| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027 |
- // Copyright (c) 2016 Google Inc.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
- #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
- #include <memory>
- #include <ostream>
- #include <string>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "libspirv.hpp"
- namespace spvtools {
- namespace opt {
- class Pass;
- struct DescriptorSetAndBinding;
- } // namespace opt
- // C++ interface for SPIR-V optimization functionalities. It wraps the context
- // (including target environment and the corresponding SPIR-V grammar) and
- // provides methods for registering optimization passes and optimizing.
- //
- // Instances of this class provides basic thread-safety guarantee.
- class SPIRV_TOOLS_EXPORT Optimizer {
- public:
- // The token for an optimization pass. It is returned via one of the
- // Create*Pass() standalone functions at the end of this header file and
- // consumed by the RegisterPass() method. Tokens are one-time objects that
- // only support move; copying is not allowed.
- struct PassToken {
- struct SPIRV_TOOLS_LOCAL Impl; // Opaque struct for holding internal data.
- PassToken(std::unique_ptr<Impl>);
- // Tokens for built-in passes should be created using Create*Pass functions
- // below; for out-of-tree passes, use this constructor instead.
- // Note that this API isn't guaranteed to be stable and may change without
- // preserving source or binary compatibility in the future.
- PassToken(std::unique_ptr<opt::Pass>&& pass);
- // Tokens can only be moved. Copying is disabled.
- PassToken(const PassToken&) = delete;
- PassToken(PassToken&&);
- PassToken& operator=(const PassToken&) = delete;
- PassToken& operator=(PassToken&&);
- ~PassToken();
- std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
- };
- // Constructs an instance with the given target |env|, which is used to decode
- // the binaries to be optimized later.
- //
- // The instance will have an empty message consumer, which ignores all
- // messages from the library. Use SetMessageConsumer() to supply a consumer
- // if messages are of concern.
- explicit Optimizer(spv_target_env env);
- // Disables copy/move constructor/assignment operations.
- Optimizer(const Optimizer&) = delete;
- Optimizer(Optimizer&&) = delete;
- Optimizer& operator=(const Optimizer&) = delete;
- Optimizer& operator=(Optimizer&&) = delete;
- // Destructs this instance.
- ~Optimizer();
- // Sets the message consumer to the given |consumer|. The |consumer| will be
- // invoked once for each message communicated from the library.
- void SetMessageConsumer(MessageConsumer consumer);
- // Returns a reference to the registered message consumer.
- const MessageConsumer& consumer() const;
- // Registers the given |pass| to this optimizer. Passes will be run in the
- // exact order of registration. The token passed in will be consumed by this
- // method.
- Optimizer& RegisterPass(PassToken&& pass);
- // Registers passes that attempt to improve performance of generated code.
- // This sequence of passes is subject to constant review and will change
- // from time to time.
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated.
- Optimizer& RegisterPerformancePasses();
- Optimizer& RegisterPerformancePasses(bool preserve_interface);
- // Registers passes that attempt to improve the size of generated code.
- // This sequence of passes is subject to constant review and will change
- // from time to time.
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated.
- Optimizer& RegisterSizePasses();
- Optimizer& RegisterSizePasses(bool preserve_interface);
- // Registers passes that attempt to legalize the generated code.
- //
- // Note: this recipe is specially designed for legalizing SPIR-V. It should be
- // used by compilers after translating HLSL source code literally. It should
- // *not* be used by general workloads for performance or size improvement.
- //
- // This sequence of passes is subject to constant review and will change
- // from time to time.
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated.
- Optimizer& RegisterLegalizationPasses();
- Optimizer& RegisterLegalizationPasses(bool preserve_interface);
- // Register passes specified in the list of |flags|. Each flag must be a
- // string of a form accepted by Optimizer::FlagHasValidForm().
- //
- // If the list of flags contains an invalid entry, it returns false and an
- // error message is emitted to the MessageConsumer object (use
- // Optimizer::SetMessageConsumer to define a message consumer, if needed).
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated.
- //
- // If all the passes are registered successfully, it returns true.
- bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
- bool RegisterPassesFromFlags(const std::vector<std::string>& flags,
- bool preserve_interface);
- // Registers the optimization pass associated with |flag|. This only accepts
- // |flag| values of the form "--pass_name[=pass_args]". If no such pass
- // exists, it returns false. Otherwise, the pass is registered and it returns
- // true.
- //
- // The following flags have special meaning:
- //
- // -O: Registers all performance optimization passes
- // (Optimizer::RegisterPerformancePasses)
- //
- // -Os: Registers all size optimization passes
- // (Optimizer::RegisterSizePasses).
- //
- // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
- // HLSL front-end.
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated.
- bool RegisterPassFromFlag(const std::string& flag);
- bool RegisterPassFromFlag(const std::string& flag, bool preserve_interface);
- // Validates that |flag| has a valid format. Strings accepted:
- //
- // --pass_name[=pass_args]
- // -O
- // -Os
- //
- // If |flag| takes one of the forms above, it returns true. Otherwise, it
- // returns false.
- bool FlagHasValidForm(const std::string& flag) const;
- // Allows changing, after creation time, the target environment to be
- // optimized for and validated. Should be called before calling Run().
- void SetTargetEnv(const spv_target_env env);
- // Optimizes the given SPIR-V module |original_binary| and writes the
- // optimized binary into |optimized_binary|. The optimized binary uses
- // the same SPIR-V version as the original binary.
- //
- // Returns true on successful optimization, whether or not the module is
- // modified. Returns false if |original_binary| fails to validate or if errors
- // occur when processing |original_binary| using any of the registered passes.
- // In that case, no further passes are executed and the contents in
- // |optimized_binary| may be invalid.
- //
- // By default, the binary is validated before any transforms are performed,
- // and optionally after each transform. Validation uses SPIR-V spec rules
- // for the SPIR-V version named in the binary's header (at word offset 1).
- // Additionally, if the target environment is a client API (such as
- // Vulkan 1.1), then validate for that client API version, to the extent
- // that it is verifiable from data in the binary itself.
- //
- // It's allowed to alias |original_binary| to the start of |optimized_binary|.
- bool Run(const uint32_t* original_binary, size_t original_binary_size,
- std::vector<uint32_t>* optimized_binary) const;
- // DEPRECATED: Same as above, except passes |options| to the validator when
- // trying to validate the binary. If |skip_validation| is true, then the
- // caller is guaranteeing that |original_binary| is valid, and the validator
- // will not be run. The |max_id_bound| is the limit on the max id in the
- // module.
- bool Run(const uint32_t* original_binary, const size_t original_binary_size,
- std::vector<uint32_t>* optimized_binary,
- const ValidatorOptions& options, bool skip_validation) const;
- // Same as above, except it takes an options object. See the documentation
- // for |OptimizerOptions| to see which options can be set.
- //
- // By default, the binary is validated before any transforms are performed,
- // and optionally after each transform. Validation uses SPIR-V spec rules
- // for the SPIR-V version named in the binary's header (at word offset 1).
- // Additionally, if the target environment is a client API (such as
- // Vulkan 1.1), then validate for that client API version, to the extent
- // that it is verifiable from data in the binary itself, or from the
- // validator options set on the optimizer options.
- bool Run(const uint32_t* original_binary, const size_t original_binary_size,
- std::vector<uint32_t>* optimized_binary,
- const spv_optimizer_options opt_options) const;
- // Returns a vector of strings with all the pass names added to this
- // optimizer's pass manager. These strings are valid until the associated
- // pass manager is destroyed.
- std::vector<const char*> GetPassNames() const;
- // Sets the option to print the disassembly before each pass and after the
- // last pass. If |out| is null, then no output is generated. Otherwise,
- // output is sent to the |out| output stream.
- Optimizer& SetPrintAll(std::ostream* out);
- // Sets the option to print the resource utilization of each pass. If |out|
- // is null, then no output is generated. Otherwise, output is sent to the
- // |out| output stream.
- Optimizer& SetTimeReport(std::ostream* out);
- // Sets the option to validate the module after each pass.
- Optimizer& SetValidateAfterAll(bool validate);
- private:
- struct SPIRV_TOOLS_LOCAL Impl; // Opaque struct for holding internal data.
- std::unique_ptr<Impl> impl_; // Unique pointer to internal data.
- };
- // Creates a null pass.
- // A null pass does nothing to the SPIR-V module to be optimized.
- Optimizer::PassToken CreateNullPass();
- // Creates a strip-debug-info pass.
- // A strip-debug-info pass removes all debug instructions (as documented in
- // Section 3.42.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
- Optimizer::PassToken CreateStripDebugInfoPass();
- // [Deprecated] This will create a strip-nonsemantic-info pass. See below.
- Optimizer::PassToken CreateStripReflectInfoPass();
- // Creates a strip-nonsemantic-info pass.
- // A strip-nonsemantic-info pass removes all reflections and explicitly
- // non-semantic instructions.
- Optimizer::PassToken CreateStripNonSemanticInfoPass();
- // Creates an eliminate-dead-functions pass.
- // An eliminate-dead-functions pass will remove all functions that are not in
- // the call trees rooted at entry points and exported functions. These
- // functions are not needed because they will never be called.
- Optimizer::PassToken CreateEliminateDeadFunctionsPass();
- // Creates an eliminate-dead-members pass.
- // An eliminate-dead-members pass will remove all unused members of structures.
- // This will not affect the data layout of the remaining members.
- Optimizer::PassToken CreateEliminateDeadMembersPass();
- // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
- // to the default values in the form of string.
- // A set-spec-constant-default-value pass sets the default values for the
- // spec constants that have SpecId decorations (i.e., those defined by
- // OpSpecConstant{|True|False} instructions).
- Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
- const std::unordered_map<uint32_t, std::string>& id_value_map);
- // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
- // to the default values in the form of bit pattern.
- // A set-spec-constant-default-value pass sets the default values for the
- // spec constants that have SpecId decorations (i.e., those defined by
- // OpSpecConstant{|True|False} instructions).
- Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
- const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
- // Creates a flatten-decoration pass.
- // A flatten-decoration pass replaces grouped decorations with equivalent
- // ungrouped decorations. That is, it replaces each OpDecorationGroup
- // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
- // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
- // The pass does not attempt to preserve debug information for instructions
- // it removes.
- Optimizer::PassToken CreateFlattenDecorationPass();
- // Creates a freeze-spec-constant-value pass.
- // A freeze-spec-constant pass specializes the value of spec constants to
- // their default values. This pass only processes the spec constants that have
- // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
- // OpSpecConstantFalse instructions) and replaces them with their normal
- // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
- // corresponding SpecId annotation instructions will also be removed. This
- // pass does not fold the newly added normal constants and does not process
- // other spec constants defined by OpSpecConstantComposite or
- // OpSpecConstantOp.
- Optimizer::PassToken CreateFreezeSpecConstantValuePass();
- // Creates a fold-spec-constant-op-and-composite pass.
- // A fold-spec-constant-op-and-composite pass folds spec constants defined by
- // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
- // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
- // OpConstantComposite instructions. Note that spec constants defined with
- // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
- // not handled, as these instructions indicate their value are not determined
- // and can be changed in future. A spec constant is foldable if all of its
- // value(s) can be determined from the module. E.g., an integer spec constant
- // defined with OpSpecConstantOp instruction can be folded if its value won't
- // change later. This pass will replace the original OpSpecConstantOp
- // instruction with an OpConstant instruction. When folding composite spec
- // constants, new instructions may be inserted to define the components of the
- // composite constant first, then the original spec constants will be replaced
- // by OpConstantComposite instructions.
- //
- // There are some operations not supported yet:
- // OpSConvert, OpFConvert, OpQuantizeToF16 and
- // all the operations under Kernel capability.
- // TODO(qining): Add support for the operations listed above.
- Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
- // Creates a unify-constant pass.
- // A unify-constant pass de-duplicates the constants. Constants with the exact
- // same value and identical form will be unified and only one constant will
- // be kept for each unique pair of type and value.
- // There are several cases not handled by this pass:
- // 1) Constants defined by OpConstantNull instructions (null constants) and
- // constants defined by OpConstantFalse, OpConstant or OpConstantComposite
- // with value 0 (zero-valued normal constants) are not considered equivalent.
- // So null constants won't be used to replace zero-valued normal constants,
- // vice versa.
- // 2) Whenever there are decorations to the constant's result id id, the
- // constant won't be handled, which means, it won't be used to replace any
- // other constants, neither can other constants replace it.
- // 3) NaN in float point format with different bit patterns are not unified.
- Optimizer::PassToken CreateUnifyConstantPass();
- // Creates a eliminate-dead-constant pass.
- // A eliminate-dead-constant pass removes dead constants, including normal
- // constants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
- // OpConstantFalse and spec constants defined by OpSpecConstant,
- // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
- // OpSpecConstantOp.
- Optimizer::PassToken CreateEliminateDeadConstantPass();
- // Creates a strength-reduction pass.
- // A strength-reduction pass will look for opportunities to replace an
- // instruction with an equivalent and less expensive one. For example,
- // multiplying by a power of 2 can be replaced by a bit shift.
- Optimizer::PassToken CreateStrengthReductionPass();
- // Creates a block merge pass.
- // This pass searches for blocks with a single Branch to a block with no
- // other predecessors and merges the blocks into a single block. Continue
- // blocks and Merge blocks are not candidates for the second block.
- //
- // The pass is most useful after Dead Branch Elimination, which can leave
- // such sequences of blocks. Merging them makes subsequent passes more
- // effective, such as single block local store-load elimination.
- //
- // While this pass reduces the number of occurrences of this sequence, at
- // this time it does not guarantee all such sequences are eliminated.
- //
- // Presence of phi instructions can inhibit this optimization. Handling
- // these is left for future improvements.
- Optimizer::PassToken CreateBlockMergePass();
- // Creates an exhaustive inline pass.
- // An exhaustive inline pass attempts to exhaustively inline all function
- // calls in all functions in an entry point call tree. The intent is to enable,
- // albeit through brute force, analysis and optimization across function
- // calls by subsequent optimization passes. As the inlining is exhaustive,
- // there is no attempt to optimize for size or runtime performance. Functions
- // that are not in the call tree of an entry point are not changed.
- Optimizer::PassToken CreateInlineExhaustivePass();
- // Creates an opaque inline pass.
- // An opaque inline pass inlines all function calls in all functions in all
- // entry point call trees where the called function contains an opaque type
- // in either its parameter types or return type. An opaque type is currently
- // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
- // through brute force, analysis and optimization across these function calls
- // by subsequent passes in order to remove the storing of opaque types which is
- // not legal in Vulkan. Functions that are not in the call tree of an entry
- // point are not changed.
- Optimizer::PassToken CreateInlineOpaquePass();
- // Creates a single-block local variable load/store elimination pass.
- // For every entry point function, do single block memory optimization of
- // function variables referenced only with non-access-chain loads and stores.
- // For each targeted variable load, if previous store to that variable in the
- // block, replace the load's result id with the value id of the store.
- // If previous load within the block, replace the current load's result id
- // with the previous load's result id. In either case, delete the current
- // load. Finally, check if any remaining stores are useless, and delete store
- // and variable if possible.
- //
- // The presence of access chain references and function calls can inhibit
- // the above optimization.
- //
- // Only modules with relaxed logical addressing (see opt/instruction.h) are
- // currently processed.
- //
- // This pass is most effective if preceded by Inlining and
- // LocalAccessChainConvert. This pass will reduce the work needed to be done
- // by LocalSingleStoreElim and LocalMultiStoreElim.
- //
- // Only functions in the call tree of an entry point are processed.
- Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
- // Create dead branch elimination pass.
- // For each entry point function, this pass will look for SelectionMerge
- // BranchConditionals with constant condition and convert to a Branch to
- // the indicated label. It will delete resulting dead blocks.
- //
- // For all phi functions in merge block, replace all uses with the id
- // corresponding to the living predecessor.
- //
- // Note that some branches and blocks may be left to avoid creating invalid
- // control flow. Improving this is left to future work.
- //
- // This pass is most effective when preceded by passes which eliminate
- // local loads and stores, effectively propagating constant values where
- // possible.
- Optimizer::PassToken CreateDeadBranchElimPass();
- // Creates an SSA local variable load/store elimination pass.
- // For every entry point function, eliminate all loads and stores of function
- // scope variables only referenced with non-access-chain loads and stores.
- // Eliminate the variables as well.
- //
- // The presence of access chain references and function calls can inhibit
- // the above optimization.
- //
- // Only shader modules with relaxed logical addressing (see opt/instruction.h)
- // are currently processed. Currently modules with any extensions enabled are
- // not processed. This is left for future work.
- //
- // This pass is most effective if preceded by Inlining and
- // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
- // will reduce the work that this pass has to do.
- Optimizer::PassToken CreateLocalMultiStoreElimPass();
- // Creates a local access chain conversion pass.
- // A local access chain conversion pass identifies all function scope
- // variables which are accessed only with loads, stores and access chains
- // with constant indices. It then converts all loads and stores of such
- // variables into equivalent sequences of loads, stores, extracts and inserts.
- //
- // This pass only processes entry point functions. It currently only converts
- // non-nested, non-ptr access chains. It does not process modules with
- // non-32-bit integer types present. Optional memory access options on loads
- // and stores are ignored as we are only processing function scope variables.
- //
- // This pass unifies access to these variables to a single mode and simplifies
- // subsequent analysis and elimination of these variables along with their
- // loads and stores allowing values to propagate to their points of use where
- // possible.
- Optimizer::PassToken CreateLocalAccessChainConvertPass();
- // Creates a local single store elimination pass.
- // For each entry point function, this pass eliminates loads and stores for
- // function scope variable that are stored to only once, where possible. Only
- // whole variable loads and stores are eliminated; access-chain references are
- // not optimized. Replace all loads of such variables with the value that is
- // stored and eliminate any resulting dead code.
- //
- // Currently, the presence of access chains and function calls can inhibit this
- // pass, however the Inlining and LocalAccessChainConvert passes can make it
- // more effective. In additional, many non-load/store memory operations are
- // not supported and will prohibit optimization of a function. Support of
- // these operations are future work.
- //
- // Only shader modules with relaxed logical addressing (see opt/instruction.h)
- // are currently processed.
- //
- // This pass will reduce the work needed to be done by LocalSingleBlockElim
- // and LocalMultiStoreElim and can improve the effectiveness of other passes
- // such as DeadBranchElimination which depend on values for their analysis.
- Optimizer::PassToken CreateLocalSingleStoreElimPass();
- // Creates an insert/extract elimination pass.
- // This pass processes each entry point function in the module, searching for
- // extracts on a sequence of inserts. It further searches the sequence for an
- // insert with indices identical to the extract. If such an insert can be
- // found before hitting a conflicting insert, the extract's result id is
- // replaced with the id of the values from the insert.
- //
- // Besides removing extracts this pass enables subsequent dead code elimination
- // passes to delete the inserts. This pass performs best after access chains are
- // converted to inserts and extracts and local loads and stores are eliminated.
- Optimizer::PassToken CreateInsertExtractElimPass();
- // Creates a dead insert elimination pass.
- // This pass processes each entry point function in the module, searching for
- // unreferenced inserts into composite types. These are most often unused
- // stores to vector components. They are unused because they are never
- // referenced, or because there is another insert to the same component between
- // the insert and the reference. After removing the inserts, dead code
- // elimination is attempted on the inserted values.
- //
- // This pass performs best after access chains are converted to inserts and
- // extracts and local loads and stores are eliminated. While executing this
- // pass can be advantageous on its own, it is also advantageous to execute
- // this pass after CreateInsertExtractPass() as it will remove any unused
- // inserts created by that pass.
- Optimizer::PassToken CreateDeadInsertElimPass();
- // Create aggressive dead code elimination pass
- // This pass eliminates unused code from the module. In addition,
- // it detects and eliminates code which may have spurious uses but which do
- // not contribute to the output of the function. The most common cause of
- // such code sequences is summations in loops whose result is no longer used
- // due to dead code elimination. This optimization has additional compile
- // time cost over standard dead code elimination.
- //
- // This pass only processes entry point functions. It also only processes
- // shaders with relaxed logical addressing (see opt/instruction.h). It
- // currently will not process functions with function calls. Unreachable
- // functions are deleted.
- //
- // This pass will be made more effective by first running passes that remove
- // dead control flow and inlines function calls.
- //
- // This pass can be especially useful after running Local Access Chain
- // Conversion, which tends to cause cycles of dead code to be left after
- // Store/Load elimination passes are completed. These cycles cannot be
- // eliminated with standard dead code elimination.
- //
- // If |preserve_interface| is true, all non-io variables in the entry point
- // interface are considered live and are not eliminated. This mode is needed
- // by GPU-Assisted validation instrumentation, where a change in the interface
- // is not allowed.
- //
- // If |remove_outputs| is true, allow outputs to be removed from the interface.
- // This is only safe if the caller knows that there is no corresponding input
- // variable in the following shader. It is false by default.
- Optimizer::PassToken CreateAggressiveDCEPass();
- Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface);
- Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface,
- bool remove_outputs);
- // Creates a remove-unused-interface-variables pass.
- // Removes variables referenced on the |OpEntryPoint| instruction that are not
- // referenced in the entry point function or any function in its call tree. Note
- // that this could cause the shader interface to no longer match other shader
- // stages.
- Optimizer::PassToken CreateRemoveUnusedInterfaceVariablesPass();
- // Creates an empty pass.
- // This is deprecated and will be removed.
- // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
- // https://github.com/KhronosGroup/glslang/pull/2440
- Optimizer::PassToken CreatePropagateLineInfoPass();
- // Creates an empty pass.
- // This is deprecated and will be removed.
- // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
- // https://github.com/KhronosGroup/glslang/pull/2440
- Optimizer::PassToken CreateRedundantLineInfoElimPass();
- // Creates a compact ids pass.
- // The pass remaps result ids to a compact and gapless range starting from %1.
- Optimizer::PassToken CreateCompactIdsPass();
- // Creates a remove duplicate pass.
- // This pass removes various duplicates:
- // * duplicate capabilities;
- // * duplicate extended instruction imports;
- // * duplicate types;
- // * duplicate decorations.
- Optimizer::PassToken CreateRemoveDuplicatesPass();
- // Creates a CFG cleanup pass.
- // This pass removes cruft from the control flow graph of functions that are
- // reachable from entry points and exported functions. It currently includes the
- // following functionality:
- //
- // - Removal of unreachable basic blocks.
- Optimizer::PassToken CreateCFGCleanupPass();
- // Create dead variable elimination pass.
- // This pass will delete module scope variables, along with their decorations,
- // that are not referenced.
- Optimizer::PassToken CreateDeadVariableEliminationPass();
- // create merge return pass.
- // changes functions that have multiple return statements so they have a single
- // return statement.
- //
- // for structured control flow it is assumed that the only unreachable blocks in
- // the function are trivial merge and continue blocks.
- //
- // a trivial merge block contains the label and an opunreachable instructions,
- // nothing else. a trivial continue block contain a label and an opbranch to
- // the header, nothing else.
- //
- // these conditions are guaranteed to be met after running dead-branch
- // elimination.
- Optimizer::PassToken CreateMergeReturnPass();
- // Create value numbering pass.
- // This pass will look for instructions in the same basic block that compute the
- // same value, and remove the redundant ones.
- Optimizer::PassToken CreateLocalRedundancyEliminationPass();
- // Create LICM pass.
- // This pass will look for invariant instructions inside loops and hoist them to
- // the loops preheader.
- Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
- // Creates a loop fission pass.
- // This pass will split all top level loops whose register pressure exceedes the
- // given |threshold|.
- Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
- // Creates a loop fusion pass.
- // This pass will look for adjacent loops that are compatible and legal to be
- // fused. The fuse all such loops as long as the register usage for the fused
- // loop stays under the threshold defined by |max_registers_per_loop|.
- Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
- // Creates a loop peeling pass.
- // This pass will look for conditions inside a loop that are true or false only
- // for the N first or last iteration. For loop with such condition, those N
- // iterations of the loop will be executed outside of the main loop.
- // To limit code size explosion, the loop peeling can only happen if the code
- // size growth for each loop is under |code_growth_threshold|.
- Optimizer::PassToken CreateLoopPeelingPass();
- // Creates a loop unswitch pass.
- // This pass will look for loop independent branch conditions and move the
- // condition out of the loop and version the loop based on the taken branch.
- // Works best after LICM and local multi store elimination pass.
- Optimizer::PassToken CreateLoopUnswitchPass();
- // Create global value numbering pass.
- // This pass will look for instructions where the same value is computed on all
- // paths leading to the instruction. Those instructions are deleted.
- Optimizer::PassToken CreateRedundancyEliminationPass();
- // Create scalar replacement pass.
- // This pass replaces composite function scope variables with variables for each
- // element if those elements are accessed individually. The parameter is a
- // limit on the number of members in the composite variable that the pass will
- // consider replacing.
- Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 0);
- // Create a private to local pass.
- // This pass looks for variables declared in the private storage class that are
- // used in only one function. Those variables are moved to the function storage
- // class in the function that they are used.
- Optimizer::PassToken CreatePrivateToLocalPass();
- // Creates a conditional constant propagation (CCP) pass.
- // This pass implements the SSA-CCP algorithm in
- //
- // Constant propagation with conditional branches,
- // Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
- //
- // Constant values in expressions and conditional jumps are folded and
- // simplified. This may reduce code size by removing never executed jump targets
- // and computations with constant operands.
- Optimizer::PassToken CreateCCPPass();
- // Creates a workaround driver bugs pass. This pass attempts to work around
- // a known driver bug (issue #1209) by identifying the bad code sequences and
- // rewriting them.
- //
- // Current workaround: Avoid OpUnreachable instructions in loops.
- Optimizer::PassToken CreateWorkaround1209Pass();
- // Creates a pass that converts if-then-else like assignments into OpSelect.
- Optimizer::PassToken CreateIfConversionPass();
- // Creates a pass that will replace instructions that are not valid for the
- // current shader stage by constants. Has no effect on non-shader modules.
- Optimizer::PassToken CreateReplaceInvalidOpcodePass();
- // Creates a pass that simplifies instructions using the instruction folder.
- Optimizer::PassToken CreateSimplificationPass();
- // Create loop unroller pass.
- // Creates a pass to unroll loops which have the "Unroll" loop control
- // mask set. The loops must meet a specific criteria in order to be unrolled
- // safely this criteria is checked before doing the unroll by the
- // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
- // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
- Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
- // Create the SSA rewrite pass.
- // This pass converts load/store operations on function local variables into
- // operations on SSA IDs. This allows SSA optimizers to act on these variables.
- // Only variables that are local to the function and of supported types are
- // processed (see IsSSATargetVar for details).
- Optimizer::PassToken CreateSSARewritePass();
- // Create pass to convert relaxed precision instructions to half precision.
- // This pass converts as many relaxed float32 arithmetic operations to half as
- // possible. It converts any float32 operands to half if needed. It converts
- // any resulting half precision values back to float32 as needed. No variables
- // are changed. No image operations are changed.
- //
- // Best if run after function scope store/load and composite operation
- // eliminations are run. Also best if followed by instruction simplification,
- // redundancy elimination and DCE.
- Optimizer::PassToken CreateConvertRelaxedToHalfPass();
- // Create relax float ops pass.
- // This pass decorates all float32 result instructions with RelaxedPrecision
- // if not already so decorated.
- Optimizer::PassToken CreateRelaxFloatOpsPass();
- // Create copy propagate arrays pass.
- // This pass looks to copy propagate memory references for arrays. It looks
- // for specific code patterns to recognize array copies.
- Optimizer::PassToken CreateCopyPropagateArraysPass();
- // Create a vector dce pass.
- // This pass looks for components of vectors that are unused, and removes them
- // from the vector. Note this would still leave around lots of dead code that
- // a pass of ADCE will be able to remove.
- Optimizer::PassToken CreateVectorDCEPass();
- // Create a pass to reduce the size of loads.
- // This pass looks for loads of structures where only a few of its members are
- // used. It replaces the loads feeding an OpExtract with an OpAccessChain and
- // a load of the specific elements. The parameter is a threshold to determine
- // whether we have to replace the load or not. If the ratio of the used
- // components of the load is less than the threshold, we replace the load.
- Optimizer::PassToken CreateReduceLoadSizePass(
- double load_replacement_threshold = 0.9);
- // Create a pass to combine chained access chains.
- // This pass looks for access chains fed by other access chains and combines
- // them into a single instruction where possible.
- Optimizer::PassToken CreateCombineAccessChainsPass();
- // Create a pass to upgrade to the VulkanKHR memory model.
- // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
- // Additionally, it modifies memory, image, atomic and barrier operations to
- // conform to that model's requirements.
- Optimizer::PassToken CreateUpgradeMemoryModelPass();
- // Create a pass to do code sinking. Code sinking is a transformation
- // where an instruction is moved into a more deeply nested construct.
- Optimizer::PassToken CreateCodeSinkingPass();
- // Create a pass to fix incorrect storage classes. In order to make code
- // generation simpler, DXC may generate code where the storage classes do not
- // match up correctly. This pass will fix the errors that it can.
- Optimizer::PassToken CreateFixStorageClassPass();
- // Creates a graphics robust access pass.
- //
- // This pass injects code to clamp indexed accesses to buffers and internal
- // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
- //
- // TODO(dneto): Clamps coordinates and sample index for pointer calculations
- // into storage images (OpImageTexelPointer). For an cube array image, it
- // assumes the maximum layer count times 6 is at most 0xffffffff.
- //
- // NOTE: This pass will fail with a message if:
- // - The module is not a Shader module.
- // - The module declares VariablePointers, VariablePointersStorageBuffer, or
- // RuntimeDescriptorArrayEXT capabilities.
- // - The module uses an addressing model other than Logical
- // - Access chain indices are wider than 64 bits.
- // - Access chain index for a struct is not an OpConstant integer or is out
- // of range. (The module is already invalid if that is the case.)
- // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
- // wide.
- //
- // NOTE: Access chain indices are always treated as signed integers. So
- // if an array has a fixed size of more than 2^31 elements, then elements
- // from 2^31 and above are never accessible with a 32-bit index,
- // signed or unsigned. For this case, this pass will clamp the index
- // between 0 and at 2^31-1, inclusive.
- // Similarly, if an array has more then 2^15 element and is accessed with
- // a 16-bit index, then elements from 2^15 and above are not accessible.
- // In this case, the pass will clamp the index between 0 and 2^15-1
- // inclusive.
- Optimizer::PassToken CreateGraphicsRobustAccessPass();
- // Create a pass to spread Volatile semantics to variables with SMIDNV,
- // WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask,
- // SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn
- // decorations or OpLoad for them when the shader model is the ray generation,
- // closest hit, miss, intersection, or callable. This pass can be used for
- // VUID-StandaloneSpirv-VulkanMemoryModel-04678 and
- // VUID-StandaloneSpirv-VulkanMemoryModel-04679 (See "Standalone SPIR-V
- // Validation" section of Vulkan spec "Appendix A: Vulkan Environment for
- // SPIR-V"). When the SPIR-V version is 1.6 or above, the pass also spreads
- // the Volatile semantics to a variable with HelperInvocation BuiltIn decoration
- // in the fragement shader.
- Optimizer::PassToken CreateSpreadVolatileSemanticsPass();
- // Create a pass to replace a descriptor access using variable index.
- // This pass replaces every access using a variable index to array variable
- // |desc| that has a DescriptorSet and Binding decorations with a constant
- // element of the array. In order to replace the access using a variable index
- // with the constant element, it uses a switch statement.
- Optimizer::PassToken CreateReplaceDescArrayAccessUsingVarIndexPass();
- // Create descriptor scalar replacement pass.
- // This pass replaces every array variable |desc| that has a DescriptorSet and
- // Binding decorations with a new variable for each element of the
- // array/composite. Suppose |desc| was bound at binding |b|. Then the variable
- // corresponding to |desc[i]| will have binding |b+i|. The descriptor set will
- // be the same. It is assumed that no other variable already has a binding that
- // will used by one of the new variables. If not, the pass will generate
- // invalid Spir-V. All accesses to |desc| must be OpAccessChain instructions
- // with a literal index for the first index. This variant flattens both
- // composites and arrays.
- Optimizer::PassToken CreateDescriptorScalarReplacementPass();
- // This variant flattens only composites.
- Optimizer::PassToken CreateDescriptorCompositeScalarReplacementPass();
- // This variant flattens only arrays.
- Optimizer::PassToken CreateDescriptorArrayScalarReplacementPass();
- // Create a pass to replace each OpKill instruction with a function call to a
- // function that has a single OpKill. Also replace each OpTerminateInvocation
- // instruction with a function call to a function that has a single
- // OpTerminateInvocation. This allows more code to be inlined.
- Optimizer::PassToken CreateWrapOpKillPass();
- // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
- // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
- // capabilities.
- Optimizer::PassToken CreateAmdExtToKhrPass();
- // Replaces the internal version of GLSLstd450 InterpolateAt* extended
- // instructions with the externally valid version. The internal version allows
- // an OpLoad of the interpolant for the first argument. This pass removes the
- // OpLoad and replaces it with its pointer. glslang and possibly other
- // frontends will create the internal version for HLSL. This pass will be part
- // of HLSL legalization and should be called after interpolants have been
- // propagated into their final positions.
- Optimizer::PassToken CreateInterpolateFixupPass();
- // Replace OpExtInst instructions with OpExtInstWithForwardRefsKHR when
- // the instruction contains a forward reference to another debug instuction.
- // Replace OpExtInstWithForwardRefsKHR with OpExtInst when there are no forward
- // reference to another debug instruction.
- Optimizer::PassToken CreateOpExtInstWithForwardReferenceFixupPass();
- // Removes unused components from composite input variables. Current
- // implementation just removes trailing unused components from input arrays
- // and structs. The pass performs best after maximizing dead code removal.
- // A subsequent dead code elimination pass would be beneficial in removing
- // newly unused component types.
- //
- // WARNING: This pass can only be safely applied standalone to vertex shaders
- // as it can otherwise cause interface incompatibilities with the preceding
- // shader in the pipeline. If applied to non-vertex shaders, the user should
- // follow by applying EliminateDeadOutputStores and
- // EliminateDeadOutputComponents to the preceding shader.
- Optimizer::PassToken CreateEliminateDeadInputComponentsPass();
- // Removes unused components from composite output variables. Current
- // implementation just removes trailing unused components from output arrays
- // and structs. The pass performs best after eliminating dead output stores.
- // A subsequent dead code elimination pass would be beneficial in removing
- // newly unused component types. Currently only supports vertex and fragment
- // shaders.
- //
- // WARNING: This pass cannot be safely applied standalone as it can cause
- // interface incompatibility with the following shader in the pipeline. The
- // user should first apply EliminateDeadInputComponents to the following
- // shader, then apply EliminateDeadOutputStores to this shader.
- Optimizer::PassToken CreateEliminateDeadOutputComponentsPass();
- // Removes unused components from composite input variables. This safe
- // version will not cause interface incompatibilities since it only changes
- // vertex shaders. The current implementation just removes trailing unused
- // components from input structs and input arrays. The pass performs best
- // after maximizing dead code removal. A subsequent dead code elimination
- // pass would be beneficial in removing newly unused component types.
- Optimizer::PassToken CreateEliminateDeadInputComponentsSafePass();
- // Analyzes shader and populates |live_locs| and |live_builtins|. Best results
- // will be obtained if shader has all dead code eliminated first. |live_locs|
- // and |live_builtins| are subsequently used when calling
- // CreateEliminateDeadOutputStoresPass on the preceding shader. Currently only
- // supports tesc, tese, geom, and frag shaders.
- Optimizer::PassToken CreateAnalyzeLiveInputPass(
- std::unordered_set<uint32_t>* live_locs,
- std::unordered_set<uint32_t>* live_builtins);
- // Removes stores to output locations not listed in |live_locs| or
- // |live_builtins|. Best results are obtained if constant propagation is
- // performed first. A subsequent call to ADCE will eliminate any dead code
- // created by the removal of the stores. A subsequent call to
- // CreateEliminateDeadOutputComponentsPass will eliminate any dead output
- // components created by the elimination of the stores. Currently only supports
- // vert, tesc, tese, and geom shaders.
- Optimizer::PassToken CreateEliminateDeadOutputStoresPass(
- std::unordered_set<uint32_t>* live_locs,
- std::unordered_set<uint32_t>* live_builtins);
- // Creates a convert-to-sampled-image pass to convert images and/or
- // samplers with given pairs of descriptor set and binding to sampled image.
- // If a pair of an image and a sampler have the same pair of descriptor set and
- // binding that is one of the given pairs, they will be converted to a sampled
- // image. In addition, if only an image has the descriptor set and binding that
- // is one of the given pairs, it will be converted to a sampled image as well.
- Optimizer::PassToken CreateConvertToSampledImagePass(
- const std::vector<opt::DescriptorSetAndBinding>&
- descriptor_set_binding_pairs);
- // Create an interface-variable-scalar-replacement pass that replaces array or
- // matrix interface variables with a series of scalar or vector interface
- // variables. For example, it replaces `float3 foo[2]` with `float3 foo0, foo1`.
- Optimizer::PassToken CreateInterfaceVariableScalarReplacementPass();
- // Creates a remove-dont-inline pass to remove the |DontInline| function control
- // from every function in the module. This is useful if you want the inliner to
- // inline these functions some reason.
- Optimizer::PassToken CreateRemoveDontInlinePass();
- // Create a fix-func-call-param pass to fix non memory argument for the function
- // call, as spirv-validation requires function parameters to be an memory
- // object, currently the pass would remove accesschain pointer argument passed
- // to the function
- Optimizer::PassToken CreateFixFuncCallArgumentsPass();
- // Creates a trim-capabilities pass.
- // This pass removes unused capabilities for a given module, and if possible,
- // associated extensions.
- // See `trim_capabilities.h` for the list of supported capabilities.
- //
- // If the module contains unsupported capabilities, this pass will ignore them.
- // This should be fine in most cases, but could yield to incorrect results if
- // the unknown capability interacts with one of the trimmed capabilities.
- Optimizer::PassToken CreateTrimCapabilitiesPass();
- // Creates a struct-packing pass.
- // This pass re-assigns all offset layout decorators to tightly pack
- // the struct with OpName matching `structToPack` according to the given packing
- // rule. Accepted packing rules are: std140, std140EnhancedLayout, std430,
- // std430EnhancedLayout, hlslCbuffer, hlslCbufferPackOffset, scalar,
- // scalarEnhancedLayout.
- Optimizer::PassToken CreateStructPackingPass(const char* structToPack,
- const char* packingRule);
- // Creates a switch-descriptorset pass.
- // This pass changes any DescriptorSet decorations with the value |ds_from| to
- // use the new value |ds_to|.
- Optimizer::PassToken CreateSwitchDescriptorSetPass(uint32_t ds_from,
- uint32_t ds_to);
- // Creates an invocation interlock placement pass.
- // This pass ensures that an entry point will have at most one
- // OpBeginInterlockInvocationEXT and one OpEndInterlockInvocationEXT, in that
- // order.
- Optimizer::PassToken CreateInvocationInterlockPlacementPass();
- // Creates a pass to add/remove maximal reconvergence execution mode.
- // This pass either adds or removes maximal reconvergence from all entry points.
- Optimizer::PassToken CreateModifyMaximalReconvergencePass(bool add);
- // Creates a pass to split combined image+sampler variables and function
- // parameters into separate image and sampler parts. Binding numbers and
- // other decorations are copied.
- Optimizer::PassToken CreateSplitCombinedImageSamplerPass();
- // Creates a pass to remap bindings to avoid conflicts, assuming the module
- // is valid for Vulkan. A conflict exits when an entry point uses two distinct
- // variables with the same descriptor set and binding. Vulkan allows one kind
- // of conflict: when one varible is an image (or array of images), and the
- // other is a sampler (or an array of samplers).
- // Conflicts are eliminated by incrementing the binding number of the sampler
- // part, and then propagating that increment through variables with
- // higher-numbered bindings until no conflict remains. This handles the case
- // when multiple shaders may share the same resource variables; this can
- // introduce holes in binding slots.
- //
- // Here's an example where shaders Alpha, Beta, Gamma, Delta collectively use
- // resource variables %100, %101, %102, %103, %104 all with the same
- // DescriptorSet and with Bindings as in the following table:
- //
- // Before:
- //
- // Binding: 0 1 2 3
- // Alpha: %100,%101
- // Beta: %100 %102
- // Gamma: %102 %103
- // Delta: %103 %104
- //
- // The Alpha shader has a conflict where variables %100, %101 have the same
- // descriptor set and binding. If %100 is a sampler resource variable, then
- // the conflict is resolved by incrementing the binding number on %100 from 0
- // to 1. But this causes a new confict for shader Beta because it now uses
- // both %100 and %102 with binding number 1. That conflict is resolved by
- // incrementing the binding number on its variable that originally appeared
- // second (i.e. %102), so %102 gets binding 2. This now produces a conflict
- // for Gamma between %102 and %103 using binding number 2. Since %103 originally
- // appeared second (in the view from Gamma), the algorithm bumps %103 to binding
- // number %103. Now Delta has a conflict between %103 and %104, resulting in
- // %104 getting the next binding number, 4. The picture afterward is:
- //
- // After:
- //
- // Binding: 0 1 2 3 4
- // Alpha: %101 %100
- // Beta: %100 %102
- // Gamma: %102 %103
- // Delta: %103 %104
- //
- //
- // This pass assumes binding numbers are not applid via decoration groups
- // (OpDecorationGroup).
- Optimizer::PassToken CreateResolveBindingConflictsPass();
- } // namespace spvtools
- #endif // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
|