TileAllocator.cpp 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. // Copyright (C) 2009-present, Panagiotis Christopoulos Charitos and contributors.
  2. // All rights reserved.
  3. // Code licensed under the BSD License.
  4. // http://www.anki3d.org/LICENSE
  5. #include <AnKi/Renderer/Utils/TileAllocator.h>
  6. namespace anki {
  7. class TileAllocator::Tile
  8. {
  9. public:
  10. Timestamp m_lastUsedTimestamp = 0; ///< The last timestamp this tile was used.
  11. U64 m_lightUuid = 0;
  12. Array<U32, 4> m_viewport = {};
  13. Array<U32, 4> m_subTiles = {kMaxU32, kMaxU32, kMaxU32, kMaxU32};
  14. U32 m_superTile = kMaxU32; ///< The parent.
  15. U8 m_lightHierarchy = 0;
  16. };
  17. TileAllocator::TileAllocator()
  18. {
  19. }
  20. TileAllocator::~TileAllocator()
  21. {
  22. }
  23. void TileAllocator::init(U32 tileCountX, U32 tileCountY, U32 hierarchyCount, Bool enableCaching)
  24. {
  25. // Preconditions
  26. ANKI_ASSERT(tileCountX > 0);
  27. ANKI_ASSERT(tileCountY > 0);
  28. ANKI_ASSERT(hierarchyCount > 0);
  29. // Store some stuff
  30. m_tileCountX = U16(tileCountX);
  31. m_tileCountY = U16(tileCountY);
  32. m_hierarchyCount = U8(hierarchyCount);
  33. m_cachingEnabled = enableCaching;
  34. m_firstTileIdxOfHierarchy.resize(hierarchyCount + 1);
  35. // Create the tile array & index ranges
  36. U32 tileCount = 0;
  37. for(U32 hierarchy = 0; hierarchy < hierarchyCount; ++hierarchy)
  38. {
  39. const U32 hierarchyTileCountX = tileCountX >> hierarchy;
  40. const U32 hierarchyTileCountY = tileCountY >> hierarchy;
  41. ANKI_ASSERT((hierarchyTileCountX << hierarchy) == tileCountX && "Every hierarchy should be power of 2 of its parent hierarchy");
  42. ANKI_ASSERT((hierarchyTileCountY << hierarchy) == tileCountY && "Every hierarchy should be power of 2 of its parent hierarchy");
  43. m_firstTileIdxOfHierarchy[hierarchy] = tileCount;
  44. tileCount += hierarchyTileCountX * hierarchyTileCountY;
  45. }
  46. ANKI_ASSERT(tileCount >= tileCountX * tileCountY);
  47. m_allTiles.resize(tileCount);
  48. m_firstTileIdxOfHierarchy[hierarchyCount] = tileCount - 1;
  49. // Init the tiles
  50. U32 tileIdx = 0;
  51. for(U32 hierarchy = 0; hierarchy < hierarchyCount; ++hierarchy)
  52. {
  53. const U32 hierarchyTileCountX = tileCountX >> hierarchy;
  54. const U32 hierarchyTileCountY = tileCountY >> hierarchy;
  55. for(U32 y = 0; y < hierarchyTileCountY; ++y)
  56. {
  57. for(U32 x = 0; x < hierarchyTileCountX; ++x)
  58. {
  59. ANKI_ASSERT(tileIdx >= m_firstTileIdxOfHierarchy[hierarchy] && tileIdx <= m_firstTileIdxOfHierarchy[hierarchy + 1]);
  60. Tile& tile = m_allTiles[tileIdx];
  61. tile.m_viewport[0] = x << hierarchy;
  62. tile.m_viewport[1] = y << hierarchy;
  63. tile.m_viewport[2] = 1 << hierarchy;
  64. tile.m_viewport[3] = 1 << hierarchy;
  65. if(hierarchy > 0)
  66. {
  67. // Has sub tiles
  68. for(U32 j = 0; j < 2; ++j)
  69. {
  70. for(U32 i = 0; i < 2; ++i)
  71. {
  72. const U32 subTileIdx = translateTileIdx((x << 1) + i, (y << 1) + j, hierarchy - 1);
  73. m_allTiles[subTileIdx].m_superTile = tileIdx;
  74. tile.m_subTiles[j * 2 + i] = subTileIdx;
  75. }
  76. }
  77. }
  78. else
  79. {
  80. // No sub-tiles
  81. }
  82. ++tileIdx;
  83. }
  84. }
  85. }
  86. }
  87. void TileAllocator::updateSubTiles(const Tile& updateFrom, U64 crntLightUuid, ArrayOfLightUuids& kickedOutLights)
  88. {
  89. if(updateFrom.m_subTiles[0] == kMaxU32)
  90. {
  91. return;
  92. }
  93. for(U32 idx : updateFrom.m_subTiles)
  94. {
  95. if(m_allTiles[idx].m_lightUuid != 0 && m_allTiles[idx].m_lightUuid != crntLightUuid)
  96. {
  97. kickedOutLights.emplaceBack(m_allTiles[idx].m_lightUuid);
  98. }
  99. m_allTiles[idx].m_lastUsedTimestamp = updateFrom.m_lastUsedTimestamp;
  100. m_allTiles[idx].m_lightUuid = updateFrom.m_lightUuid;
  101. m_allTiles[idx].m_lightHierarchy = updateFrom.m_lightHierarchy;
  102. updateSubTiles(m_allTiles[idx], crntLightUuid, kickedOutLights);
  103. }
  104. }
  105. void TileAllocator::updateSuperTiles(const Tile& updateFrom, U64 crntLightUuid, ArrayOfLightUuids& kickedOutLights)
  106. {
  107. if(updateFrom.m_superTile != kMaxU32)
  108. {
  109. if(m_allTiles[updateFrom.m_superTile].m_lightUuid != 0 && m_allTiles[updateFrom.m_superTile].m_lightUuid != crntLightUuid)
  110. {
  111. kickedOutLights.emplaceBack(m_allTiles[updateFrom.m_superTile].m_lightUuid);
  112. }
  113. m_allTiles[updateFrom.m_superTile].m_lightUuid = 0;
  114. m_allTiles[updateFrom.m_superTile].m_lastUsedTimestamp = updateFrom.m_lastUsedTimestamp;
  115. updateSuperTiles(m_allTiles[updateFrom.m_superTile], crntLightUuid, kickedOutLights);
  116. }
  117. }
  118. Bool TileAllocator::searchTileRecursively(U32 crntTileIdx, U32 crntTileHierarchy, U32 allocationHierarchy, Timestamp crntTimestamp, U32& emptyTileIdx,
  119. U32& toKickTileIdx, Timestamp& tileToKickMinTimestamp) const
  120. {
  121. const Tile& tile = m_allTiles[crntTileIdx];
  122. if(crntTileHierarchy == allocationHierarchy)
  123. {
  124. // We may have a candidate
  125. const Bool done = evaluateCandidate(crntTileIdx, crntTimestamp, emptyTileIdx, toKickTileIdx, tileToKickMinTimestamp);
  126. if(done)
  127. {
  128. return true;
  129. }
  130. }
  131. else if(tile.m_subTiles[0] != kMaxU32)
  132. {
  133. // Move down the hierarchy
  134. ANKI_ASSERT(allocationHierarchy < crntTileHierarchy);
  135. for(const U32 idx : tile.m_subTiles)
  136. {
  137. const Bool done = searchTileRecursively(idx, crntTileHierarchy - 1, allocationHierarchy, crntTimestamp, emptyTileIdx, toKickTileIdx,
  138. tileToKickMinTimestamp);
  139. if(done)
  140. {
  141. return true;
  142. }
  143. }
  144. }
  145. return false;
  146. }
  147. Bool TileAllocator::evaluateCandidate(U32 tileIdx, Timestamp crntTimestamp, U32& emptyTileIdx, U32& toKickTileIdx,
  148. Timestamp& tileToKickMinTimestamp) const
  149. {
  150. const Tile& tile = m_allTiles[tileIdx];
  151. if(m_cachingEnabled)
  152. {
  153. if(tile.m_lastUsedTimestamp == 0)
  154. {
  155. // Found empty
  156. emptyTileIdx = tileIdx;
  157. return true;
  158. }
  159. else if(tile.m_lastUsedTimestamp != crntTimestamp && tile.m_lastUsedTimestamp < tileToKickMinTimestamp)
  160. {
  161. // Found one with low timestamp
  162. toKickTileIdx = tileIdx;
  163. tileToKickMinTimestamp = tile.m_lastUsedTimestamp;
  164. }
  165. }
  166. else
  167. {
  168. if(tile.m_lastUsedTimestamp != crntTimestamp)
  169. {
  170. emptyTileIdx = tileIdx;
  171. return true;
  172. }
  173. }
  174. return false;
  175. }
  176. TileAllocatorResult2 TileAllocator::allocate(Timestamp crntTimestamp, U64 lightUuid, U32 hierarchy, Array<U32, 4>& tileViewport,
  177. ArrayOfLightUuids& kickedOutLightUuids)
  178. {
  179. // Preconditions
  180. ANKI_ASSERT(crntTimestamp > 0);
  181. ANKI_ASSERT(lightUuid != 0);
  182. ANKI_ASSERT(hierarchy < m_hierarchyCount);
  183. kickedOutLightUuids.destroy();
  184. // 1) Search if it's already cached
  185. if(m_cachingEnabled)
  186. {
  187. auto it = m_lightUuidToTileIdx.find(lightUuid);
  188. if(it != m_lightUuidToTileIdx.getEnd())
  189. {
  190. Tile& tile = m_allTiles[*it];
  191. if(tile.m_lightUuid != lightUuid || tile.m_lightHierarchy != hierarchy)
  192. {
  193. // Cache entry is wrong, remove it
  194. m_lightUuidToTileIdx.erase(it);
  195. }
  196. else
  197. {
  198. // Same light & hierarchy, found the cache entry.
  199. ANKI_ASSERT(tile.m_lastUsedTimestamp != crntTimestamp && "Trying to allocate the same thing twice in this timestamp?");
  200. ANKI_ASSERT(tile.m_lightUuid == lightUuid && tile.m_lightHierarchy == hierarchy);
  201. tileViewport = {tile.m_viewport[0], tile.m_viewport[1], tile.m_viewport[2], tile.m_viewport[3]};
  202. tile.m_lastUsedTimestamp = crntTimestamp;
  203. updateTileHierarchy(tile, lightUuid, kickedOutLightUuids);
  204. ANKI_ASSERT(kickedOutLightUuids.getSize() == 0);
  205. return TileAllocatorResult2::kAllocationSucceded | TileAllocatorResult2::kTileCached;
  206. }
  207. }
  208. }
  209. // Start searching for a suitable tile. Do a hieratchical search to end up with better locality and not better utilization of the atlas' space
  210. U32 emptyTileIdx = kMaxU32;
  211. U32 toKickTileIdx = kMaxU32;
  212. Timestamp tileToKickMinTimestamp = kMaxTimestamp;
  213. const U32 maxHierarchy = m_hierarchyCount - 1;
  214. if(hierarchy == maxHierarchy)
  215. {
  216. // This search is simple, iterate the tiles of the max hierarchy
  217. for(U32 tileIdx = m_firstTileIdxOfHierarchy[maxHierarchy]; tileIdx <= m_firstTileIdxOfHierarchy[maxHierarchy + 1]; ++tileIdx)
  218. {
  219. const Bool done = evaluateCandidate(tileIdx, crntTimestamp, emptyTileIdx, toKickTileIdx, tileToKickMinTimestamp);
  220. if(done)
  221. {
  222. break;
  223. }
  224. }
  225. }
  226. else
  227. {
  228. // Need to do a recursive search
  229. for(U32 tileIdx = m_firstTileIdxOfHierarchy[maxHierarchy]; tileIdx <= m_firstTileIdxOfHierarchy[maxHierarchy + 1]; ++tileIdx)
  230. {
  231. const Bool done =
  232. searchTileRecursively(tileIdx, maxHierarchy, hierarchy, crntTimestamp, emptyTileIdx, toKickTileIdx, tileToKickMinTimestamp);
  233. if(done)
  234. {
  235. break;
  236. }
  237. }
  238. }
  239. U32 allocatedTileIdx;
  240. if(emptyTileIdx != kMaxU32)
  241. {
  242. allocatedTileIdx = emptyTileIdx;
  243. }
  244. else if(toKickTileIdx != kMaxU32)
  245. {
  246. allocatedTileIdx = toKickTileIdx;
  247. }
  248. else
  249. {
  250. // Out of tiles
  251. return TileAllocatorResult2::kAllocationFailed;
  252. }
  253. // Allocation succedded, need to do some bookkeeping
  254. // Mark the allocated tile
  255. Tile& allocatedTile = m_allTiles[allocatedTileIdx];
  256. allocatedTile.m_lastUsedTimestamp = crntTimestamp;
  257. allocatedTile.m_lightUuid = lightUuid;
  258. allocatedTile.m_lightHierarchy = U8(hierarchy);
  259. updateTileHierarchy(allocatedTile, lightUuid, kickedOutLightUuids);
  260. // Update the cache
  261. if(m_cachingEnabled)
  262. {
  263. m_lightUuidToTileIdx.emplace(lightUuid, allocatedTileIdx);
  264. }
  265. // Return
  266. tileViewport = {allocatedTile.m_viewport[0], allocatedTile.m_viewport[1], allocatedTile.m_viewport[2], allocatedTile.m_viewport[3]};
  267. return TileAllocatorResult2::kAllocationSucceded;
  268. }
  269. void TileAllocator::invalidateCache(U64 lightUuid)
  270. {
  271. ANKI_ASSERT(m_cachingEnabled);
  272. ANKI_ASSERT(lightUuid > 0);
  273. auto it = m_lightUuidToTileIdx.find(lightUuid);
  274. if(it != m_lightUuidToTileIdx.getEnd())
  275. {
  276. m_lightUuidToTileIdx.erase(it);
  277. }
  278. }
  279. } // end namespace anki