GBuffer.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/GBuffer.h>
  6. #include <AnKi/Renderer/Renderer.h>
  7. #include <AnKi/Renderer/VrsSriGeneration.h>
  8. #include <AnKi/Renderer/Dbg.h>
  9. #include <AnKi/Renderer/Utils/Drawer.h>
  10. #include <AnKi/Renderer/Utils/HzbGenerator.h>
  11. #include <AnKi/Util/Logger.h>
  12. #include <AnKi/Util/Tracer.h>
  13. #include <AnKi/Util/CVarSet.h>
  14. #include <AnKi/Core/App.h>
  15. #include <AnKi/Scene/Components/GlobalIlluminationProbeComponent.h>
  16. #include <AnKi/Scene/Components/ReflectionProbeComponent.h>
  17. namespace anki {
  18. GBuffer::~GBuffer()
  19. {
  20. }
  21. Error GBuffer::init()
  22. {
  23. // RTs
  24. static constexpr Array<const char*, 2> depthRtNames = {{"GBuffer depth #0", "GBuffer depth #1"}};
  25. for(U32 i = 0; i < 2; ++i)
  26. {
  27. const TextureUsageBit usage = TextureUsageBit::kAllSrv | TextureUsageBit::kAllRtvDsv;
  28. TextureInitInfo texinit =
  29. getRenderer().create2DRenderTargetInitInfo(getRenderer().getInternalResolution().x, getRenderer().getInternalResolution().y,
  30. getRenderer().getDepthNoStencilFormat(), usage, depthRtNames[i]);
  31. m_depthRts[i] = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvPixel);
  32. }
  33. static constexpr Array<const char*, kGBufferColorRenderTargetCount> rtNames = {{"GBuffer rt0", "GBuffer rt1", "GBuffer rt2", "GBuffer rt3"}};
  34. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  35. {
  36. m_colorRtDescrs[i] = getRenderer().create2DRenderTargetDescription(
  37. getRenderer().getInternalResolution().x, getRenderer().getInternalResolution().y, kGBufferColorRenderTargetFormats[i], rtNames[i]);
  38. m_colorRtDescrs[i].bake();
  39. }
  40. {
  41. const TextureUsageBit usage = TextureUsageBit::kSrvCompute | TextureUsageBit::kUavCompute | TextureUsageBit::kSrvGeometry;
  42. TextureInitInfo texinit = getRenderer().create2DRenderTargetInitInfo(previousPowerOfTwo(getRenderer().getInternalResolution().x),
  43. previousPowerOfTwo(getRenderer().getInternalResolution().y),
  44. Format::kR32_Sfloat, usage, "GBuffer HZB");
  45. texinit.m_mipmapCount = computeMaxMipmapCount2d(texinit.m_width, texinit.m_height);
  46. ClearValue clear;
  47. clear.m_colorf = {1.0f, 1.0f, 1.0f, 1.0f};
  48. m_hzbRt = getRenderer().createAndClearRenderTarget(texinit, TextureUsageBit::kSrvCompute, clear);
  49. }
  50. ANKI_CHECK(
  51. loadShaderProgram("ShaderBinaries/GBufferVisualizeProbe.ankiprogbin", {{"PROBE_TYPE", 0}}, m_visualizeProbeProg, m_visualizeGiProbeGrProg));
  52. ANKI_CHECK(
  53. loadShaderProgram("ShaderBinaries/GBufferVisualizeProbe.ankiprogbin", {{"PROBE_TYPE", 1}}, m_visualizeProbeProg, m_visualizeReflProbeGrProg));
  54. return Error::kNone;
  55. }
  56. void GBuffer::importRenderTargets(RenderingContext& ctx)
  57. {
  58. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  59. if(m_runCtx.m_crntFrameDepthRt.isValid()) [[likely]]
  60. {
  61. // Already imported once
  62. m_runCtx.m_crntFrameDepthRt = rgraph.importRenderTarget(m_depthRts[getRenderer().getFrameCount() & 1].get(), TextureUsageBit::kNone);
  63. m_runCtx.m_prevFrameDepthRt = rgraph.importRenderTarget(m_depthRts[(getRenderer().getFrameCount() + 1) & 1].get());
  64. m_runCtx.m_hzbRt = rgraph.importRenderTarget(m_hzbRt.get());
  65. }
  66. else
  67. {
  68. m_runCtx.m_crntFrameDepthRt = rgraph.importRenderTarget(m_depthRts[getRenderer().getFrameCount() & 1].get(), TextureUsageBit::kNone);
  69. m_runCtx.m_prevFrameDepthRt =
  70. rgraph.importRenderTarget(m_depthRts[(getRenderer().getFrameCount() + 1) & 1].get(), TextureUsageBit::kSrvPixel);
  71. m_runCtx.m_hzbRt = rgraph.importRenderTarget(m_hzbRt.get(), TextureUsageBit::kSrvCompute);
  72. }
  73. }
  74. void GBuffer::populateRenderGraph(RenderingContext& ctx)
  75. {
  76. ANKI_TRACE_SCOPED_EVENT(GBuffer);
  77. RenderGraphBuilder& rgraph = ctx.m_renderGraphDescr;
  78. // Visibility
  79. GpuVisibilityOutput& visOut = m_runCtx.m_visOut;
  80. FrustumGpuVisibilityInput visIn;
  81. {
  82. const CommonMatrices& matrices = ctx.m_matrices;
  83. const Array<F32, kMaxLodCount - 1> lodDistances = {g_cvarRenderLod0MaxDistance, g_cvarRenderLod1MaxDistance};
  84. visIn.m_passesName = "GBuffer";
  85. visIn.m_technique = RenderingTechnique::kGBuffer;
  86. visIn.m_viewProjectionMatrix = matrices.m_viewProjection;
  87. visIn.m_lodReferencePoint = matrices.m_cameraTransform.getTranslationPart().xyz;
  88. visIn.m_lodDistances = lodDistances;
  89. visIn.m_rgraph = &rgraph;
  90. visIn.m_hzbRt = &m_runCtx.m_hzbRt;
  91. visIn.m_gatherAabbIndices = !!(getDbg().getOptions() & DbgOption::kGatherAabbs);
  92. visIn.m_viewportSize = getRenderer().getInternalResolution();
  93. visIn.m_twoPhaseOcclusionCulling = getRenderer().getMeshletRenderingType() != MeshletRenderingType::kNone;
  94. getRenderer().getGpuVisibility().populateRenderGraph(visIn, visOut);
  95. }
  96. // Create RTs
  97. Array<RenderTargetHandle, kMaxColorRenderTargets> rts;
  98. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  99. {
  100. m_runCtx.m_colorRts[i] = rgraph.newRenderTarget(m_colorRtDescrs[i]);
  101. rts[i] = m_runCtx.m_colorRts[i];
  102. }
  103. // Create the GBuffer pass
  104. auto genGBuffer = [&](Bool firstPass) {
  105. GraphicsRenderPass& pass = rgraph.newGraphicsRenderPass((firstPass) ? "GBuffer" : "GBuffer 2nd phase");
  106. const TextureUsageBit rtUsage = (firstPass) ? TextureUsageBit::kRtvDsvWrite : (TextureUsageBit::kRtvDsvRead | TextureUsageBit::kRtvDsvWrite);
  107. for(U i = 0; i < kGBufferColorRenderTargetCount; ++i)
  108. {
  109. pass.newTextureDependency(m_runCtx.m_colorRts[i], rtUsage);
  110. }
  111. pass.newTextureDependency(m_runCtx.m_crntFrameDepthRt, rtUsage);
  112. pass.newBufferDependency(getRenderer().getGpuSceneBufferHandle(), BufferUsageBit::kSrvGeometry | BufferUsageBit::kSrvPixel);
  113. // Only add one depedency to the GPU visibility. No need to track all buffers
  114. if(visOut.containsDrawcalls())
  115. {
  116. pass.newBufferDependency(visOut.m_dependency, BufferUsageBit::kIndirectDraw | BufferUsageBit::kSrvGeometry);
  117. }
  118. else
  119. {
  120. // Weird, make a check
  121. ANKI_ASSERT(GpuSceneArrays::RenderableBoundingVolumeGBuffer::getSingleton().getElementCount() == 0);
  122. }
  123. const RenderTargetLoadOperation loadOp = (firstPass) ? RenderTargetLoadOperation::kClear : RenderTargetLoadOperation::kLoad;
  124. Array<GraphicsRenderPassTargetDesc, kGBufferColorRenderTargetCount> colorRti;
  125. for(U32 i = 0; i < 4; ++i)
  126. {
  127. colorRti[i].m_handle = rts[i];
  128. colorRti[i].m_loadOperation = loadOp;
  129. }
  130. colorRti[3].m_clearValue.m_colorf = {1.0f, 1.0f, 1.0f, 1.0f};
  131. GraphicsRenderPassTargetDesc depthRti(m_runCtx.m_crntFrameDepthRt);
  132. depthRti.m_loadOperation = loadOp;
  133. depthRti.m_clearValue.m_depthStencil.m_depth = 1.0f;
  134. depthRti.m_subresource.m_depthStencilAspect = DepthStencilAspectBit::kDepth;
  135. pass.setRenderpassInfo(WeakArray{colorRti}, &depthRti);
  136. pass.setWork([&ctx, visOut, this](RenderPassWorkContext& rgraphCtx) {
  137. ANKI_TRACE_SCOPED_EVENT(GBuffer);
  138. if(!visOut.containsDrawcalls()) [[unlikely]]
  139. {
  140. return;
  141. }
  142. CommandBuffer& cmdb = *rgraphCtx.m_commandBuffer;
  143. // Set some state, leave the rest to default
  144. cmdb.setViewport(0, 0, getRenderer().getInternalResolution().x, getRenderer().getInternalResolution().y);
  145. RenderableDrawerArguments args;
  146. args.m_viewMatrix = ctx.m_matrices.m_view;
  147. args.m_cameraTransform = ctx.m_matrices.m_cameraTransform;
  148. args.m_viewProjectionMatrix = ctx.m_matrices.m_viewProjectionJitter;
  149. args.m_previousViewProjectionMatrix = ctx.m_matrices.m_jitter * ctx.m_prevMatrices.m_viewProjection;
  150. args.m_sampler = getRenderer().getSamplers().m_trilinearRepeatAnisoResolutionScalingBias.get();
  151. args.m_renderingTechinuqe = RenderingTechnique::kGBuffer;
  152. args.m_viewport = UVec4(0, 0, getRenderer().getInternalResolution());
  153. args.fill(visOut);
  154. cmdb.setDepthCompareOperation(CompareOperation::kLessEqual);
  155. getRenderer().getRenderableDrawer().drawMdi(args, cmdb);
  156. {
  157. struct Consts
  158. {
  159. Mat4 m_viewProjMat;
  160. Mat4 m_invViewProjMat;
  161. Vec2 m_viewportSize;
  162. U32 m_probeIdx;
  163. F32 m_sphereRadius;
  164. Vec3 m_cameraPos;
  165. F32 m_pixelShift;
  166. };
  167. // Visualize GI probes
  168. if(g_cvarRenderVisualizeGiProbes && GpuSceneArrays::GlobalIlluminationProbe::getSingleton().getElementCount())
  169. {
  170. cmdb.bindShaderProgram(m_visualizeGiProbeGrProg.get());
  171. cmdb.bindSrv(0, 0, GpuSceneArrays::GlobalIlluminationProbe::getSingleton().getBufferView());
  172. for(const auto& probe : SceneGraph::getSingleton().getComponentArrays().getGlobalIlluminationProbes())
  173. {
  174. Consts* consts = allocateAndBindConstants<Consts>(cmdb, 0, 0);
  175. consts->m_viewProjMat = ctx.m_matrices.m_viewProjectionJitter;
  176. consts->m_invViewProjMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  177. consts->m_viewportSize = Vec2(getRenderer().getInternalResolution());
  178. consts->m_probeIdx = probe.getGpuSceneAllocation().getIndex();
  179. consts->m_sphereRadius = 0.5f;
  180. consts->m_cameraPos = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz;
  181. consts->m_pixelShift = (getRenderer().getFrameCount() & 1) ? 1.0f : 0.0f;
  182. cmdb.draw(PrimitiveTopology::kTriangles, 6, probe.getCellCount());
  183. }
  184. }
  185. // Visualize refl probes
  186. if(g_cvarRenderVisualizeReflectionProbes && GpuSceneArrays::ReflectionProbe::getSingleton().getElementCount())
  187. {
  188. cmdb.bindShaderProgram(m_visualizeReflProbeGrProg.get());
  189. cmdb.bindSrv(0, 0, GpuSceneArrays::ReflectionProbe::getSingleton().getBufferView());
  190. for(const auto& probe : SceneGraph::getSingleton().getComponentArrays().getReflectionProbes())
  191. {
  192. Consts* consts = allocateAndBindConstants<Consts>(cmdb, 0, 0);
  193. consts->m_viewProjMat = ctx.m_matrices.m_viewProjectionJitter;
  194. consts->m_invViewProjMat = ctx.m_matrices.m_invertedViewProjectionJitter;
  195. consts->m_viewportSize = Vec2(getRenderer().getInternalResolution());
  196. consts->m_probeIdx = probe.getGpuSceneAllocation().getIndex();
  197. consts->m_sphereRadius = 0.5f;
  198. consts->m_cameraPos = ctx.m_matrices.m_cameraTransform.getTranslationPart().xyz;
  199. consts->m_pixelShift = (getRenderer().getFrameCount() & 1) ? 1.0f : 0.0f;
  200. cmdb.draw(PrimitiveTopology::kTriangles, 6);
  201. }
  202. }
  203. }
  204. });
  205. };
  206. genGBuffer(true);
  207. // HZB generation for the 3rd stage or next frame
  208. getRenderer().getHzbGenerator().populateRenderGraph(m_runCtx.m_crntFrameDepthRt, getRenderer().getInternalResolution(), m_runCtx.m_hzbRt,
  209. UVec2(m_hzbRt->getWidth(), m_hzbRt->getHeight()), rgraph);
  210. // 2nd phase
  211. if(visIn.m_twoPhaseOcclusionCulling)
  212. {
  213. // Visibility (again)
  214. getRenderer().getGpuVisibility().populateRenderGraphStage3(visIn, visOut);
  215. // GBuffer again
  216. genGBuffer(false);
  217. // HZB generation for the next frame
  218. getRenderer().getHzbGenerator().populateRenderGraph(m_runCtx.m_crntFrameDepthRt, getRenderer().getInternalResolution(), m_runCtx.m_hzbRt,
  219. UVec2(m_hzbRt->getWidth(), m_hzbRt->getHeight()), rgraph);
  220. }
  221. }
  222. void GBuffer::getDebugRenderTarget(CString rtName, Array<RenderTargetHandle, U32(DebugRenderTargetRegister::kCount)>& handles,
  223. DebugRenderTargetDrawStyle& drawStyle) const
  224. {
  225. if(rtName == "GBufferAlbedo")
  226. {
  227. handles[0] = m_runCtx.m_colorRts[0];
  228. }
  229. else if(rtName == "GBufferNormals")
  230. {
  231. handles[0] = m_runCtx.m_colorRts[2];
  232. drawStyle = DebugRenderTargetDrawStyle::kGBufferNormal;
  233. }
  234. else if(rtName == "GBufferVelocity")
  235. {
  236. handles[0] = m_runCtx.m_colorRts[3];
  237. }
  238. else if(rtName == "GBufferRoughness")
  239. {
  240. handles[0] = m_runCtx.m_colorRts[1];
  241. drawStyle = DebugRenderTargetDrawStyle::kGBufferRoughness;
  242. }
  243. else if(rtName == "GBufferMetallic")
  244. {
  245. handles[0] = m_runCtx.m_colorRts[0];
  246. drawStyle = DebugRenderTargetDrawStyle::kGBufferMetallic;
  247. }
  248. else if(rtName == "GBufferSubsurface")
  249. {
  250. handles[0] = m_runCtx.m_colorRts[0];
  251. drawStyle = DebugRenderTargetDrawStyle::kGBufferSubsurface;
  252. }
  253. else if(rtName == "GBufferEmission")
  254. {
  255. handles[0] = m_runCtx.m_colorRts[1];
  256. handles[1] = m_runCtx.m_colorRts[2];
  257. drawStyle = DebugRenderTargetDrawStyle::kGBufferEmission;
  258. }
  259. }
  260. } // end namespace anki