITERATION_COUNT - iterations - 1) / F32(ITERATION_COUNT)) * F32(TEX_COORDS_LOD.getSize()));
  1270. *uv = TEX_COORDS_LOD[idx];
  1271. // cmdb->bindTextureAndSampler(0, 1, g_gr->newTextureView(TextureViewInitInfo(a.get())).get(), sampler.get());
  1272. cmdb->draw(PrimitiveTopology::kTriangles, 6);
  1273. cmdb->endRenderPass();
  1274. presentBarrierB(cmdb, presentTex);
  1275. cmdb->endRecording();
  1276. GrManager::getSingleton().submit(cmdb.get());
  1277. // End
  1278. g_gr->swapBuffers();
  1279. timer.stop();
  1280. const F32 TICK = 1.0f / 15.0f;
  1281. if(timer.getElapsedTime() < TICK)
  1282. {
  1283. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  1284. }
  1285. }
  1286. COMMON_END()
  1287. #endif
  1288. }
  1289. static RenderTargetDescription newRTDescr(CString name)
  1290. {
  1291. RenderTargetDescription texInf(name);
  1292. texInf.m_width = texInf.m_height = 16;
  1293. texInf.m_usage = TextureUsageBit::kFramebufferWrite | TextureUsageBit::kSampledFragment;
  1294. texInf.m_format = Format::kR8G8B8A8_Unorm;
  1295. texInf.bake();
  1296. return texInf;
  1297. }
  1298. ANKI_TEST(Gr, RenderGraph)
  1299. {
  1300. COMMON_BEGIN()
  1301. StackMemoryPool pool(allocAligned, nullptr, 2_MB);
  1302. RenderGraphDescription descr(&pool);
  1303. RenderGraphPtr rgraph = g_gr->newRenderGraph();
  1304. const U GI_MIP_COUNT = 4;
  1305. TextureInitInfo texI("dummy");
  1306. texI.m_width = texI.m_height = 16;
  1307. texI.m_usage = TextureUsageBit::kFramebufferWrite | TextureUsageBit::kSampledFragment;
  1308. texI.m_format = Format::kR8G8B8A8_Unorm;
  1309. TexturePtr dummyTex = g_gr->newTexture(texI);
  1310. // SM
  1311. RenderTargetHandle smScratchRt = descr.newRenderTarget(newRTDescr("SM scratch"));
  1312. {
  1313. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SM");
  1314. pass.newTextureDependency(smScratchRt, TextureUsageBit::kAllFramebuffer);
  1315. }
  1316. // SM to exponential SM
  1317. RenderTargetHandle smExpRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSampledFragment);
  1318. {
  1319. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("ESM");
  1320. pass.newTextureDependency(smScratchRt, TextureUsageBit::kSampledFragment);
  1321. pass.newTextureDependency(smExpRt, TextureUsageBit::kFramebufferWrite);
  1322. }
  1323. // GI gbuff
  1324. RenderTargetHandle giGbuffNormRt = descr.newRenderTarget(newRTDescr("GI GBuff norm"));
  1325. RenderTargetHandle giGbuffDiffRt = descr.newRenderTarget(newRTDescr("GI GBuff diff"));
  1326. RenderTargetHandle giGbuffDepthRt = descr.newRenderTarget(newRTDescr("GI GBuff depth"));
  1327. {
  1328. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("GI gbuff");
  1329. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kFramebufferWrite);
  1330. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kFramebufferWrite);
  1331. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kFramebufferWrite);
  1332. }
  1333. // GI light
  1334. RenderTargetHandle giGiLightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSampledFragment);
  1335. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1336. {
  1337. TextureSubresourceInfo subresource(TextureSurfaceInfo(0, faceIdx, 0));
  1338. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass(String().sprintf("GI lp%u", faceIdx).toCString());
  1339. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kFramebufferWrite, subresource);
  1340. pass.newTextureDependency(giGbuffNormRt, TextureUsageBit::kSampledFragment);
  1341. pass.newTextureDependency(giGbuffDepthRt, TextureUsageBit::kSampledFragment);
  1342. pass.newTextureDependency(giGbuffDiffRt, TextureUsageBit::kSampledFragment);
  1343. }
  1344. // GI light mips
  1345. {
  1346. for(U32 faceIdx = 0; faceIdx < 6; ++faceIdx)
  1347. {
  1348. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass(String().sprintf("GI mip%u", faceIdx).toCString());
  1349. for(U32 mip = 0; mip < GI_MIP_COUNT; ++mip)
  1350. {
  1351. TextureSurfaceInfo surf(mip, faceIdx, 0);
  1352. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kGenerateMipmaps, surf);
  1353. }
  1354. }
  1355. }
  1356. // Gbuffer
  1357. RenderTargetHandle gbuffRt0 = descr.newRenderTarget(newRTDescr("GBuff RT0"));
  1358. RenderTargetHandle gbuffRt1 = descr.newRenderTarget(newRTDescr("GBuff RT1"));
  1359. RenderTargetHandle gbuffRt2 = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1360. RenderTargetHandle gbuffDepth = descr.newRenderTarget(newRTDescr("GBuff RT2"));
  1361. {
  1362. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("G-Buffer");
  1363. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kFramebufferWrite);
  1364. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kFramebufferWrite);
  1365. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kFramebufferWrite);
  1366. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kFramebufferWrite);
  1367. }
  1368. // Half depth
  1369. RenderTargetHandle halfDepthRt = descr.newRenderTarget(newRTDescr("Depth/2"));
  1370. {
  1371. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("HalfDepth");
  1372. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSampledFragment);
  1373. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kFramebufferWrite);
  1374. }
  1375. // Quarter depth
  1376. RenderTargetHandle quarterDepthRt = descr.newRenderTarget(newRTDescr("Depth/4"));
  1377. {
  1378. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("QuarterDepth");
  1379. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kFramebufferWrite);
  1380. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSampledFragment);
  1381. }
  1382. // SSAO
  1383. RenderTargetHandle ssaoRt = descr.newRenderTarget(newRTDescr("SSAO"));
  1384. {
  1385. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("SSAO main");
  1386. pass.newTextureDependency(ssaoRt, TextureUsageBit::kFramebufferWrite);
  1387. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSampledFragment);
  1388. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSampledFragment);
  1389. RenderTargetHandle ssaoVBlurRt = descr.newRenderTarget(newRTDescr("SSAO tmp"));
  1390. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("SSAO vblur");
  1391. pass2.newTextureDependency(ssaoRt, TextureUsageBit::kSampledFragment);
  1392. pass2.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kFramebufferWrite);
  1393. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("SSAO hblur");
  1394. pass3.newTextureDependency(ssaoRt, TextureUsageBit::kFramebufferWrite);
  1395. pass3.newTextureDependency(ssaoVBlurRt, TextureUsageBit::kSampledFragment);
  1396. }
  1397. // Volumetric
  1398. RenderTargetHandle volRt = descr.newRenderTarget(newRTDescr("Vol"));
  1399. {
  1400. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Vol main");
  1401. pass.newTextureDependency(volRt, TextureUsageBit::kFramebufferWrite);
  1402. pass.newTextureDependency(quarterDepthRt, TextureUsageBit::kSampledFragment);
  1403. RenderTargetHandle volVBlurRt = descr.newRenderTarget(newRTDescr("Vol tmp"));
  1404. GraphicsRenderPassDescription& pass2 = descr.newGraphicsRenderPass("Vol vblur");
  1405. pass2.newTextureDependency(volRt, TextureUsageBit::kSampledFragment);
  1406. pass2.newTextureDependency(volVBlurRt, TextureUsageBit::kFramebufferWrite);
  1407. GraphicsRenderPassDescription& pass3 = descr.newGraphicsRenderPass("Vol hblur");
  1408. pass3.newTextureDependency(volRt, TextureUsageBit::kFramebufferWrite);
  1409. pass3.newTextureDependency(volVBlurRt, TextureUsageBit::kSampledFragment);
  1410. }
  1411. // Forward shading
  1412. RenderTargetHandle fsRt = descr.newRenderTarget(newRTDescr("FS"));
  1413. {
  1414. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Forward shading");
  1415. pass.newTextureDependency(fsRt, TextureUsageBit::kFramebufferWrite);
  1416. pass.newTextureDependency(halfDepthRt, TextureUsageBit::kSampledFragment | TextureUsageBit::kFramebufferRead);
  1417. pass.newTextureDependency(volRt, TextureUsageBit::kSampledFragment);
  1418. }
  1419. // Light shading
  1420. RenderTargetHandle lightRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1421. {
  1422. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Light shading");
  1423. pass.newTextureDependency(lightRt, TextureUsageBit::kFramebufferWrite);
  1424. pass.newTextureDependency(gbuffRt0, TextureUsageBit::kSampledFragment);
  1425. pass.newTextureDependency(gbuffRt1, TextureUsageBit::kSampledFragment);
  1426. pass.newTextureDependency(gbuffRt2, TextureUsageBit::kSampledFragment);
  1427. pass.newTextureDependency(gbuffDepth, TextureUsageBit::kSampledFragment);
  1428. pass.newTextureDependency(smExpRt, TextureUsageBit::kSampledFragment);
  1429. pass.newTextureDependency(giGiLightRt, TextureUsageBit::kSampledFragment);
  1430. pass.newTextureDependency(ssaoRt, TextureUsageBit::kSampledFragment);
  1431. pass.newTextureDependency(fsRt, TextureUsageBit::kSampledFragment);
  1432. }
  1433. // TAA
  1434. RenderTargetHandle taaHistoryRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kSampledFragment);
  1435. RenderTargetHandle taaRt = descr.importRenderTarget(dummyTex.get(), TextureUsageBit::kNone);
  1436. {
  1437. GraphicsRenderPassDescription& pass = descr.newGraphicsRenderPass("Temporal AA");
  1438. pass.newTextureDependency(lightRt, TextureUsageBit::kSampledFragment);
  1439. pass.newTextureDependency(taaRt, TextureUsageBit::kFramebufferWrite);
  1440. pass.newTextureDependency(taaHistoryRt, TextureUsageBit::kSampledFragment);
  1441. }
  1442. rgraph->compileNewGraph(descr, pool);
  1443. COMMON_END()
  1444. }
  1445. /// Test workarounds for some unsupported formats
  1446. ANKI_TEST(Gr, VkWorkarounds)
  1447. {
  1448. COMMON_BEGIN()
  1449. // Create program
  1450. static const char* COMP_SRC = R"(
  1451. layout(local_size_x = 8, local_size_y = 8, local_size_z = 2) in;
  1452. layout(set = 0, binding = 0) uniform usampler2D u_tex;
  1453. layout(set = 0, binding = 1) buffer s_
  1454. {
  1455. uvec4 u_result;
  1456. };
  1457. shared uint g_wrong;
  1458. void main()
  1459. {
  1460. g_wrong = 0;
  1461. memoryBarrierShared();
  1462. barrier();
  1463. int lod = -1;
  1464. uint idx;
  1465. if(gl_LocalInvocationID.z == 0)
  1466. {
  1467. // First mip
  1468. lod = 0;
  1469. idx = gl_LocalInvocationID.y * 8 + gl_LocalInvocationID.x;
  1470. }
  1471. else if(gl_LocalInvocationID.x < 4u && gl_LocalInvocationID.y < 4u)
  1472. {
  1473. lod = 1;
  1474. idx = gl_LocalInvocationID.y * 4 + gl_LocalInvocationID.x;
  1475. }
  1476. if(lod != -1)
  1477. {
  1478. uvec3 col = texelFetch(u_tex, ivec2(gl_LocalInvocationID.x, gl_LocalInvocationID.y), lod).rgb;
  1479. if(col.x != idx || col.y != idx + 1 || col.z != idx + 2)
  1480. {
  1481. atomicAdd(g_wrong, 1);
  1482. }
  1483. }
  1484. memoryBarrierShared();
  1485. barrier();
  1486. if(g_wrong != 0)
  1487. {
  1488. u_result = uvec4(1);
  1489. }
  1490. else
  1491. {
  1492. u_result = uvec4(2);
  1493. }
  1494. })";
  1495. ShaderPtr comp = createShader(COMP_SRC, ShaderType::kCompute, *g_gr);
  1496. ShaderProgramInitInfo sinf;
  1497. sinf.m_computeShader = comp.get();
  1498. ShaderProgramPtr prog = g_gr->newShaderProgram(sinf);
  1499. // Create the texture
  1500. TextureInitInfo texInit;
  1501. texInit.m_width = texInit.m_height = 8;
  1502. texInit.m_format = Format::kR8G8B8_Uint;
  1503. texInit.m_type = TextureType::k2D;
  1504. texInit.m_usage = TextureUsageBit::kTransferDestination | TextureUsageBit::kAllSampled;
  1505. texInit.m_mipmapCount = 2;
  1506. TexturePtr tex = g_gr->newTexture(texInit);
  1507. TextureViewPtr texView = g_gr->newTextureView(TextureViewInitInfo(tex.get()));
  1508. SamplerInitInfo samplerInit;
  1509. SamplerPtr sampler = g_gr->newSampler(samplerInit);
  1510. // Create the buffer to copy to the texture
  1511. BufferPtr uploadBuff =
  1512. g_gr->newBuffer(BufferInitInfo(PtrSize(texInit.m_width) * texInit.m_height * 3, BufferUsageBit::kAllTransfer, BufferMapAccessBit::kWrite));
  1513. U8* data = static_cast<U8*>(uploadBuff->map(0, uploadBuff->getSize(), BufferMapAccessBit::kWrite));
  1514. for(U32 i = 0; i < texInit.m_width * texInit.m_height; ++i)
  1515. {
  1516. data[0] = U8(i);
  1517. data[1] = U8(i + 1);
  1518. data[2] = U8(i + 2);
  1519. data += 3;
  1520. }
  1521. uploadBuff->unmap();
  1522. BufferPtr uploadBuff2 = g_gr->newBuffer(
  1523. BufferInitInfo(PtrSize(texInit.m_width >> 1) * (texInit.m_height >> 1) * 3, BufferUsageBit::kAllTransfer, BufferMapAccessBit::kWrite));
  1524. data = static_cast<U8*>(uploadBuff2->map(0, uploadBuff2->getSize(), BufferMapAccessBit::kWrite));
  1525. for(U i = 0; i < (texInit.m_width >> 1) * (texInit.m_height >> 1); ++i)
  1526. {
  1527. data[0] = U8(i);
  1528. data[1] = U8(i + 1);
  1529. data[2] = U8(i + 2);
  1530. data += 3;
  1531. }
  1532. uploadBuff2->unmap();
  1533. // Create the result buffer
  1534. BufferPtr resultBuff = g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kStorageComputeWrite, BufferMapAccessBit::kRead));
  1535. // Upload data and test them
  1536. CommandBufferInitInfo cmdbInit;
  1537. cmdbInit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  1538. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cmdbInit);
  1539. TextureSubresourceInfo subresource;
  1540. subresource.m_mipmapCount = texInit.m_mipmapCount;
  1541. setTextureBarrier(cmdb, tex, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination, subresource);
  1542. cmdb->copyBufferToTexture(BufferView(uploadBuff.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceInfo(0, 0, 0))).get());
  1543. cmdb->copyBufferToTexture(BufferView(uploadBuff2.get()), g_gr->newTextureView(TextureViewInitInfo(tex.get(), TextureSurfaceInfo(1, 0, 0))).get());
  1544. setTextureBarrier(cmdb, tex, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledCompute, subresource);
  1545. cmdb->bindShaderProgram(prog.get());
  1546. // cmdb->bindTextureAndSampler(0, 0, texView.get(), sampler.get());
  1547. cmdb->bindStorageBuffer(0, 1, BufferView(resultBuff.get()));
  1548. cmdb->dispatchCompute(1, 1, 1);
  1549. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kStorageComputeWrite, BufferUsageBit::kStorageComputeWrite, 0, resultBuff->getSize());
  1550. cmdb->endRecording();
  1551. GrManager::getSingleton().submit(cmdb.get());
  1552. g_gr->finish();
  1553. // Get the result
  1554. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1555. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1556. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1557. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1558. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1559. resultBuff->unmap();
  1560. COMMON_END()
  1561. }
  1562. ANKI_TEST(Gr, PushConsts)
  1563. {
  1564. #if 0
  1565. COMMON_BEGIN()
  1566. static const char* VERT_SRC = R"(
  1567. struct PC
  1568. {
  1569. vec4 color;
  1570. ivec4 icolor;
  1571. vec4 arr[2];
  1572. mat4 mat;
  1573. };
  1574. layout(push_constant, std140) uniform pc_
  1575. {
  1576. PC regs;
  1577. };
  1578. out gl_PerVertex
  1579. {
  1580. vec4 gl_Position;
  1581. };
  1582. layout(location = 0) out vec4 out_color;
  1583. void main()
  1584. {
  1585. vec2 uv = vec2(gl_VertexID & 1, gl_VertexID >> 1) * 2.0;
  1586. vec2 pos = uv * 2.0 - 1.0;
  1587. gl_Position = vec4(pos, 0.0, 1.0);
  1588. out_color = regs.color;
  1589. }
  1590. )";
  1591. static const char* FRAG_SRC = R"(
  1592. struct PC
  1593. {
  1594. vec4 color;
  1595. ivec4 icolor;
  1596. vec4 arr[2];
  1597. mat4 mat;
  1598. };
  1599. layout(push_constant, std140) uniform pc_
  1600. {
  1601. PC regs;
  1602. };
  1603. layout(location = 0) in vec4 in_color;
  1604. layout(location = 0) out vec4 out_color;
  1605. layout(set = 0, binding = 0) buffer s_
  1606. {
  1607. uvec4 u_result;
  1608. };
  1609. void main()
  1610. {
  1611. out_color = vec4(1.0);
  1612. if(gl_FragCoord.x == 0.5 && gl_FragCoord.y == 0.5)
  1613. {
  1614. if(in_color != vec4(1.0, 0.0, 1.0, 0.0) || regs.icolor != ivec4(-1, 1, 2147483647, -2147483647)
  1615. || regs.arr[0] != vec4(1, 2, 3, 4) || regs.arr[1] != vec4(10, 20, 30, 40)
  1616. || regs.mat[1][0] != 0.5)
  1617. {
  1618. u_result = uvec4(1u);
  1619. }
  1620. else
  1621. {
  1622. u_result = uvec4(2u);
  1623. }
  1624. }
  1625. }
  1626. )";
  1627. ShaderProgramPtr prog = createProgram(VERT_SRC, FRAG_SRC, *g_gr);
  1628. // Create the result buffer
  1629. BufferPtr resultBuff =
  1630. g_gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllStorage | BufferUsageBit::kTransferDestination, BufferMapAccessBit::kRead));
  1631. // Draw
  1632. CommandBufferInitInfo cinit;
  1633. cinit.m_flags = CommandBufferFlag::kGeneralWork;
  1634. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1635. cmdb->fillBuffer(resultBuff.get(), 0, resultBuff->getSize(), 0);
  1636. setBufferBarrier(cmdb, resultBuff, BufferUsageBit::kTransferDestination, BufferUsageBit::kStorageFragmentWrite, 0, resultBuff->getSize());
  1637. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  1638. cmdb->bindShaderProgram(prog.get());
  1639. struct PushConstants
  1640. {
  1641. Vec4 m_color = Vec4(1.0, 0.0, 1.0, 0.0);
  1642. IVec4 m_icolor = IVec4(-1, 1, 2147483647, -2147483647);
  1643. Vec4 m_arr[2] = {Vec4(1, 2, 3, 4), Vec4(10, 20, 30, 40)};
  1644. Mat4 m_mat = Mat4(0.0f);
  1645. } pc;
  1646. pc.m_mat(0, 1) = 0.5f;
  1647. cmdb->setPushConstants(&pc, sizeof(pc));
  1648. cmdb->bindStorageBuffer(0, 0, resultBuff.get(), 0, resultBuff->getSize());
  1649. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  1650. FramebufferPtr dfb = createColorFb(*g_gr, presentTex);
  1651. presentBarrierA(cmdb, presentTex);
  1652. cmdb->beginRenderPass(dfb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  1653. cmdb->draw(PrimitiveTopology::kTriangles, 3);
  1654. cmdb->endRenderPass();
  1655. presentBarrierB(cmdb, presentTex);
  1656. cmdb->endRecording();
  1657. GrManager::getSingleton().submit(cmdb.get());
  1658. g_gr->swapBuffers();
  1659. g_gr->finish();
  1660. // Get the result
  1661. UVec4* result = static_cast<UVec4*>(resultBuff->map(0, resultBuff->getSize(), BufferMapAccessBit::kRead));
  1662. ANKI_TEST_EXPECT_EQ(result->x(), 2);
  1663. ANKI_TEST_EXPECT_EQ(result->y(), 2);
  1664. ANKI_TEST_EXPECT_EQ(result->z(), 2);
  1665. ANKI_TEST_EXPECT_EQ(result->w(), 2);
  1666. resultBuff->unmap();
  1667. COMMON_END()
  1668. #endif
  1669. }
  1670. ANKI_TEST(Gr, BindingWithArray)
  1671. {
  1672. COMMON_BEGIN()
  1673. // Create result buffer
  1674. BufferPtr resBuff = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1675. Array<BufferPtr, 4> uniformBuffers;
  1676. F32 count = 1.0f;
  1677. for(BufferPtr& ptr : uniformBuffers)
  1678. {
  1679. ptr = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kWrite));
  1680. Vec4* mapped = static_cast<Vec4*>(ptr->map(0, sizeof(Vec4), BufferMapAccessBit::kWrite));
  1681. *mapped = Vec4(count, count + 1.0f, count + 2.0f, count + 3.0f);
  1682. count += 4.0f;
  1683. ptr->unmap();
  1684. }
  1685. // Create program
  1686. static const char* PROG_SRC = R"(
  1687. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1688. layout(set = 0, binding = 0) uniform u_
  1689. {
  1690. vec4 m_vec;
  1691. } u_ubos[4];
  1692. layout(set = 0, binding = 1) writeonly buffer ss_
  1693. {
  1694. vec4 u_result;
  1695. };
  1696. void main()
  1697. {
  1698. u_result = u_ubos[0].m_vec + u_ubos[1].m_vec + u_ubos[2].m_vec + u_ubos[3].m_vec;
  1699. })";
  1700. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  1701. ShaderProgramInitInfo sprogInit;
  1702. sprogInit.m_computeShader = shader.get();
  1703. ShaderProgramPtr prog = g_gr->newShaderProgram(sprogInit);
  1704. // Run
  1705. CommandBufferInitInfo cinit;
  1706. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1707. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1708. for(U32 i = 0; i < uniformBuffers.getSize(); ++i)
  1709. {
  1710. cmdb->bindUniformBuffer(0, 0, BufferView(uniformBuffers[i].get()), i);
  1711. }
  1712. cmdb->bindStorageBuffer(0, 1, BufferView(resBuff.get()));
  1713. cmdb->bindShaderProgram(prog.get());
  1714. cmdb->dispatchCompute(1, 1, 1);
  1715. cmdb->endRecording();
  1716. GrManager::getSingleton().submit(cmdb.get());
  1717. g_gr->finish();
  1718. // Check result
  1719. Vec4* res = static_cast<Vec4*>(resBuff->map(0, sizeof(Vec4), BufferMapAccessBit::kRead));
  1720. ANKI_TEST_EXPECT_EQ(res->x(), 28.0f);
  1721. ANKI_TEST_EXPECT_EQ(res->y(), 32.0f);
  1722. ANKI_TEST_EXPECT_EQ(res->z(), 36.0f);
  1723. ANKI_TEST_EXPECT_EQ(res->w(), 40.0f);
  1724. resBuff->unmap();
  1725. COMMON_END();
  1726. }
  1727. ANKI_TEST(Gr, Bindless)
  1728. {
  1729. #if 0
  1730. COMMON_BEGIN()
  1731. // Create texture A
  1732. TextureInitInfo texInit;
  1733. texInit.m_width = 1;
  1734. texInit.m_height = 1;
  1735. texInit.m_format = Format::R32G32B32A32_UINT;
  1736. texInit.m_usage = TextureUsageBit::kAllStorage | TextureUsageBit::ALL_TRANSFER | TextureUsageBit::kAllSampled;
  1737. texInit.m_mipmapCount = 1;
  1738. TexturePtr texA = gr->newTexture(texInit);
  1739. // Create texture B
  1740. TexturePtr texB = gr->newTexture(texInit);
  1741. // Create texture C
  1742. texInit.m_format = Format::R32G32B32A32_SFLOAT;
  1743. TexturePtr texC = gr->newTexture(texInit);
  1744. // Create sampler
  1745. SamplerInitInfo samplerInit;
  1746. SamplerPtr sampler = gr->newSampler(samplerInit);
  1747. // Create views
  1748. TextureViewPtr viewA = gr->newTextureView(TextureViewInitInfo(texA, TextureSurfaceInfo()));
  1749. TextureViewPtr viewB = gr->newTextureView(TextureViewInitInfo(texB, TextureSurfaceInfo()));
  1750. TextureViewPtr viewC = gr->newTextureView(TextureViewInitInfo(texC, TextureSurfaceInfo()));
  1751. // Create result buffer
  1752. BufferPtr resBuff =
  1753. gr->newBuffer(BufferInitInfo(sizeof(UVec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1754. // Create program A
  1755. static const char* PROG_SRC = R"(
  1756. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1757. ANKI_BINDLESS_SET(0u);
  1758. layout(set = 1, binding = 0) writeonly buffer ss_
  1759. {
  1760. uvec4 u_result;
  1761. };
  1762. layout(set = 1, binding = 1) uniform sampler u_sampler;
  1763. layout(push_constant) uniform pc_
  1764. {
  1765. uvec4 u_texIndices;
  1766. };
  1767. void main()
  1768. {
  1769. uvec4 val0 = imageLoad(u_bindlessImages2dU32[u_texIndices[0]], ivec2(0));
  1770. uvec4 val1 = texelFetch(usampler2D(u_bindlessTextures2dU32[u_texIndices[1]], u_sampler), ivec2(0), 0);
  1771. vec4 val2 = texelFetch(sampler2D(u_bindlessTextures2dF32[u_texIndices[2]], u_sampler), ivec2(0), 0);
  1772. u_result = val0 + val1 + uvec4(val2);
  1773. })";
  1774. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *gr);
  1775. ShaderProgramInitInfo sprogInit;
  1776. sprogInit.m_computeShader = shader;
  1777. ShaderProgramPtr prog = gr->newShaderProgram(sprogInit);
  1778. // Run
  1779. CommandBufferInitInfo cinit;
  1780. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1781. CommandBufferPtr cmdb = gr->newCommandBuffer(cinit);
  1782. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination,
  1783. TextureSurfaceInfo());
  1784. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination,
  1785. TextureSurfaceInfo());
  1786. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kNone, TextureUsageBit::kTransferDestination,
  1787. TextureSurfaceInfo());
  1788. TransferGpuAllocatorHandle handle0, handle1, handle2;
  1789. const UVec4 mip0 = UVec4(1, 2, 3, 4);
  1790. UPLOAD_TEX_SURFACE(cmdb, texA, TextureSurfaceInfo(0, 0, 0, 0), &mip0[0], sizeof(mip0), handle0);
  1791. const UVec4 mip1 = UVec4(10, 20, 30, 40);
  1792. UPLOAD_TEX_SURFACE(cmdb, texB, TextureSurfaceInfo(0, 0, 0, 0), &mip1[0], sizeof(mip1), handle1);
  1793. const Vec4 mip2 = Vec4(2.2f, 3.3f, 4.4f, 5.5f);
  1794. UPLOAD_TEX_SURFACE(cmdb, texC, TextureSurfaceInfo(0, 0, 0, 0), &mip2[0], sizeof(mip2), handle2);
  1795. setTextureSurfaceBarrier(cmdb, texA, TextureUsageBit::kTransferDestination, TextureUsageBit::kStorageComputeRead,
  1796. TextureSurfaceInfo());
  1797. setTextureSurfaceBarrier(cmdb, texB, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledCompute,
  1798. TextureSurfaceInfo());
  1799. setTextureSurfaceBarrier(cmdb, texC, TextureUsageBit::kTransferDestination, TextureUsageBit::kSampledCompute,
  1800. TextureSurfaceInfo());
  1801. cmdb->bindStorageBuffer(1, 0, resBuff, 0, kMaxPtrSize);
  1802. cmdb->bindSampler(1, 1, sampler);
  1803. cmdb->bindShaderProgram(prog);
  1804. const U32 idx0 = viewA->getOrCreateBindlessImageIndex();
  1805. const U32 idx1 = viewB->getOrCreateBindlessTextureIndex();
  1806. const U32 idx2 = viewC->getOrCreateBindlessTextureIndex();
  1807. UVec4 pc(idx0, idx1, idx2, 0);
  1808. cmdb->setPushConstants(&pc, sizeof(pc));
  1809. cmdb->bindAllBindless(0);
  1810. cmdb->dispatchCompute(1, 1, 1);
  1811. // Read result
  1812. FencePtr fence;
  1813. cmdb->flush({}, &fence);
  1814. transfAlloc->release(handle0, fence);
  1815. transfAlloc->release(handle1, fence);
  1816. transfAlloc->release(handle2, fence);
  1817. gr->finish();
  1818. // Check result
  1819. UVec4* res = static_cast<UVec4*>(resBuff->map(0, sizeof(UVec4), BufferMapAccessBit::kRead));
  1820. ANKI_TEST_EXPECT_EQ(res->x(), 13);
  1821. ANKI_TEST_EXPECT_EQ(res->y(), 25);
  1822. ANKI_TEST_EXPECT_EQ(res->z(), 37);
  1823. ANKI_TEST_EXPECT_EQ(res->w(), 49);
  1824. resBuff->unmap();
  1825. COMMON_END()
  1826. #endif
  1827. }
  1828. ANKI_TEST(Gr, BufferAddress)
  1829. {
  1830. COMMON_BEGIN()
  1831. // Create program
  1832. static const char* PROG_SRC = R"(
  1833. layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
  1834. ANKI_DEFINE_LOAD_STORE(Vec4, 4)
  1835. layout(push_constant) uniform u_
  1836. {
  1837. U64 u_bufferAddressRead;
  1838. U64 u_bufferAddressWrite;
  1839. };
  1840. void main()
  1841. {
  1842. Vec4 a;
  1843. load(u_bufferAddressRead, a);
  1844. Vec4 b;
  1845. load(u_bufferAddressRead + 16ul, b);
  1846. store(u_bufferAddressWrite, a + b);
  1847. })";
  1848. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  1849. ShaderProgramInitInfo sprogInit;
  1850. sprogInit.m_computeShader = shader.get();
  1851. ShaderProgramPtr prog = g_gr->newShaderProgram(sprogInit);
  1852. // Create buffers
  1853. BufferInitInfo info;
  1854. info.m_size = sizeof(Vec4) * 2;
  1855. info.m_usage = BufferUsageBit::kAllCompute;
  1856. info.m_mapAccess = BufferMapAccessBit::kWrite;
  1857. BufferPtr ptrBuff = g_gr->newBuffer(info);
  1858. Vec4* mapped = static_cast<Vec4*>(ptrBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite));
  1859. const Vec4 VEC(123.456f, -1.1f, 100.0f, -666.0f);
  1860. *mapped = VEC;
  1861. ++mapped;
  1862. *mapped = VEC * 10.0f;
  1863. ptrBuff->unmap();
  1864. BufferPtr resBuff = g_gr->newBuffer(BufferInitInfo(sizeof(Vec4), BufferUsageBit::kAllCompute, BufferMapAccessBit::kRead));
  1865. // Run
  1866. CommandBufferInitInfo cinit;
  1867. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  1868. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  1869. cmdb->bindShaderProgram(prog.get());
  1870. struct Address
  1871. {
  1872. PtrSize m_addressRead;
  1873. PtrSize m_addressWrite;
  1874. } address;
  1875. address.m_addressRead = ptrBuff->getGpuAddress();
  1876. address.m_addressWrite = resBuff->getGpuAddress();
  1877. cmdb->setPushConstants(&address, sizeof(address));
  1878. cmdb->dispatchCompute(1, 1, 1);
  1879. cmdb->endRecording();
  1880. GrManager::getSingleton().submit(cmdb.get());
  1881. g_gr->finish();
  1882. // Check
  1883. mapped = static_cast<Vec4*>(resBuff->map(0, kMaxPtrSize, BufferMapAccessBit::kRead));
  1884. ANKI_TEST_EXPECT_EQ(*mapped, VEC + VEC * 10.0f);
  1885. resBuff->unmap();
  1886. COMMON_END();
  1887. }
  1888. ANKI_TEST(Gr, RayQuery)
  1889. {
  1890. #if 0
  1891. COMMON_BEGIN();
  1892. const Bool useRayTracing = g_gr->getDeviceCapabilities().m_rayTracingEnabled;
  1893. if(!useRayTracing)
  1894. {
  1895. ANKI_TEST_LOGW("Test will run without using ray tracing");
  1896. }
  1897. // Index buffer
  1898. BufferPtr idxBuffer;
  1899. if(useRayTracing)
  1900. {
  1901. Array<U16, 3> indices = {0, 1, 2};
  1902. BufferInitInfo init;
  1903. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1904. init.m_usage = BufferUsageBit::kIndex;
  1905. init.m_size = sizeof(indices);
  1906. idxBuffer = g_gr->newBuffer(init);
  1907. void* addr = idxBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1908. memcpy(addr, &indices[0], sizeof(indices));
  1909. idxBuffer->unmap();
  1910. }
  1911. // Position buffer (add some padding to complicate things a bit)
  1912. BufferPtr vertBuffer;
  1913. if(useRayTracing)
  1914. {
  1915. Array<Vec4, 3> verts = {{{-1.0f, 0.0f, 0.0f, 100.0f}, {1.0f, 0.0f, 0.0f, 100.0f}, {0.0f, 2.0f, 0.0f, 100.0f}}};
  1916. BufferInitInfo init;
  1917. init.m_mapAccess = BufferMapAccessBit::kWrite;
  1918. init.m_usage = BufferUsageBit::kVertex;
  1919. init.m_size = sizeof(verts);
  1920. vertBuffer = g_gr->newBuffer(init);
  1921. void* addr = vertBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kWrite);
  1922. memcpy(addr, &verts[0], sizeof(verts));
  1923. vertBuffer->unmap();
  1924. }
  1925. // BLAS
  1926. AccelerationStructurePtr blas;
  1927. if(useRayTracing)
  1928. {
  1929. AccelerationStructureInitInfo init;
  1930. init.m_type = AccelerationStructureType::kBottomLevel;
  1931. init.m_bottomLevel.m_indexBuffer = idxBuffer.get();
  1932. init.m_bottomLevel.m_indexCount = 3;
  1933. init.m_bottomLevel.m_indexType = IndexType::kU16;
  1934. init.m_bottomLevel.m_positionBuffer = vertBuffer.get();
  1935. init.m_bottomLevel.m_positionCount = 3;
  1936. init.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  1937. init.m_bottomLevel.m_positionStride = 4 * 4;
  1938. blas = g_gr->newAccelerationStructure(init);
  1939. }
  1940. // TLAS
  1941. AccelerationStructurePtr tlas;
  1942. if(useRayTracing)
  1943. {
  1944. AccelerationStructureInitInfo init;
  1945. init.m_type = AccelerationStructureType::kTopLevel;
  1946. Array<AccelerationStructureInstanceInfo, 1> instances = {{{blas, Mat3x4::getIdentity()}}};
  1947. init.m_topLevel.m_directArgs.m_instances = instances;
  1948. tlas = g_gr->newAccelerationStructure(init);
  1949. }
  1950. // Program
  1951. ShaderProgramPtr prog;
  1952. {
  1953. CString src = R"(
  1954. #if USE_RAY_TRACING
  1955. #extension GL_EXT_ray_query : enable
  1956. #endif
  1957. layout(push_constant, std140, row_major) uniform b_pc
  1958. {
  1959. Mat4 u_vp;
  1960. Vec3 u_cameraPos;
  1961. F32 u_padding0;
  1962. };
  1963. #if USE_RAY_TRACING
  1964. layout(set = 0, binding = 0) uniform accelerationStructureEXT u_tlas;
  1965. #endif
  1966. layout(location = 0) in Vec2 in_uv;
  1967. layout(location = 0) out Vec3 out_color;
  1968. Bool rayTriangleIntersect(Vec3 orig, Vec3 dir, Vec3 v0, Vec3 v1, Vec3 v2, out F32 t, out F32 u, out F32 v)
  1969. {
  1970. const Vec3 v0v1 = v1 - v0;
  1971. const Vec3 v0v2 = v2 - v0;
  1972. const Vec3 pvec = cross(dir, v0v2);
  1973. const F32 det = dot(v0v1, pvec);
  1974. if(det < 0.00001)
  1975. {
  1976. return false;
  1977. }
  1978. const F32 invDet = 1.0 / det;
  1979. const Vec3 tvec = orig - v0;
  1980. u = dot(tvec, pvec) * invDet;
  1981. if(u < 0.0 || u > 1.0)
  1982. {
  1983. return false;
  1984. }
  1985. const Vec3 qvec = cross(tvec, v0v1);
  1986. v = dot(dir, qvec) * invDet;
  1987. if(v < 0.0 || u + v > 1.0)
  1988. {
  1989. return false;
  1990. }
  1991. t = dot(v0v2, qvec) * invDet;
  1992. return true;
  1993. }
  1994. void main()
  1995. {
  1996. // Unproject
  1997. const Vec2 ndc = in_uv * 2.0 - 1.0;
  1998. const Vec4 p4 = inverse(u_vp) * Vec4(ndc, 1.0, 1.0);
  1999. const Vec3 p3 = p4.xyz / p4.w;
  2000. const Vec3 rayDir = normalize(p3 - u_cameraPos);
  2001. const Vec3 rayOrigin = u_cameraPos;
  2002. #if USE_RAY_TRACING
  2003. Bool hit = false;
  2004. F32 u = 0.0;
  2005. F32 v = 0.0;
  2006. rayQueryEXT rayQuery;
  2007. rayQueryInitializeEXT(rayQuery, u_tlas, gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT, 0xFFu, rayOrigin,
  2008. 0.01, rayDir, 1000.0);
  2009. rayQueryProceedEXT(rayQuery);
  2010. const U32 committedStatus = rayQueryGetIntersectionTypeEXT(rayQuery, true);
  2011. if(committedStatus == gl_RayQueryCommittedIntersectionTriangleEXT)
  2012. {
  2013. const Vec2 bary = rayQueryGetIntersectionBarycentricsEXT(rayQuery, true);
  2014. u = bary.x;
  2015. v = bary.y;
  2016. hit = true;
  2017. }
  2018. #else
  2019. // Manual trace
  2020. Vec3 arr[3] = Vec3[](Vec3(-1.0f, 0.0f, 0.0f), Vec3(1.0f, 0.0f, 0.0f), Vec3(0.0f, 2.0f, 0.0f));
  2021. F32 t;
  2022. F32 u;
  2023. F32 v;
  2024. const Bool hit = rayTriangleIntersect(rayOrigin, rayDir, arr[0], arr[1], arr[2], t, u, v);
  2025. #endif
  2026. if(hit)
  2027. {
  2028. out_color = Vec3(u, v, 1.0 - (u + v));
  2029. }
  2030. else
  2031. {
  2032. out_color = Vec3(mix(0.5, 0.2, in_uv.x));
  2033. }
  2034. }
  2035. )";
  2036. String fragSrc;
  2037. if(useRayTracing)
  2038. {
  2039. fragSrc += "#define USE_RAY_TRACING 1\n";
  2040. }
  2041. else
  2042. {
  2043. fragSrc += "#define USE_RAY_TRACING 0\n";
  2044. }
  2045. fragSrc += src;
  2046. prog = createProgram(VERT_QUAD_STRIP_SRC, fragSrc, *g_gr);
  2047. }
  2048. // Build AS
  2049. if(useRayTracing)
  2050. {
  2051. CommandBufferInitInfo cinit;
  2052. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2053. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  2054. setAccelerationStructureBarrier(cmdb, blas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2055. BufferInitInfo scratchInit;
  2056. scratchInit.m_size = blas->getBuildScratchBufferSize();
  2057. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2058. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2059. cmdb->buildAccelerationStructure(blas.get(), scratchBuff.get(), 0);
  2060. setAccelerationStructureBarrier(cmdb, blas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kAttach);
  2061. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2062. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  2063. scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2064. cmdb->buildAccelerationStructure(tlas.get(), scratchBuff.get(), 0);
  2065. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kFragmentRead);
  2066. cmdb->endRecording();
  2067. GrManager::getSingleton().submit(cmdb.get());
  2068. }
  2069. // Draw
  2070. constexpr U32 ITERATIONS = 200;
  2071. for(U i = 0; i < ITERATIONS; ++i)
  2072. {
  2073. HighRezTimer timer;
  2074. timer.start();
  2075. const Vec4 cameraPos(0.0f, 0.0f, 3.0f, 0.0f);
  2076. const Mat4 viewMat = Mat4(cameraPos.xyz(), Mat3::getIdentity(), Vec3(1.0f)).getInverse();
  2077. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(90.0f), toRad(90.0f), 0.01f, 1000.0f);
  2078. CommandBufferInitInfo cinit;
  2079. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2080. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  2081. cmdb->setViewport(0, 0, WIDTH, HEIGHT);
  2082. cmdb->bindShaderProgram(prog.get());
  2083. struct PC
  2084. {
  2085. Mat4 m_vp;
  2086. Vec4 m_cameraPos;
  2087. } pc;
  2088. pc.m_vp = projMat * viewMat;
  2089. pc.m_cameraPos = cameraPos;
  2090. cmdb->setPushConstants(&pc, sizeof(pc));
  2091. if(useRayTracing)
  2092. {
  2093. cmdb->bindAccelerationStructure(0, 0, tlas.get());
  2094. }
  2095. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  2096. FramebufferPtr fb = createColorFb(*g_gr, presentTex);
  2097. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kNone, TextureUsageBit::kFramebufferWrite, TextureSubresourceInfo{});
  2098. cmdb->beginRenderPass(fb.get(), {TextureUsageBit::kFramebufferWrite}, {});
  2099. cmdb->draw(PrimitiveTopology::kTriangleStrip, 4);
  2100. cmdb->endRenderPass();
  2101. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kFramebufferWrite, TextureUsageBit::kPresent, TextureSubresourceInfo{});
  2102. cmdb->endRecording();
  2103. GrManager::getSingleton().submit(cmdb.get());
  2104. g_gr->swapBuffers();
  2105. timer.stop();
  2106. const F32 TICK = 1.0f / 30.0f;
  2107. if(timer.getElapsedTime() < TICK)
  2108. {
  2109. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2110. }
  2111. }
  2112. COMMON_END();
  2113. #endif
  2114. }
  2115. static void createCubeBuffers(GrManager& gr, Vec3 min, Vec3 max, BufferPtr& indexBuffer, BufferPtr& vertBuffer, Bool turnInsideOut = false)
  2116. {
  2117. BufferInitInfo inf;
  2118. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2119. inf.m_usage = BufferUsageBit::kIndex | BufferUsageBit::kVertex | BufferUsageBit::kStorageTraceRaysRead;
  2120. inf.m_size = sizeof(Vec3) * 8;
  2121. vertBuffer = gr.newBuffer(inf);
  2122. WeakArray<Vec3, PtrSize> positions = vertBuffer->map<Vec3>(0, 8, BufferMapAccessBit::kWrite);
  2123. // 7------6
  2124. // /| /|
  2125. // 3------2 |
  2126. // | | | |
  2127. // | 4 ---|-5
  2128. // |/ |/
  2129. // 0------1
  2130. positions[0] = Vec3(min.x(), min.y(), max.z());
  2131. positions[1] = Vec3(max.x(), min.y(), max.z());
  2132. positions[2] = Vec3(max.x(), max.y(), max.z());
  2133. positions[3] = Vec3(min.x(), max.y(), max.z());
  2134. positions[4] = Vec3(min.x(), min.y(), min.z());
  2135. positions[5] = Vec3(max.x(), min.y(), min.z());
  2136. positions[6] = Vec3(max.x(), max.y(), min.z());
  2137. positions[7] = Vec3(min.x(), max.y(), min.z());
  2138. vertBuffer->unmap();
  2139. inf.m_size = sizeof(U16) * 36;
  2140. indexBuffer = gr.newBuffer(inf);
  2141. WeakArray<U16, PtrSize> indices = indexBuffer->map<U16>(0, 36, BufferMapAccessBit::kWrite);
  2142. U32 t = 0;
  2143. // Top
  2144. indices[t++] = 3;
  2145. indices[t++] = 2;
  2146. indices[t++] = 7;
  2147. indices[t++] = 2;
  2148. indices[t++] = 6;
  2149. indices[t++] = 7;
  2150. // Bottom
  2151. indices[t++] = 1;
  2152. indices[t++] = 0;
  2153. indices[t++] = 4;
  2154. indices[t++] = 1;
  2155. indices[t++] = 4;
  2156. indices[t++] = 5;
  2157. // Left
  2158. indices[t++] = 0;
  2159. indices[t++] = 3;
  2160. indices[t++] = 4;
  2161. indices[t++] = 3;
  2162. indices[t++] = 7;
  2163. indices[t++] = 4;
  2164. // Right
  2165. indices[t++] = 1;
  2166. indices[t++] = 5;
  2167. indices[t++] = 2;
  2168. indices[t++] = 2;
  2169. indices[t++] = 5;
  2170. indices[t++] = 6;
  2171. // Front
  2172. indices[t++] = 0;
  2173. indices[t++] = 1;
  2174. indices[t++] = 3;
  2175. indices[t++] = 3;
  2176. indices[t++] = 1;
  2177. indices[t++] = 2;
  2178. // Back
  2179. indices[t++] = 4;
  2180. indices[t++] = 7;
  2181. indices[t++] = 6;
  2182. indices[t++] = 5;
  2183. indices[t++] = 4;
  2184. indices[t++] = 6;
  2185. ANKI_ASSERT(t == indices.getSize());
  2186. if(turnInsideOut)
  2187. {
  2188. for(U32 i = 0; i < t; i += 3)
  2189. {
  2190. std::swap(indices[i + 1], indices[i + 2]);
  2191. }
  2192. }
  2193. indexBuffer->unmap();
  2194. }
  2195. enum class GeomWhat
  2196. {
  2197. SMALL_BOX,
  2198. BIG_BOX,
  2199. ROOM,
  2200. LIGHT,
  2201. kCount,
  2202. kFirst = 0
  2203. };
  2204. ANKI_ENUM_ALLOW_NUMERIC_OPERATIONS(GeomWhat)
  2205. ANKI_TEST(Gr, RayGen)
  2206. {
  2207. COMMON_BEGIN();
  2208. const Bool useRayTracing = g_gr->getDeviceCapabilities().m_rayTracingEnabled;
  2209. if(!useRayTracing)
  2210. {
  2211. ANKI_TEST_LOGW("Ray tracing not supported");
  2212. break;
  2213. }
  2214. using Mat3x4Scalar = Array2d<F32, 3, 4>;
  2215. #define MAGIC_MACRO(x) x
  2216. #include <Tests/Gr/RtTypes.h>
  2217. #undef MAGIC_MACRO
  2218. HeapMemoryPool pool(allocAligned, nullptr);
  2219. // Create the offscreen RTs
  2220. Array<TexturePtr, 2> offscreenRts;
  2221. {
  2222. TextureInitInfo inf("T_offscreen#1");
  2223. inf.m_width = WIDTH;
  2224. inf.m_height = HEIGHT;
  2225. inf.m_format = Format::kR8G8B8A8_Unorm;
  2226. inf.m_usage = TextureUsageBit::kStorageTraceRaysRead | TextureUsageBit::kStorageTraceRaysWrite | TextureUsageBit::kStorageComputeRead;
  2227. offscreenRts[0] = g_gr->newTexture(inf);
  2228. inf.setName("T_offscreen#2");
  2229. offscreenRts[1] = g_gr->newTexture(inf);
  2230. }
  2231. // Copy to present program
  2232. ShaderProgramPtr copyToPresentProg;
  2233. {
  2234. const CString src = R"(
  2235. layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
  2236. layout(set = 0, binding = 0) uniform readonly image2D u_inImg;
  2237. layout(set = 0, binding = 1) uniform writeonly image2D u_outImg;
  2238. void main()
  2239. {
  2240. const UVec2 size = UVec2(imageSize(u_inImg));
  2241. if(gl_GlobalInvocationID.x >= size.x || gl_GlobalInvocationID.y >= size.y)
  2242. {
  2243. return;
  2244. }
  2245. const Vec4 col = imageLoad(u_inImg, IVec2(gl_GlobalInvocationID.xy));
  2246. imageStore(u_outImg, IVec2(gl_GlobalInvocationID.xy), col);
  2247. })";
  2248. ShaderPtr shader = createShader(src, ShaderType::kCompute, *g_gr);
  2249. ShaderProgramInitInfo sprogInit;
  2250. sprogInit.m_computeShader = shader.get();
  2251. copyToPresentProg = g_gr->newShaderProgram(sprogInit);
  2252. }
  2253. // Create the gometries
  2254. struct Geom
  2255. {
  2256. BufferPtr m_vertexBuffer;
  2257. BufferPtr m_indexBuffer;
  2258. Aabb m_aabb;
  2259. Mat3x4 m_worldTransform;
  2260. Mat3 m_worldRotation;
  2261. Bool m_insideOut = false;
  2262. U8 m_asMask = 0b10;
  2263. AccelerationStructurePtr m_blas;
  2264. U32 m_indexCount = 36;
  2265. Vec3 m_diffuseColor = Vec3(0.0f);
  2266. Vec3 m_emissiveColor = Vec3(0.0f);
  2267. };
  2268. Array<Geom, U(GeomWhat::kCount)> geometries;
  2269. geometries[GeomWhat::SMALL_BOX].m_aabb = Aabb(Vec3(130.0f, 0.0f, 65.0f), Vec3(295.0f, 160.0f, 230.0f));
  2270. geometries[GeomWhat::SMALL_BOX].m_worldRotation = Mat3(Axisang(toRad(-18.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2271. geometries[GeomWhat::SMALL_BOX].m_worldTransform =
  2272. Mat3x4(Vec3((geometries[GeomWhat::SMALL_BOX].m_aabb.getMin() + geometries[GeomWhat::SMALL_BOX].m_aabb.getMax()).xyz() / 2.0f),
  2273. geometries[GeomWhat::SMALL_BOX].m_worldRotation);
  2274. geometries[GeomWhat::SMALL_BOX].m_diffuseColor = Vec3(0.75f);
  2275. geometries[GeomWhat::BIG_BOX].m_aabb = Aabb(Vec3(265.0f, 0.0f, 295.0f), Vec3(430.0f, 330.0f, 460.0f));
  2276. geometries[GeomWhat::BIG_BOX].m_worldRotation = Mat3(Axisang(toRad(15.0f), Vec3(0.0f, 1.0f, 0.0f)));
  2277. geometries[GeomWhat::BIG_BOX].m_worldTransform =
  2278. Mat3x4(Vec3((geometries[GeomWhat::BIG_BOX].m_aabb.getMin() + geometries[GeomWhat::BIG_BOX].m_aabb.getMax()).xyz() / 2.0f),
  2279. geometries[GeomWhat::BIG_BOX].m_worldRotation);
  2280. geometries[GeomWhat::BIG_BOX].m_diffuseColor = Vec3(0.75f);
  2281. geometries[GeomWhat::ROOM].m_aabb = Aabb(Vec3(0.0f), Vec3(555.0f));
  2282. geometries[GeomWhat::ROOM].m_worldRotation = Mat3::getIdentity();
  2283. geometries[GeomWhat::ROOM].m_worldTransform =
  2284. Mat3x4(Vec3((geometries[GeomWhat::ROOM].m_aabb.getMin() + geometries[GeomWhat::ROOM].m_aabb.getMax()).xyz() / 2.0f),
  2285. geometries[GeomWhat::ROOM].m_worldRotation);
  2286. geometries[GeomWhat::ROOM].m_insideOut = true;
  2287. geometries[GeomWhat::ROOM].m_indexCount = 30;
  2288. geometries[GeomWhat::LIGHT].m_aabb = Aabb(Vec3(213.0f + 1.0f, 554.0f, 227.0f + 1.0f), Vec3(343.0f - 1.0f, 554.0f + 0.001f, 332.0f - 1.0f));
  2289. geometries[GeomWhat::LIGHT].m_worldRotation = Mat3::getIdentity();
  2290. geometries[GeomWhat::LIGHT].m_worldTransform =
  2291. Mat3x4(Vec3((geometries[GeomWhat::LIGHT].m_aabb.getMin() + geometries[GeomWhat::LIGHT].m_aabb.getMax()).xyz() / 2.0f),
  2292. geometries[GeomWhat::LIGHT].m_worldRotation);
  2293. geometries[GeomWhat::LIGHT].m_asMask = 0b01;
  2294. geometries[GeomWhat::LIGHT].m_emissiveColor = Vec3(15.0f);
  2295. // Create Buffers
  2296. for(Geom& g : geometries)
  2297. {
  2298. createCubeBuffers(*g_gr, -(g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f,
  2299. (g.m_aabb.getMax().xyz() - g.m_aabb.getMin().xyz()) / 2.0f, g.m_indexBuffer, g.m_vertexBuffer, g.m_insideOut);
  2300. }
  2301. // Create AS
  2302. AccelerationStructurePtr tlas;
  2303. {
  2304. for(Geom& g : geometries)
  2305. {
  2306. AccelerationStructureInitInfo inf;
  2307. inf.m_type = AccelerationStructureType::kBottomLevel;
  2308. inf.m_bottomLevel.m_indexBuffer = BufferView(g.m_indexBuffer.get());
  2309. inf.m_bottomLevel.m_indexType = IndexType::kU16;
  2310. inf.m_bottomLevel.m_indexCount = g.m_indexCount;
  2311. inf.m_bottomLevel.m_positionBuffer = BufferView(g.m_vertexBuffer.get());
  2312. inf.m_bottomLevel.m_positionCount = 8;
  2313. inf.m_bottomLevel.m_positionsFormat = Format::kR32G32B32_Sfloat;
  2314. inf.m_bottomLevel.m_positionStride = sizeof(Vec3);
  2315. g.m_blas = g_gr->newAccelerationStructure(inf);
  2316. }
  2317. // TLAS
  2318. Array<AccelerationStructureInstanceInfo, U32(GeomWhat::kCount)> instances;
  2319. U32 count = 0;
  2320. for(Geom& g : geometries)
  2321. {
  2322. instances[count].m_bottomLevel = g.m_blas;
  2323. instances[count].m_transform = g.m_worldTransform;
  2324. instances[count].m_hitgroupSbtRecordIndex = count;
  2325. instances[count].m_mask = g.m_asMask;
  2326. ++count;
  2327. }
  2328. AccelerationStructureInitInfo inf;
  2329. inf.m_type = AccelerationStructureType::kTopLevel;
  2330. inf.m_topLevel.m_directArgs.m_instances = instances;
  2331. tlas = g_gr->newAccelerationStructure(inf);
  2332. }
  2333. // Create model info
  2334. BufferPtr modelBuffer;
  2335. {
  2336. BufferInitInfo inf;
  2337. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2338. inf.m_usage = BufferUsageBit::kAllStorage;
  2339. inf.m_size = sizeof(Model) * U32(GeomWhat::kCount);
  2340. modelBuffer = g_gr->newBuffer(inf);
  2341. WeakArray<Model, PtrSize> models = modelBuffer->map<Model>(0, U32(GeomWhat::kCount), BufferMapAccessBit::kWrite);
  2342. memset(&models[0], 0, inf.m_size);
  2343. for(GeomWhat i : EnumIterable<GeomWhat>())
  2344. {
  2345. const Geom& g = geometries[i];
  2346. models[U32(i)].m_mtl.m_diffuseColor = g.m_diffuseColor;
  2347. models[U32(i)].m_mtl.m_emissiveColor = g.m_emissiveColor;
  2348. models[U32(i)].m_mesh.m_indexBufferPtr = g.m_indexBuffer->getGpuAddress();
  2349. models[U32(i)].m_mesh.m_positionBufferPtr = g.m_vertexBuffer->getGpuAddress();
  2350. memcpy(&models[U32(i)].m_worldTransform, &g.m_worldTransform, sizeof(Mat3x4));
  2351. models[U32(i)].m_worldRotation = g.m_worldRotation;
  2352. }
  2353. modelBuffer->unmap();
  2354. }
  2355. // Create the ppline
  2356. ShaderProgramPtr rtProg;
  2357. constexpr U32 rayGenGroupIdx = 1;
  2358. constexpr U32 missGroupIdx = 2;
  2359. constexpr U32 shadowMissGroupIdx = 3;
  2360. constexpr U32 lambertianChitGroupIdx = 4;
  2361. constexpr U32 lambertianRoomChitGroupIdx = 5;
  2362. constexpr U32 emissiveChitGroupIdx = 6;
  2363. constexpr U32 shadowAhitGroupIdx = 7;
  2364. constexpr U32 hitgroupCount = 7;
  2365. {
  2366. const CString commonSrcPart = R"(
  2367. #define Mat3x4Scalar Mat3x4
  2368. %s
  2369. const F32 PI = 3.14159265358979323846;
  2370. struct PayLoad
  2371. {
  2372. Vec3 m_total;
  2373. Vec3 m_weight;
  2374. Vec3 m_scatteredDir;
  2375. F32 m_hitT;
  2376. };
  2377. struct ShadowPayLoad
  2378. {
  2379. F32 m_shadow;
  2380. };
  2381. layout(set = 0, binding = 0, scalar) buffer b_00
  2382. {
  2383. Model u_models[];
  2384. };
  2385. layout(set = 0, binding = 1, scalar) buffer b_01
  2386. {
  2387. Light u_lights[];
  2388. };
  2389. layout(push_constant, scalar) uniform b_pc
  2390. {
  2391. PushConstants u_regs;
  2392. };
  2393. #define PAYLOAD_LOCATION 0
  2394. #define SHADOW_PAYLOAD_LOCATION 1
  2395. ANKI_REF(U16Vec3, ANKI_SIZEOF(U16));
  2396. ANKI_REF(Vec3, ANKI_SIZEOF(F32));
  2397. Vec3 computePrimitiveNormal(Model model, U32 primitiveId)
  2398. {
  2399. const Mesh mesh = model.m_mesh;
  2400. const U32 offset = primitiveId * 6;
  2401. const U16Vec3 indices = U16Vec3Ref(nonuniformEXT(mesh.m_indexBufferPtr + offset)).m_value;
  2402. const Vec3 pos0 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[0] * ANKI_SIZEOF(Vec3))).m_value;
  2403. const Vec3 pos1 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[1] * ANKI_SIZEOF(Vec3))).m_value;
  2404. const Vec3 pos2 = Vec3Ref(nonuniformEXT(mesh.m_positionBufferPtr + indices[2] * ANKI_SIZEOF(Vec3))).m_value;
  2405. const Vec3 normal = normalize(cross(pos1 - pos0, pos2 - pos0));
  2406. return model.m_worldRotation * normal;
  2407. }
  2408. UVec3 rand3DPCG16(UVec3 v)
  2409. {
  2410. v = v * 1664525u + 1013904223u;
  2411. v.x += v.y * v.z;
  2412. v.y += v.z * v.x;
  2413. v.z += v.x * v.y;
  2414. v.x += v.y * v.z;
  2415. v.y += v.z * v.x;
  2416. v.z += v.x * v.y;
  2417. return v >> 16u;
  2418. }
  2419. Vec2 hammersleyRandom16(U32 sampleIdx, U32 sampleCount, UVec2 random)
  2420. {
  2421. const F32 e1 = fract(F32(sampleIdx) / sampleCount + F32(random.x) * (1.0 / 65536.0));
  2422. const F32 e2 = F32((bitfieldReverse(sampleIdx) >> 16) ^ random.y) * (1.0 / 65536.0);
  2423. return Vec2(e1, e2);
  2424. }
  2425. Vec3 hemisphereSampleUniform(Vec2 uv)
  2426. {
  2427. const F32 phi = uv.y * 2.0 * PI;
  2428. const F32 cosTheta = 1.0 - uv.x;
  2429. const F32 sinTheta = sqrt(1.0 - cosTheta * cosTheta);
  2430. return Vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);
  2431. }
  2432. Mat3 rotationFromDirection(Vec3 zAxis)
  2433. {
  2434. Vec3 z = zAxis;
  2435. F32 sign = (z.z >= 0.0) ? 1.0 : -1.0;
  2436. F32 a = -1.0 / (sign + z.z);
  2437. F32 b = z.x * z.y * a;
  2438. Vec3 x = Vec3(1.0 + sign * a * pow(z.x, 2.0), sign * b, -sign * z.x);
  2439. Vec3 y = Vec3(b, sign + a * pow(z.y, 2.0), -z.y);
  2440. return Mat3(x, y, z);
  2441. }
  2442. Vec3 randomDirectionInHemisphere(Vec3 normal)
  2443. {
  2444. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2445. const Vec2 uniformRandom = hammersleyRandom16(0, 0xFFFFu, random);
  2446. return normalize(rotationFromDirection(normal) * hemisphereSampleUniform(uniformRandom));
  2447. }
  2448. void scatterLambertian(Vec3 normal, out Vec3 scatterDir, out F32 pdf)
  2449. {
  2450. scatterDir = randomDirectionInHemisphere(normal);
  2451. pdf = dot(normal, scatterDir) / PI;
  2452. }
  2453. F32 scatteringPdfLambertian(Vec3 normal, Vec3 scatteredDir)
  2454. {
  2455. F32 cosine = dot(normal, scatteredDir);
  2456. return max(cosine / PI, 0.0);
  2457. })";
  2458. #define MAGIC_MACRO ANKI_STRINGIZE
  2459. const CString rtTypesStr =
  2460. #include <Tests/Gr/RtTypes.h>
  2461. ;
  2462. #undef MAGIC_MACRO
  2463. String commonSrc;
  2464. commonSrc.sprintf(commonSrcPart.cstr(), rtTypesStr.cstr());
  2465. const CString lambertianSrc = R"(
  2466. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2467. hitAttributeEXT vec2 g_attribs;
  2468. void main()
  2469. {
  2470. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2471. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2472. Vec3 scatteredDir;
  2473. F32 pdf;
  2474. scatterLambertian(normal, scatteredDir, pdf);
  2475. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2476. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2477. s_payLoad.m_weight *= model.m_mtl.m_diffuseColor * scatteringPdf / pdf;
  2478. s_payLoad.m_scatteredDir = scatteredDir;
  2479. s_payLoad.m_hitT = gl_HitTEXT;
  2480. })";
  2481. const CString lambertianRoomSrc = R"(
  2482. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2483. void main()
  2484. {
  2485. Vec3 col;
  2486. U32 quad = gl_PrimitiveID / 2;
  2487. if(quad == 2)
  2488. {
  2489. col = Vec3(0.65, 0.05, 0.05);
  2490. }
  2491. else if(quad == 3)
  2492. {
  2493. col = Vec3(0.12, 0.45, 0.15);
  2494. }
  2495. else
  2496. {
  2497. col = Vec3(0.73f);
  2498. }
  2499. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2500. const Vec3 normal = computePrimitiveNormal(model, gl_PrimitiveID);
  2501. Vec3 scatteredDir;
  2502. F32 pdf;
  2503. scatterLambertian(normal, scatteredDir, pdf);
  2504. const F32 scatteringPdf = scatteringPdfLambertian(normal, scatteredDir);
  2505. // Color = diff * scatteringPdf / pdf * trace(depth - 1)
  2506. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2507. s_payLoad.m_weight *= col * scatteringPdf / pdf;
  2508. s_payLoad.m_scatteredDir = scatteredDir;
  2509. s_payLoad.m_hitT = gl_HitTEXT;
  2510. })";
  2511. const CString emissiveSrc = R"(
  2512. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2513. void main()
  2514. {
  2515. const Model model = u_models[nonuniformEXT(gl_InstanceID)];
  2516. s_payLoad.m_total += model.m_mtl.m_emissiveColor * s_payLoad.m_weight;
  2517. s_payLoad.m_weight = Vec3(0.0);
  2518. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2519. s_payLoad.m_hitT = -1.0;
  2520. })";
  2521. const CString missSrc = R"(
  2522. layout(location = PAYLOAD_LOCATION) rayPayloadInEXT PayLoad s_payLoad;
  2523. void main()
  2524. {
  2525. //s_payLoad.m_color =
  2526. //mix(Vec3(0.3, 0.5, 0.3), Vec3(0.1, 0.6, 0.1), F32(gl_LaunchIDEXT.y) / F32(gl_LaunchSizeEXT.y));
  2527. //Vec3(0.0);
  2528. s_payLoad.m_weight = Vec3(0.0);
  2529. s_payLoad.m_scatteredDir = Vec3(1.0, 0.0, 0.0);
  2530. s_payLoad.m_hitT = -1.0;
  2531. })";
  2532. const CString shadowAhitSrc = R"(
  2533. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2534. void main()
  2535. {
  2536. s_payLoad.m_shadow += 0.25;
  2537. //terminateRayEXT();
  2538. })";
  2539. const CString shadowChitSrc = R"(
  2540. void main()
  2541. {
  2542. })";
  2543. const CString shadowMissSrc = R"(
  2544. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadInEXT ShadowPayLoad s_payLoad;
  2545. void main()
  2546. {
  2547. s_payLoad.m_shadow = 1.0;
  2548. })";
  2549. const CString rayGenSrc = R"(
  2550. layout(set = 1, binding = 0) uniform accelerationStructureEXT u_tlas;
  2551. layout(set = 1, binding = 1, rgba8) uniform readonly image2D u_inImg;
  2552. layout(set = 1, binding = 2, rgba8) uniform writeonly image2D u_outImg;
  2553. layout(location = PAYLOAD_LOCATION) rayPayloadEXT PayLoad s_payLoad;
  2554. layout(location = SHADOW_PAYLOAD_LOCATION) rayPayloadEXT ShadowPayLoad s_shadowPayLoad;
  2555. void main()
  2556. {
  2557. Vec2 uv = (Vec2(gl_LaunchIDEXT.xy) + 0.5) / Vec2(gl_LaunchSizeEXT.xy);
  2558. uv.y = 1.0 - uv.y;
  2559. const Vec2 ndc = uv * 2.0 - 1.0;
  2560. const Vec4 p4 = inverse(u_regs.m_vp) * Vec4(ndc, 1.0, 1.0);
  2561. const Vec3 p3 = p4.xyz / p4.w;
  2562. const UVec2 random = rand3DPCG16(UVec3(gl_LaunchIDEXT.xy, u_regs.m_frame)).xy;
  2563. const Vec2 randomCircle = hammersleyRandom16(0, 0xFFFFu, random);
  2564. Vec3 outColor = Vec3(0.0);
  2565. const U32 sampleCount = 8;
  2566. const U32 maxRecursionDepth = 2;
  2567. for(U32 s = 0; s < sampleCount; ++s)
  2568. {
  2569. Vec3 rayOrigin = u_regs.m_cameraPos;
  2570. Vec3 rayDir = normalize(p3 - u_regs.m_cameraPos);
  2571. s_payLoad.m_total = Vec3(0.0);
  2572. s_payLoad.m_weight = Vec3(1.0);
  2573. for(U32 depth = 0; depth < maxRecursionDepth; ++depth)
  2574. {
  2575. const U32 cullMask = 0xFF;
  2576. const U32 sbtRecordOffset = 0;
  2577. const U32 sbtRecordStride = 0;
  2578. const U32 missIndex = 0;
  2579. const F32 tMin = 0.1;
  2580. const F32 tMax = 10000.0;
  2581. traceRayEXT(u_tlas, gl_RayFlagsOpaqueEXT, cullMask, sbtRecordOffset, sbtRecordStride, missIndex,
  2582. rayOrigin, tMin, rayDir, tMax, PAYLOAD_LOCATION);
  2583. if(s_payLoad.m_hitT > 0.0)
  2584. {
  2585. rayOrigin = rayOrigin + rayDir * s_payLoad.m_hitT;
  2586. rayDir = s_payLoad.m_scatteredDir;
  2587. }
  2588. else
  2589. {
  2590. break;
  2591. }
  2592. }
  2593. outColor += s_payLoad.m_total + s_payLoad.m_weight;
  2594. //outColor += s_payLoad.m_scatteredDir * 0.5 + 0.5;
  2595. }
  2596. outColor /= F32(sampleCount);
  2597. #if 0
  2598. const Vec3 diffuseColor = Vec3(s_payLoad.m_diffuseColor);
  2599. const Vec3 normal = s_payLoad.m_normal;
  2600. if(s_payLoad.m_hitT > 0.0)
  2601. {
  2602. const Vec3 rayOrigin = u_regs.m_cameraPos + normalize(p3 - u_regs.m_cameraPos) * s_payLoad.m_hitT;
  2603. for(U32 i = 0; i < u_regs.m_lightCount; ++i)
  2604. {
  2605. s_shadowPayLoad.m_shadow = 0.0;
  2606. const Light light = u_lights[i];
  2607. const Vec3 randomPointInLight = mix(light.m_min, light.m_max, randomCircle.xyx);
  2608. const Vec3 rayDir = normalize(randomPointInLight - rayOrigin);
  2609. const U32 cullMask = 0x2;
  2610. const U32 sbtRecordOffset = 1;
  2611. const U32 sbtRecordStride = 0;
  2612. const U32 missIndex = 1;
  2613. const F32 tMin = 0.1;
  2614. const F32 tMax = length(randomPointInLight - rayOrigin);
  2615. const U32 flags = gl_RayFlagsOpaqueEXT;
  2616. traceRayEXT(u_tlas, flags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, rayOrigin,
  2617. tMin, rayDir, tMax, SHADOW_PAYLOAD_LOCATION);
  2618. F32 shadow = clamp(s_shadowPayLoad.m_shadow, 0.0, 1.0);
  2619. outColor += normal * light.m_intensity * shadow;
  2620. }
  2621. }
  2622. else
  2623. {
  2624. outColor = diffuseColor;
  2625. }
  2626. #endif
  2627. const Vec3 history = imageLoad(u_inImg, IVec2(gl_LaunchIDEXT.xy)).rgb;
  2628. outColor = mix(outColor, history, (u_regs.m_frame != 0) ? 0.99 : 0.0);
  2629. imageStore(u_outImg, IVec2(gl_LaunchIDEXT.xy), Vec4(outColor, 0.0));
  2630. })";
  2631. ShaderPtr lambertianShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2632. ShaderPtr lambertianRoomShader =
  2633. createShader(String().sprintf("%s\n%s", commonSrc.cstr(), lambertianRoomSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2634. ShaderPtr emissiveShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), emissiveSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2635. ShaderPtr shadowAhitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowAhitSrc.cstr()), ShaderType::kAnyHit, *g_gr);
  2636. ShaderPtr shadowChitShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowChitSrc.cstr()), ShaderType::kClosestHit, *g_gr);
  2637. ShaderPtr missShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), missSrc.cstr()), ShaderType::kMiss, *g_gr);
  2638. ShaderPtr shadowMissShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), shadowMissSrc.cstr()), ShaderType::kMiss, *g_gr);
  2639. ShaderPtr rayGenShader = createShader(String().sprintf("%s\n%s", commonSrc.cstr(), rayGenSrc.cstr()), ShaderType::kRayGen, *g_gr);
  2640. Array<RayTracingHitGroup, 4> hitGroups;
  2641. hitGroups[0].m_closestHitShader = lambertianShader.get();
  2642. hitGroups[1].m_closestHitShader = lambertianRoomShader.get();
  2643. hitGroups[2].m_closestHitShader = emissiveShader.get();
  2644. hitGroups[3].m_closestHitShader = shadowChitShader.get();
  2645. hitGroups[3].m_anyHitShader = shadowAhitShader.get();
  2646. Array<Shader*, 2> missShaders = {missShader.get(), shadowMissShader.get()};
  2647. // Add the same 2 times to test multiple ray gen shaders
  2648. Array<Shader*, 2> rayGenShaders = {rayGenShader.get(), rayGenShader.get()};
  2649. ShaderProgramInitInfo inf;
  2650. inf.m_rayTracingShaders.m_hitGroups = hitGroups;
  2651. inf.m_rayTracingShaders.m_rayGenShaders = rayGenShaders;
  2652. inf.m_rayTracingShaders.m_missShaders = missShaders;
  2653. rtProg = g_gr->newShaderProgram(inf);
  2654. }
  2655. // Create the SBT
  2656. BufferPtr sbt;
  2657. {
  2658. const U32 recordCount = 1 + 2 + U32(GeomWhat::kCount) * 2;
  2659. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2660. BufferInitInfo inf;
  2661. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2662. inf.m_usage = BufferUsageBit::kShaderBindingTable;
  2663. inf.m_size = sbtRecordSize * recordCount;
  2664. sbt = g_gr->newBuffer(inf);
  2665. WeakArray<U8, PtrSize> mapped = sbt->map<U8>(0, inf.m_size, BufferMapAccessBit::kWrite);
  2666. memset(&mapped[0], 0, inf.m_size);
  2667. ConstWeakArray<U8> handles = rtProg->getShaderGroupHandles();
  2668. ANKI_TEST_EXPECT_EQ(handles.getSize(), g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * (hitgroupCount + 1));
  2669. // Ray gen
  2670. U32 record = 0;
  2671. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * rayGenGroupIdx],
  2672. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2673. // 2xMiss
  2674. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * missGroupIdx],
  2675. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2676. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowMissGroupIdx],
  2677. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2678. // Small box
  2679. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2680. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2681. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2682. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2683. // Big box
  2684. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianChitGroupIdx],
  2685. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2686. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2687. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2688. // Room
  2689. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * lambertianRoomChitGroupIdx],
  2690. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2691. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2692. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2693. // Light
  2694. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * emissiveChitGroupIdx],
  2695. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2696. memcpy(&mapped[sbtRecordSize * record++], &handles[g_gr->getDeviceCapabilities().m_shaderGroupHandleSize * shadowAhitGroupIdx],
  2697. g_gr->getDeviceCapabilities().m_shaderGroupHandleSize);
  2698. sbt->unmap();
  2699. }
  2700. // Create lights
  2701. BufferPtr lightBuffer;
  2702. constexpr U32 lightCount = 1;
  2703. {
  2704. BufferInitInfo inf;
  2705. inf.m_mapAccess = BufferMapAccessBit::kWrite;
  2706. inf.m_usage = BufferUsageBit::kAllStorage;
  2707. inf.m_size = sizeof(Light) * lightCount;
  2708. lightBuffer = g_gr->newBuffer(inf);
  2709. WeakArray<Light, PtrSize> lights = lightBuffer->map<Light>(0, lightCount, BufferMapAccessBit::kWrite);
  2710. lights[0].m_min = geometries[GeomWhat::LIGHT].m_aabb.getMin().xyz();
  2711. lights[0].m_max = geometries[GeomWhat::LIGHT].m_aabb.getMax().xyz();
  2712. lights[0].m_intensity = Vec3(1.0f);
  2713. lightBuffer->unmap();
  2714. }
  2715. // Draw
  2716. constexpr U32 ITERATIONS = 100 * 8;
  2717. for(U32 i = 0; i < ITERATIONS; ++i)
  2718. {
  2719. HighRezTimer timer;
  2720. timer.start();
  2721. const Mat4 viewMat = Mat4::lookAt(Vec3(278.0f, 278.0f, -800.0f), Vec3(278.0f, 278.0f, 0.0f), Vec3(0.0f, 1.0f, 0.0f)).getInverse();
  2722. const Mat4 projMat = Mat4::calculatePerspectiveProjectionMatrix(toRad(40.0f) * WIDTH / HEIGHT, toRad(40.0f), 0.01f, 2000.0f);
  2723. CommandBufferInitInfo cinit;
  2724. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2725. CommandBufferPtr cmdb = g_gr->newCommandBuffer(cinit);
  2726. if(i == 0)
  2727. {
  2728. for(const Geom& g : geometries)
  2729. {
  2730. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2731. }
  2732. for(const Geom& g : geometries)
  2733. {
  2734. BufferInitInfo scratchInit;
  2735. scratchInit.m_size = g.m_blas->getBuildScratchBufferSize();
  2736. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2737. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2738. cmdb->buildAccelerationStructure(g.m_blas.get(), BufferView(scratchBuff.get()));
  2739. }
  2740. for(const Geom& g : geometries)
  2741. {
  2742. setAccelerationStructureBarrier(cmdb, g.m_blas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kAttach);
  2743. }
  2744. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kNone, AccelerationStructureUsageBit::kBuild);
  2745. BufferInitInfo scratchInit;
  2746. scratchInit.m_size = tlas->getBuildScratchBufferSize();
  2747. scratchInit.m_usage = BufferUsageBit::kAccelerationStructureBuildScratch;
  2748. BufferPtr scratchBuff = GrManager::getSingleton().newBuffer(scratchInit);
  2749. cmdb->buildAccelerationStructure(tlas.get(), BufferView(scratchBuff.get()));
  2750. setAccelerationStructureBarrier(cmdb, tlas, AccelerationStructureUsageBit::kBuild, AccelerationStructureUsageBit::kTraceRaysRead);
  2751. }
  2752. TexturePtr presentTex = g_gr->acquireNextPresentableTexture();
  2753. TextureViewPtr presentView;
  2754. {
  2755. TextureViewInitInfo inf;
  2756. inf.m_texture = presentTex.get();
  2757. presentView = g_gr->newTextureView(inf);
  2758. }
  2759. TextureViewPtr offscreenView, offscreenHistoryView;
  2760. {
  2761. TextureViewInitInfo inf;
  2762. inf.m_texture = offscreenRts[i & 1].get();
  2763. offscreenView = g_gr->newTextureView(inf);
  2764. inf.m_texture = offscreenRts[(i + 1) & 1].get();
  2765. offscreenHistoryView = g_gr->newTextureView(inf);
  2766. }
  2767. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kNone, TextureUsageBit::kStorageTraceRaysWrite, TextureSubresourceInfo());
  2768. setTextureBarrier(cmdb, offscreenRts[(i + 1) & 1], TextureUsageBit::kStorageComputeRead, TextureUsageBit::kStorageTraceRaysRead,
  2769. TextureSubresourceInfo());
  2770. cmdb->bindStorageBuffer(0, 0, BufferView(modelBuffer.get()));
  2771. cmdb->bindStorageBuffer(0, 1, BufferView(lightBuffer.get()));
  2772. cmdb->bindAccelerationStructure(1, 0, tlas.get());
  2773. cmdb->bindStorageTexture(1, 1, offscreenHistoryView.get());
  2774. cmdb->bindStorageTexture(1, 2, offscreenView.get());
  2775. cmdb->bindShaderProgram(rtProg.get());
  2776. PushConstants pc;
  2777. pc.m_vp = projMat * viewMat;
  2778. pc.m_cameraPos = Vec3(278.0f, 278.0f, -800.0f);
  2779. pc.m_lightCount = lightCount;
  2780. pc.m_frame = i;
  2781. cmdb->setPushConstants(&pc, sizeof(pc));
  2782. const U32 sbtRecordSize = g_gr->getDeviceCapabilities().m_sbtRecordAlignment;
  2783. cmdb->traceRays(BufferView(sbt.get()), sbtRecordSize, U32(GeomWhat::kCount) * 2, 2, WIDTH, HEIGHT, 1);
  2784. // Copy to present
  2785. setTextureBarrier(cmdb, offscreenRts[i & 1], TextureUsageBit::kStorageTraceRaysWrite, TextureUsageBit::kStorageComputeRead,
  2786. TextureSubresourceInfo());
  2787. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kNone, TextureUsageBit::kStorageComputeWrite, TextureSubresourceInfo());
  2788. cmdb->bindStorageTexture(0, 0, offscreenView.get());
  2789. cmdb->bindStorageTexture(0, 1, presentView.get());
  2790. cmdb->bindShaderProgram(copyToPresentProg.get());
  2791. const U32 sizeX = (WIDTH + 8 - 1) / 8;
  2792. const U32 sizeY = (HEIGHT + 8 - 1) / 8;
  2793. cmdb->dispatchCompute(sizeX, sizeY, 1);
  2794. setTextureBarrier(cmdb, presentTex, TextureUsageBit::kStorageComputeWrite, TextureUsageBit::kPresent, TextureSubresourceInfo());
  2795. cmdb->endRecording();
  2796. GrManager::getSingleton().submit(cmdb.get());
  2797. g_gr->swapBuffers();
  2798. timer.stop();
  2799. const F32 TICK = 1.0f / 60.0f;
  2800. if(timer.getElapsedTime() < TICK)
  2801. {
  2802. HighRezTimer::sleep(TICK - timer.getElapsedTime());
  2803. }
  2804. }
  2805. COMMON_END();
  2806. }
  2807. ANKI_TEST(Gr, AsyncCompute)
  2808. {
  2809. COMMON_BEGIN()
  2810. constexpr U32 ARRAY_SIZE = 1000 * 1024 * 8;
  2811. // Create the counting program
  2812. static const char* PROG_SRC = R"(
  2813. layout(local_size_x = 8) in;
  2814. layout(binding = 0, std430) buffer b_buff
  2815. {
  2816. U32 u_counters[];
  2817. };
  2818. void main()
  2819. {
  2820. for(U32 i = 0u; i < gl_LocalInvocationID.x * 20u; ++i)
  2821. {
  2822. atomicAdd(u_counters[gl_GlobalInvocationID.x], i + 1u);
  2823. }
  2824. })";
  2825. ShaderPtr shader = createShader(PROG_SRC, ShaderType::kCompute, *g_gr);
  2826. ShaderProgramInitInfo sprogInit;
  2827. sprogInit.m_computeShader = shader.get();
  2828. ShaderProgramPtr incrementProg = g_gr->newShaderProgram(sprogInit);
  2829. // Create the check program
  2830. static const char* CHECK_SRC = R"(
  2831. layout(local_size_x = 8) in;
  2832. layout(binding = 0, std430) buffer b_buff
  2833. {
  2834. U32 u_counters[];
  2835. };
  2836. void main()
  2837. {
  2838. // Walk the atomics in reverse to make sure that this dispatch won't overlap with the previous one
  2839. const U32 newGlobalInvocationID = gl_NumWorkGroups.x * gl_WorkGroupSize.x - gl_GlobalInvocationID.x - 1u;
  2840. U32 expectedVal = 0u;
  2841. for(U32 i = 0u; i < (newGlobalInvocationID % gl_WorkGroupSize.x) * 20u; ++i)
  2842. {
  2843. expectedVal += i + 1u;
  2844. }
  2845. atomicCompSwap(u_counters[newGlobalInvocationID], expectedVal, 4u);
  2846. })";
  2847. shader = createShader(CHECK_SRC, ShaderType::kCompute, *g_gr);
  2848. sprogInit.m_computeShader = shader.get();
  2849. ShaderProgramPtr checkProg = g_gr->newShaderProgram(sprogInit);
  2850. // Create buffers
  2851. BufferInitInfo info;
  2852. info.m_size = sizeof(U32) * ARRAY_SIZE;
  2853. info.m_usage = BufferUsageBit::kAllCompute;
  2854. info.m_mapAccess = BufferMapAccessBit::kWrite | BufferMapAccessBit::kRead;
  2855. BufferPtr atomicsBuffer = g_gr->newBuffer(info);
  2856. U32* values = static_cast<U32*>(atomicsBuffer->map(0, kMaxPtrSize, BufferMapAccessBit::kRead | BufferMapAccessBit::kWrite));
  2857. memset(values, 0, info.m_size);
  2858. // Pre-create some CPU result buffers
  2859. DynamicArray<U32> atomicsBufferCpu;
  2860. atomicsBufferCpu.resize(ARRAY_SIZE);
  2861. DynamicArray<U32> expectedResultsBufferCpu;
  2862. expectedResultsBufferCpu.resize(ARRAY_SIZE);
  2863. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2864. {
  2865. const U32 localInvocation = i % 8;
  2866. U32 expectedVal = 4;
  2867. for(U32 j = 0; j < localInvocation * 20; ++j)
  2868. {
  2869. expectedVal += j + 1;
  2870. }
  2871. expectedResultsBufferCpu[i] = expectedVal;
  2872. }
  2873. // Create the 1st command buffer
  2874. CommandBufferInitInfo cinit;
  2875. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2876. CommandBufferPtr incrementCmdb = g_gr->newCommandBuffer(cinit);
  2877. incrementCmdb->bindShaderProgram(incrementProg.get());
  2878. incrementCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2879. incrementCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2880. // Create the 2nd command buffer
  2881. cinit.m_flags = CommandBufferFlag::kGeneralWork | CommandBufferFlag::kSmallBatch;
  2882. CommandBufferPtr checkCmdb = g_gr->newCommandBuffer(cinit);
  2883. checkCmdb->bindShaderProgram(checkProg.get());
  2884. checkCmdb->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2885. checkCmdb->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2886. // Create the 3rd command buffer
  2887. cinit.m_flags = CommandBufferFlag::kComputeWork | CommandBufferFlag::kSmallBatch;
  2888. CommandBufferPtr incrementCmdb2 = g_gr->newCommandBuffer(cinit);
  2889. incrementCmdb2->bindShaderProgram(incrementProg.get());
  2890. incrementCmdb2->bindStorageBuffer(0, 0, BufferView(atomicsBuffer.get()));
  2891. incrementCmdb2->dispatchCompute(ARRAY_SIZE / 8, 1, 1);
  2892. // Submit
  2893. #if 1
  2894. FencePtr fence;
  2895. incrementCmdb->endRecording();
  2896. GrManager::getSingleton().submit(incrementCmdb.get(), {}, &fence);
  2897. checkCmdb->endRecording();
  2898. Fence* pFence = fence.get();
  2899. GrManager::getSingleton().submit(checkCmdb.get(), {&pFence, 1}, &fence);
  2900. incrementCmdb2->endRecording();
  2901. pFence = fence.get();
  2902. GrManager::getSingleton().submit(incrementCmdb2.get(), {&pFence, 1}, &fence);
  2903. fence->clientWait(kMaxSecond);
  2904. #else
  2905. incrementCmdb->flush();
  2906. gr->finish();
  2907. checkCmdb->flush();
  2908. gr->finish();
  2909. incrementCmdb2->flush();
  2910. gr->finish();
  2911. #endif
  2912. // Verify
  2913. memcpy(atomicsBufferCpu.getBegin(), values, atomicsBufferCpu.getSizeInBytes());
  2914. Bool correct = true;
  2915. for(U32 i = 0; i < ARRAY_SIZE; ++i)
  2916. {
  2917. correct = correct && atomicsBufferCpu[i] == expectedResultsBufferCpu[i];
  2918. if(!correct)
  2919. {
  2920. printf("%u!=%u %u\n", atomicsBufferCpu[i], expectedResultsBufferCpu[i], i);
  2921. break;
  2922. }
  2923. }
  2924. atomicsBuffer->unmap();
  2925. ANKI_TEST_EXPECT_EQ(correct, true);
  2926. COMMON_END()
  2927. }