| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910 |
- // Copyright (c) 2018 Google LLC
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "source/opt/const_folding_rules.h"
- #include "source/opt/ir_context.h"
- namespace spvtools {
- namespace opt {
- namespace {
- constexpr uint32_t kExtractCompositeIdInIdx = 0;
- // Returns a constants with the value NaN of the given type. Only works for
- // 32-bit and 64-bit float point types. Returns |nullptr| if an error occurs.
- const analysis::Constant* GetNan(const analysis::Type* type,
- analysis::ConstantManager* const_mgr) {
- const analysis::Float* float_type = type->AsFloat();
- if (float_type == nullptr) {
- return nullptr;
- }
- switch (float_type->width()) {
- case 32:
- return const_mgr->GetFloatConst(std::numeric_limits<float>::quiet_NaN());
- case 64:
- return const_mgr->GetDoubleConst(
- std::numeric_limits<double>::quiet_NaN());
- default:
- return nullptr;
- }
- }
- // Returns a constants with the value INF of the given type. Only works for
- // 32-bit and 64-bit float point types. Returns |nullptr| if an error occurs.
- const analysis::Constant* GetInf(const analysis::Type* type,
- analysis::ConstantManager* const_mgr) {
- const analysis::Float* float_type = type->AsFloat();
- if (float_type == nullptr) {
- return nullptr;
- }
- switch (float_type->width()) {
- case 32:
- return const_mgr->GetFloatConst(std::numeric_limits<float>::infinity());
- case 64:
- return const_mgr->GetDoubleConst(std::numeric_limits<double>::infinity());
- default:
- return nullptr;
- }
- }
- // Returns true if |type| is Float or a vector of Float.
- bool HasFloatingPoint(const analysis::Type* type) {
- if (type->AsFloat()) {
- return true;
- } else if (const analysis::Vector* vec_type = type->AsVector()) {
- return vec_type->element_type()->AsFloat() != nullptr;
- }
- return false;
- }
- // Returns a constants with the value |-val| of the given type. Only works for
- // 32-bit and 64-bit float point types. Returns |nullptr| if an error occurs.
- const analysis::Constant* NegateFPConst(const analysis::Type* result_type,
- const analysis::Constant* val,
- analysis::ConstantManager* const_mgr) {
- const analysis::Float* float_type = result_type->AsFloat();
- assert(float_type != nullptr);
- if (float_type->width() == 32) {
- float fa = val->GetFloat();
- return const_mgr->GetFloatConst(-fa);
- } else if (float_type->width() == 64) {
- double da = val->GetDouble();
- return const_mgr->GetDoubleConst(-da);
- }
- return nullptr;
- }
- // Returns a constants with the value |-val| of the given type.
- const analysis::Constant* NegateIntConst(const analysis::Type* result_type,
- const analysis::Constant* val,
- analysis::ConstantManager* const_mgr) {
- const analysis::Integer* int_type = result_type->AsInteger();
- assert(int_type != nullptr);
- if (val->AsNullConstant()) {
- return val;
- }
- uint64_t new_value = static_cast<uint64_t>(-val->GetSignExtendedValue());
- return const_mgr->GetIntConst(new_value, int_type->width(),
- int_type->IsSigned());
- }
- // Folds an OpcompositeExtract where input is a composite constant.
- ConstantFoldingRule FoldExtractWithConstants() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- const analysis::Constant* c = constants[kExtractCompositeIdInIdx];
- if (c == nullptr) {
- return nullptr;
- }
- for (uint32_t i = 1; i < inst->NumInOperands(); ++i) {
- uint32_t element_index = inst->GetSingleWordInOperand(i);
- if (c->AsNullConstant()) {
- // Return Null for the return type.
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), {});
- }
- auto cc = c->AsCompositeConstant();
- assert(cc != nullptr);
- auto components = cc->GetComponents();
- // Protect against invalid IR. Refuse to fold if the index is out
- // of bounds.
- if (element_index >= components.size()) return nullptr;
- c = components[element_index];
- }
- return c;
- };
- }
- // Folds an OpcompositeInsert where input is a composite constant.
- ConstantFoldingRule FoldInsertWithConstants() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- const analysis::Constant* object = constants[0];
- const analysis::Constant* composite = constants[1];
- if (object == nullptr || composite == nullptr) {
- return nullptr;
- }
- // If there is more than 1 index, then each additional constant used by the
- // index will need to be recreated to use the inserted object.
- std::vector<const analysis::Constant*> chain;
- std::vector<const analysis::Constant*> components;
- const analysis::Type* type = nullptr;
- const uint32_t final_index = (inst->NumInOperands() - 1);
- // Work down hierarchy of all indexes
- for (uint32_t i = 2; i < inst->NumInOperands(); ++i) {
- type = composite->type();
- if (composite->AsNullConstant()) {
- // Make new composite so it can be inserted in the index with the
- // non-null value
- if (const auto new_composite =
- const_mgr->GetNullCompositeConstant(type)) {
- // Keep track of any indexes along the way to last index
- if (i != final_index) {
- chain.push_back(new_composite);
- }
- components = new_composite->AsCompositeConstant()->GetComponents();
- } else {
- // Unsupported input type (such as structs)
- return nullptr;
- }
- } else {
- // Keep track of any indexes along the way to last index
- if (i != final_index) {
- chain.push_back(composite);
- }
- components = composite->AsCompositeConstant()->GetComponents();
- }
- const uint32_t index = inst->GetSingleWordInOperand(i);
- composite = components[index];
- }
- // Final index in hierarchy is inserted with new object.
- const uint32_t final_operand = inst->GetSingleWordInOperand(final_index);
- std::vector<uint32_t> ids;
- for (size_t i = 0; i < components.size(); i++) {
- const analysis::Constant* constant =
- (i == final_operand) ? object : components[i];
- Instruction* member_inst = const_mgr->GetDefiningInstruction(constant);
- ids.push_back(member_inst->result_id());
- }
- const analysis::Constant* new_constant = const_mgr->GetConstant(type, ids);
- // Work backwards up the chain and replace each index with new constant.
- for (size_t i = chain.size(); i > 0; i--) {
- // Need to insert any previous instruction into the module first.
- // Can't just insert in types_values_begin() because it will move above
- // where the types are declared.
- // Can't compare with location of inst because not all new added
- // instructions are added to types_values_
- auto iter = context->types_values_end();
- Module::inst_iterator* pos = &iter;
- const_mgr->BuildInstructionAndAddToModule(new_constant, pos);
- composite = chain[i - 1];
- components = composite->AsCompositeConstant()->GetComponents();
- type = composite->type();
- ids.clear();
- for (size_t k = 0; k < components.size(); k++) {
- const uint32_t index =
- inst->GetSingleWordInOperand(1 + static_cast<uint32_t>(i));
- const analysis::Constant* constant =
- (k == index) ? new_constant : components[k];
- const uint32_t constant_id =
- const_mgr->FindDeclaredConstant(constant, 0);
- ids.push_back(constant_id);
- }
- new_constant = const_mgr->GetConstant(type, ids);
- }
- // If multiple constants were created, only need to return the top index.
- return new_constant;
- };
- }
- ConstantFoldingRule FoldVectorShuffleWithConstants() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- assert(inst->opcode() == spv::Op::OpVectorShuffle);
- const analysis::Constant* c1 = constants[0];
- const analysis::Constant* c2 = constants[1];
- if (c1 == nullptr || c2 == nullptr) {
- return nullptr;
- }
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- const analysis::Type* element_type = c1->type()->AsVector()->element_type();
- std::vector<const analysis::Constant*> c1_components;
- if (const analysis::VectorConstant* vec_const = c1->AsVectorConstant()) {
- c1_components = vec_const->GetComponents();
- } else {
- assert(c1->AsNullConstant());
- const analysis::Constant* element =
- const_mgr->GetConstant(element_type, {});
- c1_components.resize(c1->type()->AsVector()->element_count(), element);
- }
- std::vector<const analysis::Constant*> c2_components;
- if (const analysis::VectorConstant* vec_const = c2->AsVectorConstant()) {
- c2_components = vec_const->GetComponents();
- } else {
- assert(c2->AsNullConstant());
- const analysis::Constant* element =
- const_mgr->GetConstant(element_type, {});
- c2_components.resize(c2->type()->AsVector()->element_count(), element);
- }
- std::vector<uint32_t> ids;
- const uint32_t undef_literal_value = 0xffffffff;
- for (uint32_t i = 2; i < inst->NumInOperands(); ++i) {
- uint32_t index = inst->GetSingleWordInOperand(i);
- if (index == undef_literal_value) {
- // Don't fold shuffle with undef literal value.
- return nullptr;
- } else if (index < c1_components.size()) {
- Instruction* member_inst =
- const_mgr->GetDefiningInstruction(c1_components[index]);
- ids.push_back(member_inst->result_id());
- } else {
- Instruction* member_inst = const_mgr->GetDefiningInstruction(
- c2_components[index - c1_components.size()]);
- ids.push_back(member_inst->result_id());
- }
- }
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids);
- };
- }
- ConstantFoldingRule FoldVectorTimesScalar() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- assert(inst->opcode() == spv::Op::OpVectorTimesScalar);
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) {
- return nullptr;
- }
- }
- const analysis::Constant* c1 = constants[0];
- const analysis::Constant* c2 = constants[1];
- if (c1 && c1->IsZero()) {
- return c1;
- }
- if (c2 && c2->IsZero()) {
- // Get or create the NullConstant for this type.
- std::vector<uint32_t> ids;
- return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids);
- }
- if (c1 == nullptr || c2 == nullptr) {
- return nullptr;
- }
- // Check result type.
- const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
- const analysis::Vector* vector_type = result_type->AsVector();
- assert(vector_type != nullptr);
- const analysis::Type* element_type = vector_type->element_type();
- assert(element_type != nullptr);
- const analysis::Float* float_type = element_type->AsFloat();
- assert(float_type != nullptr);
- // Check types of c1 and c2.
- assert(c1->type()->AsVector() == vector_type);
- assert(c1->type()->AsVector()->element_type() == element_type &&
- c2->type() == element_type);
- // Get a float vector that is the result of vector-times-scalar.
- std::vector<const analysis::Constant*> c1_components =
- c1->GetVectorComponents(const_mgr);
- std::vector<uint32_t> ids;
- if (float_type->width() == 32) {
- float scalar = c2->GetFloat();
- for (uint32_t i = 0; i < c1_components.size(); ++i) {
- utils::FloatProxy<float> result(c1_components[i]->GetFloat() * scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- } else if (float_type->width() == 64) {
- double scalar = c2->GetDouble();
- for (uint32_t i = 0; i < c1_components.size(); ++i) {
- utils::FloatProxy<double> result(c1_components[i]->GetDouble() *
- scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- }
- return nullptr;
- };
- }
- // Returns to the constant that results from tranposing |matrix|. The result
- // will have type |result_type|, and |matrix| must exist in |context|. The
- // result constant will also exist in |context|.
- const analysis::Constant* TransposeMatrix(const analysis::Constant* matrix,
- analysis::Matrix* result_type,
- IRContext* context) {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- if (matrix->AsNullConstant() != nullptr) {
- return const_mgr->GetNullCompositeConstant(result_type);
- }
- const auto& columns = matrix->AsMatrixConstant()->GetComponents();
- uint32_t number_of_rows = columns[0]->type()->AsVector()->element_count();
- // Collect the ids of the elements in their new positions.
- std::vector<std::vector<uint32_t>> result_elements(number_of_rows);
- for (const analysis::Constant* column : columns) {
- if (column->AsNullConstant()) {
- column = const_mgr->GetNullCompositeConstant(column->type());
- }
- const auto& column_components = column->AsVectorConstant()->GetComponents();
- for (uint32_t row = 0; row < number_of_rows; ++row) {
- result_elements[row].push_back(
- const_mgr->GetDefiningInstruction(column_components[row])
- ->result_id());
- }
- }
- // Create the constant for each row in the result, and collect the ids.
- std::vector<uint32_t> result_columns(number_of_rows);
- for (uint32_t col = 0; col < number_of_rows; ++col) {
- auto* element = const_mgr->GetConstant(result_type->element_type(),
- result_elements[col]);
- result_columns[col] =
- const_mgr->GetDefiningInstruction(element)->result_id();
- }
- // Create the matrix constant from the row ids, and return it.
- return const_mgr->GetConstant(result_type, result_columns);
- }
- const analysis::Constant* FoldTranspose(
- IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants) {
- assert(inst->opcode() == spv::Op::OpTranspose);
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) {
- return nullptr;
- }
- }
- const analysis::Constant* matrix = constants[0];
- if (matrix == nullptr) {
- return nullptr;
- }
- auto* result_type = type_mgr->GetType(inst->type_id());
- return TransposeMatrix(matrix, result_type->AsMatrix(), context);
- }
- ConstantFoldingRule FoldVectorTimesMatrix() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- assert(inst->opcode() == spv::Op::OpVectorTimesMatrix);
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) {
- return nullptr;
- }
- }
- const analysis::Constant* c1 = constants[0];
- const analysis::Constant* c2 = constants[1];
- if (c1 == nullptr || c2 == nullptr) {
- return nullptr;
- }
- // Check result type.
- const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
- const analysis::Vector* vector_type = result_type->AsVector();
- assert(vector_type != nullptr);
- const analysis::Type* element_type = vector_type->element_type();
- assert(element_type != nullptr);
- const analysis::Float* float_type = element_type->AsFloat();
- assert(float_type != nullptr);
- // Check types of c1 and c2.
- assert(c1->type()->AsVector() == vector_type);
- assert(c1->type()->AsVector()->element_type() == element_type &&
- c2->type()->AsMatrix()->element_type() == vector_type);
- uint32_t resultVectorSize = result_type->AsVector()->element_count();
- std::vector<uint32_t> ids;
- if ((c1 && c1->IsZero()) || (c2 && c2->IsZero())) {
- std::vector<uint32_t> words(float_type->width() / 32, 0);
- for (uint32_t i = 0; i < resultVectorSize; ++i) {
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- }
- // Get a float vector that is the result of vector-times-matrix.
- std::vector<const analysis::Constant*> c1_components =
- c1->GetVectorComponents(const_mgr);
- std::vector<const analysis::Constant*> c2_components =
- c2->AsMatrixConstant()->GetComponents();
- if (float_type->width() == 32) {
- for (uint32_t i = 0; i < resultVectorSize; ++i) {
- float result_scalar = 0.0f;
- if (!c2_components[i]->AsNullConstant()) {
- const analysis::VectorConstant* c2_vec =
- c2_components[i]->AsVectorConstant();
- for (uint32_t j = 0; j < c2_vec->GetComponents().size(); ++j) {
- float c1_scalar = c1_components[j]->GetFloat();
- float c2_scalar = c2_vec->GetComponents()[j]->GetFloat();
- result_scalar += c1_scalar * c2_scalar;
- }
- }
- utils::FloatProxy<float> result(result_scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- } else if (float_type->width() == 64) {
- for (uint32_t i = 0; i < c2_components.size(); ++i) {
- double result_scalar = 0.0;
- if (!c2_components[i]->AsNullConstant()) {
- const analysis::VectorConstant* c2_vec =
- c2_components[i]->AsVectorConstant();
- for (uint32_t j = 0; j < c2_vec->GetComponents().size(); ++j) {
- double c1_scalar = c1_components[j]->GetDouble();
- double c2_scalar = c2_vec->GetComponents()[j]->GetDouble();
- result_scalar += c1_scalar * c2_scalar;
- }
- }
- utils::FloatProxy<double> result(result_scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- }
- return nullptr;
- };
- }
- ConstantFoldingRule FoldMatrixTimesVector() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- assert(inst->opcode() == spv::Op::OpMatrixTimesVector);
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) {
- return nullptr;
- }
- }
- const analysis::Constant* c1 = constants[0];
- const analysis::Constant* c2 = constants[1];
- if (c1 == nullptr || c2 == nullptr) {
- return nullptr;
- }
- // Check result type.
- const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
- const analysis::Vector* vector_type = result_type->AsVector();
- assert(vector_type != nullptr);
- const analysis::Type* element_type = vector_type->element_type();
- assert(element_type != nullptr);
- const analysis::Float* float_type = element_type->AsFloat();
- assert(float_type != nullptr);
- // Check types of c1 and c2.
- assert(c1->type()->AsMatrix()->element_type() == vector_type);
- assert(c2->type()->AsVector()->element_type() == element_type);
- uint32_t resultVectorSize = result_type->AsVector()->element_count();
- std::vector<uint32_t> ids;
- if ((c1 && c1->IsZero()) || (c2 && c2->IsZero())) {
- std::vector<uint32_t> words(float_type->width() / 32, 0);
- for (uint32_t i = 0; i < resultVectorSize; ++i) {
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- }
- // Get a float vector that is the result of matrix-times-vector.
- std::vector<const analysis::Constant*> c1_components =
- c1->AsMatrixConstant()->GetComponents();
- std::vector<const analysis::Constant*> c2_components =
- c2->GetVectorComponents(const_mgr);
- if (float_type->width() == 32) {
- for (uint32_t i = 0; i < resultVectorSize; ++i) {
- float result_scalar = 0.0f;
- for (uint32_t j = 0; j < c1_components.size(); ++j) {
- if (!c1_components[j]->AsNullConstant()) {
- float c1_scalar = c1_components[j]
- ->AsVectorConstant()
- ->GetComponents()[i]
- ->GetFloat();
- float c2_scalar = c2_components[j]->GetFloat();
- result_scalar += c1_scalar * c2_scalar;
- }
- }
- utils::FloatProxy<float> result(result_scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- } else if (float_type->width() == 64) {
- for (uint32_t i = 0; i < resultVectorSize; ++i) {
- double result_scalar = 0.0;
- for (uint32_t j = 0; j < c1_components.size(); ++j) {
- if (!c1_components[j]->AsNullConstant()) {
- double c1_scalar = c1_components[j]
- ->AsVectorConstant()
- ->GetComponents()[i]
- ->GetDouble();
- double c2_scalar = c2_components[j]->GetDouble();
- result_scalar += c1_scalar * c2_scalar;
- }
- }
- utils::FloatProxy<double> result(result_scalar);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* new_elem =
- const_mgr->GetConstant(float_type, words);
- ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- }
- return nullptr;
- };
- }
- ConstantFoldingRule FoldCompositeWithConstants() {
- // Folds an OpCompositeConstruct where all of the inputs are constants to a
- // constant. A new constant is created if necessary.
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* new_type = type_mgr->GetType(inst->type_id());
- Instruction* type_inst =
- context->get_def_use_mgr()->GetDef(inst->type_id());
- std::vector<uint32_t> ids;
- for (uint32_t i = 0; i < constants.size(); ++i) {
- const analysis::Constant* element_const = constants[i];
- if (element_const == nullptr) {
- return nullptr;
- }
- uint32_t component_type_id = 0;
- if (type_inst->opcode() == spv::Op::OpTypeStruct) {
- component_type_id = type_inst->GetSingleWordInOperand(i);
- } else if (type_inst->opcode() == spv::Op::OpTypeArray) {
- component_type_id = type_inst->GetSingleWordInOperand(0);
- }
- uint32_t element_id =
- const_mgr->FindDeclaredConstant(element_const, component_type_id);
- if (element_id == 0) {
- return nullptr;
- }
- ids.push_back(element_id);
- }
- return const_mgr->GetConstant(new_type, ids);
- };
- }
- // The interface for a function that returns the result of applying a scalar
- // floating-point binary operation on |a| and |b|. The type of the return value
- // will be |type|. The input constants must also be of type |type|.
- using UnaryScalarFoldingRule = std::function<const analysis::Constant*(
- const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager*)>;
- // The interface for a function that returns the result of applying a scalar
- // floating-point binary operation on |a| and |b|. The type of the return value
- // will be |type|. The input constants must also be of type |type|.
- using BinaryScalarFoldingRule = std::function<const analysis::Constant*(
- const analysis::Type* result_type, const analysis::Constant* a,
- const analysis::Constant* b, analysis::ConstantManager*)>;
- // Returns a |ConstantFoldingRule| that folds unary scalar ops
- // using |scalar_rule| and unary vectors ops by applying
- // |scalar_rule| to the elements of the vector. The |ConstantFoldingRule|
- // that is returned assumes that |constants| contains 1 entry. If they are
- // not |nullptr|, then their type is either |Float| or |Integer| or a |Vector|
- // whose element type is |Float| or |Integer|.
- ConstantFoldingRule FoldUnaryOp(UnaryScalarFoldingRule scalar_rule) {
- return [scalar_rule](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
- const analysis::Vector* vector_type = result_type->AsVector();
- const analysis::Constant* arg =
- (inst->opcode() == spv::Op::OpExtInst) ? constants[1] : constants[0];
- if (arg == nullptr) {
- return nullptr;
- }
- if (vector_type != nullptr) {
- std::vector<const analysis::Constant*> a_components;
- std::vector<const analysis::Constant*> results_components;
- a_components = arg->GetVectorComponents(const_mgr);
- // Fold each component of the vector.
- for (uint32_t i = 0; i < a_components.size(); ++i) {
- results_components.push_back(scalar_rule(vector_type->element_type(),
- a_components[i], const_mgr));
- if (results_components[i] == nullptr) {
- return nullptr;
- }
- }
- // Build the constant object and return it.
- std::vector<uint32_t> ids;
- for (const analysis::Constant* member : results_components) {
- ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- } else {
- return scalar_rule(result_type, arg, const_mgr);
- }
- };
- }
- // Returns a |ConstantFoldingRule| that folds binary scalar ops
- // using |scalar_rule| and binary vectors ops by applying
- // |scalar_rule| to the elements of the vector. The folding rule assumes that op
- // has two inputs. For regular instruction, those are in operands 0 and 1. For
- // extended instruction, they are in operands 1 and 2. If an element in
- // |constants| is not nullprt, then the constant's type is |Float|, |Integer|,
- // or |Vector| whose element type is |Float| or |Integer|.
- ConstantFoldingRule FoldBinaryOp(BinaryScalarFoldingRule scalar_rule) {
- return [scalar_rule](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- assert(constants.size() == inst->NumInOperands());
- assert(constants.size() == (inst->opcode() == spv::Op::OpExtInst ? 3 : 2));
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* result_type = type_mgr->GetType(inst->type_id());
- const analysis::Vector* vector_type = result_type->AsVector();
- const analysis::Constant* arg1 =
- (inst->opcode() == spv::Op::OpExtInst) ? constants[1] : constants[0];
- const analysis::Constant* arg2 =
- (inst->opcode() == spv::Op::OpExtInst) ? constants[2] : constants[1];
- if (arg1 == nullptr || arg2 == nullptr) {
- return nullptr;
- }
- if (vector_type == nullptr) {
- return scalar_rule(result_type, arg1, arg2, const_mgr);
- }
- std::vector<const analysis::Constant*> a_components;
- std::vector<const analysis::Constant*> b_components;
- std::vector<const analysis::Constant*> results_components;
- a_components = arg1->GetVectorComponents(const_mgr);
- b_components = arg2->GetVectorComponents(const_mgr);
- assert(a_components.size() == b_components.size());
- // Fold each component of the vector.
- for (uint32_t i = 0; i < a_components.size(); ++i) {
- results_components.push_back(scalar_rule(vector_type->element_type(),
- a_components[i], b_components[i],
- const_mgr));
- if (results_components[i] == nullptr) {
- return nullptr;
- }
- }
- // Build the constant object and return it.
- std::vector<uint32_t> ids;
- for (const analysis::Constant* member : results_components) {
- ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- };
- }
- // Returns a |ConstantFoldingRule| that folds unary floating point scalar ops
- // using |scalar_rule| and unary float point vectors ops by applying
- // |scalar_rule| to the elements of the vector. The |ConstantFoldingRule|
- // that is returned assumes that |constants| contains 1 entry. If they are
- // not |nullptr|, then their type is either |Float| or |Integer| or a |Vector|
- // whose element type is |Float| or |Integer|.
- ConstantFoldingRule FoldFPUnaryOp(UnaryScalarFoldingRule scalar_rule) {
- auto folding_rule = FoldUnaryOp(scalar_rule);
- return [folding_rule](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- if (!inst->IsFloatingPointFoldingAllowed()) {
- return nullptr;
- }
- return folding_rule(context, inst, constants);
- };
- }
- // Returns the result of folding the constants in |constants| according the
- // |scalar_rule|. If |result_type| is a vector, then |scalar_rule| is applied
- // per component.
- const analysis::Constant* FoldFPBinaryOp(
- BinaryScalarFoldingRule scalar_rule, uint32_t result_type_id,
- const std::vector<const analysis::Constant*>& constants,
- IRContext* context) {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* result_type = type_mgr->GetType(result_type_id);
- const analysis::Vector* vector_type = result_type->AsVector();
- if (constants[0] == nullptr || constants[1] == nullptr) {
- return nullptr;
- }
- if (vector_type != nullptr) {
- std::vector<const analysis::Constant*> a_components;
- std::vector<const analysis::Constant*> b_components;
- std::vector<const analysis::Constant*> results_components;
- a_components = constants[0]->GetVectorComponents(const_mgr);
- b_components = constants[1]->GetVectorComponents(const_mgr);
- // Fold each component of the vector.
- for (uint32_t i = 0; i < a_components.size(); ++i) {
- results_components.push_back(scalar_rule(vector_type->element_type(),
- a_components[i], b_components[i],
- const_mgr));
- if (results_components[i] == nullptr) {
- return nullptr;
- }
- }
- // Build the constant object and return it.
- std::vector<uint32_t> ids;
- for (const analysis::Constant* member : results_components) {
- ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id());
- }
- return const_mgr->GetConstant(vector_type, ids);
- } else {
- return scalar_rule(result_type, constants[0], constants[1], const_mgr);
- }
- }
- // Returns a |ConstantFoldingRule| that folds floating point scalars using
- // |scalar_rule| and vectors of floating point by applying |scalar_rule| to the
- // elements of the vector. The |ConstantFoldingRule| that is returned assumes
- // that |constants| contains 2 entries. If they are not |nullptr|, then their
- // type is either |Float| or a |Vector| whose element type is |Float|.
- ConstantFoldingRule FoldFPBinaryOp(BinaryScalarFoldingRule scalar_rule) {
- return [scalar_rule](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- if (!inst->IsFloatingPointFoldingAllowed()) {
- return nullptr;
- }
- if (inst->opcode() == spv::Op::OpExtInst) {
- return FoldFPBinaryOp(scalar_rule, inst->type_id(),
- {constants[1], constants[2]}, context);
- }
- return FoldFPBinaryOp(scalar_rule, inst->type_id(), constants, context);
- };
- }
- // This macro defines a |UnaryScalarFoldingRule| that performs float to
- // integer conversion.
- // TODO(greg-lunarg): Support for 64-bit integer types.
- UnaryScalarFoldingRule FoldFToIOp() {
- return [](const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr);
- const analysis::Integer* integer_type = result_type->AsInteger();
- const analysis::Float* float_type = a->type()->AsFloat();
- assert(float_type != nullptr);
- assert(integer_type != nullptr);
- if (integer_type->width() != 32) return nullptr;
- if (float_type->width() == 32) {
- float fa = a->GetFloat();
- uint32_t result = integer_type->IsSigned()
- ? static_cast<uint32_t>(static_cast<int32_t>(fa))
- : static_cast<uint32_t>(fa);
- std::vector<uint32_t> words = {result};
- return const_mgr->GetConstant(result_type, words);
- } else if (float_type->width() == 64) {
- double fa = a->GetDouble();
- uint32_t result = integer_type->IsSigned()
- ? static_cast<uint32_t>(static_cast<int32_t>(fa))
- : static_cast<uint32_t>(fa);
- std::vector<uint32_t> words = {result};
- return const_mgr->GetConstant(result_type, words);
- }
- return nullptr;
- };
- }
- // This function defines a |UnaryScalarFoldingRule| that performs integer to
- // float conversion.
- // TODO(greg-lunarg): Support for 64-bit integer types.
- UnaryScalarFoldingRule FoldIToFOp() {
- return [](const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr);
- const analysis::Integer* integer_type = a->type()->AsInteger();
- const analysis::Float* float_type = result_type->AsFloat();
- assert(float_type != nullptr);
- assert(integer_type != nullptr);
- if (integer_type->width() != 32) return nullptr;
- uint32_t ua = a->GetU32();
- if (float_type->width() == 32) {
- float result_val = integer_type->IsSigned()
- ? static_cast<float>(static_cast<int32_t>(ua))
- : static_cast<float>(ua);
- utils::FloatProxy<float> result(result_val);
- std::vector<uint32_t> words = {result.data()};
- return const_mgr->GetConstant(result_type, words);
- } else if (float_type->width() == 64) {
- double result_val = integer_type->IsSigned()
- ? static_cast<double>(static_cast<int32_t>(ua))
- : static_cast<double>(ua);
- utils::FloatProxy<double> result(result_val);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(result_type, words);
- }
- return nullptr;
- };
- }
- // This defines a |UnaryScalarFoldingRule| that performs |OpQuantizeToF16|.
- UnaryScalarFoldingRule FoldQuantizeToF16Scalar() {
- return [](const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr);
- const analysis::Float* float_type = a->type()->AsFloat();
- assert(float_type != nullptr);
- if (float_type->width() != 32) {
- return nullptr;
- }
- float fa = a->GetFloat();
- utils::HexFloat<utils::FloatProxy<float>> orignal(fa);
- utils::HexFloat<utils::FloatProxy<utils::Float16>> quantized(0);
- utils::HexFloat<utils::FloatProxy<float>> result(0.0f);
- orignal.castTo(quantized, utils::round_direction::kToZero);
- quantized.castTo(result, utils::round_direction::kToZero);
- std::vector<uint32_t> words = {result.getBits()};
- return const_mgr->GetConstant(result_type, words);
- };
- }
- // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The
- // operator |op| must work for both float and double, and use syntax "f1 op f2".
- #define FOLD_FPARITH_OP(op) \
- [](const analysis::Type* result_type_in_macro, const analysis::Constant* a, \
- const analysis::Constant* b, \
- analysis::ConstantManager* const_mgr_in_macro) \
- -> const analysis::Constant* { \
- assert(result_type_in_macro != nullptr && a != nullptr && b != nullptr); \
- assert(result_type_in_macro == a->type() && \
- result_type_in_macro == b->type()); \
- const analysis::Float* float_type_in_macro = \
- result_type_in_macro->AsFloat(); \
- assert(float_type_in_macro != nullptr); \
- if (float_type_in_macro->width() == 32) { \
- float fa = a->GetFloat(); \
- float fb = b->GetFloat(); \
- utils::FloatProxy<float> result_in_macro(fa op fb); \
- std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \
- return const_mgr_in_macro->GetConstant(result_type_in_macro, \
- words_in_macro); \
- } else if (float_type_in_macro->width() == 64) { \
- double fa = a->GetDouble(); \
- double fb = b->GetDouble(); \
- utils::FloatProxy<double> result_in_macro(fa op fb); \
- std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \
- return const_mgr_in_macro->GetConstant(result_type_in_macro, \
- words_in_macro); \
- } \
- return nullptr; \
- }
- // Define the folding rule for conversion between floating point and integer
- ConstantFoldingRule FoldFToI() { return FoldFPUnaryOp(FoldFToIOp()); }
- ConstantFoldingRule FoldIToF() { return FoldFPUnaryOp(FoldIToFOp()); }
- ConstantFoldingRule FoldQuantizeToF16() {
- return FoldFPUnaryOp(FoldQuantizeToF16Scalar());
- }
- // Define the folding rules for subtraction, addition, multiplication, and
- // division for floating point values.
- ConstantFoldingRule FoldFSub() { return FoldFPBinaryOp(FOLD_FPARITH_OP(-)); }
- ConstantFoldingRule FoldFAdd() { return FoldFPBinaryOp(FOLD_FPARITH_OP(+)); }
- ConstantFoldingRule FoldFMul() { return FoldFPBinaryOp(FOLD_FPARITH_OP(*)); }
- // Returns the constant that results from evaluating |numerator| / 0.0. Returns
- // |nullptr| if the result could not be evaluated.
- const analysis::Constant* FoldFPScalarDivideByZero(
- const analysis::Type* result_type, const analysis::Constant* numerator,
- analysis::ConstantManager* const_mgr) {
- if (numerator == nullptr) {
- return nullptr;
- }
- if (numerator->IsZero()) {
- return GetNan(result_type, const_mgr);
- }
- const analysis::Constant* result = GetInf(result_type, const_mgr);
- if (result == nullptr) {
- return nullptr;
- }
- if (numerator->AsFloatConstant()->GetValueAsDouble() < 0.0) {
- result = NegateFPConst(result_type, result, const_mgr);
- }
- return result;
- }
- // Returns the result of folding |numerator| / |denominator|. Returns |nullptr|
- // if it cannot be folded.
- const analysis::Constant* FoldScalarFPDivide(
- const analysis::Type* result_type, const analysis::Constant* numerator,
- const analysis::Constant* denominator,
- analysis::ConstantManager* const_mgr) {
- if (denominator == nullptr) {
- return nullptr;
- }
- if (denominator->IsZero()) {
- return FoldFPScalarDivideByZero(result_type, numerator, const_mgr);
- }
- uint32_t width = denominator->type()->AsFloat()->width();
- if (width != 32 && width != 64) {
- return nullptr;
- }
- const analysis::FloatConstant* denominator_float =
- denominator->AsFloatConstant();
- if (denominator_float && denominator->GetValueAsDouble() == -0.0) {
- const analysis::Constant* result =
- FoldFPScalarDivideByZero(result_type, numerator, const_mgr);
- if (result != nullptr)
- result = NegateFPConst(result_type, result, const_mgr);
- return result;
- } else {
- return FOLD_FPARITH_OP(/)(result_type, numerator, denominator, const_mgr);
- }
- }
- // Returns the constant folding rule to fold |OpFDiv| with two constants.
- ConstantFoldingRule FoldFDiv() { return FoldFPBinaryOp(FoldScalarFPDivide); }
- bool CompareFloatingPoint(bool op_result, bool op_unordered,
- bool need_ordered) {
- if (need_ordered) {
- // operands are ordered and Operand 1 is |op| Operand 2
- return !op_unordered && op_result;
- } else {
- // operands are unordered or Operand 1 is |op| Operand 2
- return op_unordered || op_result;
- }
- }
- // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The
- // operator |op| must work for both float and double, and use syntax "f1 op f2".
- #define FOLD_FPCMP_OP(op, ord) \
- [](const analysis::Type* result_type, const analysis::Constant* a, \
- const analysis::Constant* b, \
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* { \
- assert(result_type != nullptr && a != nullptr && b != nullptr); \
- assert(result_type->AsBool()); \
- assert(a->type() == b->type()); \
- const analysis::Float* float_type = a->type()->AsFloat(); \
- assert(float_type != nullptr); \
- if (float_type->width() == 32) { \
- float fa = a->GetFloat(); \
- float fb = b->GetFloat(); \
- bool result = CompareFloatingPoint( \
- fa op fb, std::isnan(fa) || std::isnan(fb), ord); \
- std::vector<uint32_t> words = {uint32_t(result)}; \
- return const_mgr->GetConstant(result_type, words); \
- } else if (float_type->width() == 64) { \
- double fa = a->GetDouble(); \
- double fb = b->GetDouble(); \
- bool result = CompareFloatingPoint( \
- fa op fb, std::isnan(fa) || std::isnan(fb), ord); \
- std::vector<uint32_t> words = {uint32_t(result)}; \
- return const_mgr->GetConstant(result_type, words); \
- } \
- return nullptr; \
- }
- // Define the folding rules for ordered and unordered comparison for floating
- // point values.
- ConstantFoldingRule FoldFOrdEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(==, true));
- }
- ConstantFoldingRule FoldFUnordEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(==, false));
- }
- ConstantFoldingRule FoldFOrdNotEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, true));
- }
- ConstantFoldingRule FoldFUnordNotEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, false));
- }
- ConstantFoldingRule FoldFOrdLessThan() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(<, true));
- }
- ConstantFoldingRule FoldFUnordLessThan() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(<, false));
- }
- ConstantFoldingRule FoldFOrdGreaterThan() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(>, true));
- }
- ConstantFoldingRule FoldFUnordGreaterThan() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(>, false));
- }
- ConstantFoldingRule FoldFOrdLessThanEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, true));
- }
- ConstantFoldingRule FoldFUnordLessThanEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, false));
- }
- ConstantFoldingRule FoldFOrdGreaterThanEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, true));
- }
- ConstantFoldingRule FoldFUnordGreaterThanEqual() {
- return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, false));
- }
- // Folds an OpDot where all of the inputs are constants to a
- // constant. A new constant is created if necessary.
- ConstantFoldingRule FoldOpDotWithConstants() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* new_type = type_mgr->GetType(inst->type_id());
- assert(new_type->AsFloat() && "OpDot should have a float return type.");
- const analysis::Float* float_type = new_type->AsFloat();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- return nullptr;
- }
- // If one of the operands is 0, then the result is 0.
- bool has_zero_operand = false;
- for (int i = 0; i < 2; ++i) {
- if (constants[i]) {
- if (constants[i]->AsNullConstant() ||
- constants[i]->AsVectorConstant()->IsZero()) {
- has_zero_operand = true;
- break;
- }
- }
- }
- if (has_zero_operand) {
- if (float_type->width() == 32) {
- utils::FloatProxy<float> result(0.0f);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(float_type, words);
- }
- if (float_type->width() == 64) {
- utils::FloatProxy<double> result(0.0);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(float_type, words);
- }
- return nullptr;
- }
- if (constants[0] == nullptr || constants[1] == nullptr) {
- return nullptr;
- }
- std::vector<const analysis::Constant*> a_components;
- std::vector<const analysis::Constant*> b_components;
- a_components = constants[0]->GetVectorComponents(const_mgr);
- b_components = constants[1]->GetVectorComponents(const_mgr);
- utils::FloatProxy<double> result(0.0);
- std::vector<uint32_t> words = result.GetWords();
- const analysis::Constant* result_const =
- const_mgr->GetConstant(float_type, words);
- for (uint32_t i = 0; i < a_components.size() && result_const != nullptr;
- ++i) {
- if (a_components[i] == nullptr || b_components[i] == nullptr) {
- return nullptr;
- }
- const analysis::Constant* component = FOLD_FPARITH_OP(*)(
- new_type, a_components[i], b_components[i], const_mgr);
- if (component == nullptr) {
- return nullptr;
- }
- result_const =
- FOLD_FPARITH_OP(+)(new_type, result_const, component, const_mgr);
- }
- return result_const;
- };
- }
- ConstantFoldingRule FoldFNegate() { return FoldFPUnaryOp(NegateFPConst); }
- ConstantFoldingRule FoldSNegate() { return FoldUnaryOp(NegateIntConst); }
- ConstantFoldingRule FoldFClampFeedingCompare(spv::Op cmp_opcode) {
- return [cmp_opcode](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
- if (!inst->IsFloatingPointFoldingAllowed()) {
- return nullptr;
- }
- uint32_t non_const_idx = (constants[0] ? 1 : 0);
- uint32_t operand_id = inst->GetSingleWordInOperand(non_const_idx);
- Instruction* operand_inst = def_use_mgr->GetDef(operand_id);
- analysis::TypeManager* type_mgr = context->get_type_mgr();
- const analysis::Type* operand_type =
- type_mgr->GetType(operand_inst->type_id());
- if (!operand_type->AsFloat()) {
- return nullptr;
- }
- if (operand_type->AsFloat()->width() != 32 &&
- operand_type->AsFloat()->width() != 64) {
- return nullptr;
- }
- if (operand_inst->opcode() != spv::Op::OpExtInst) {
- return nullptr;
- }
- if (operand_inst->GetSingleWordInOperand(1) != GLSLstd450FClamp) {
- return nullptr;
- }
- if (constants[1] == nullptr && constants[0] == nullptr) {
- return nullptr;
- }
- uint32_t max_id = operand_inst->GetSingleWordInOperand(4);
- const analysis::Constant* max_const =
- const_mgr->FindDeclaredConstant(max_id);
- uint32_t min_id = operand_inst->GetSingleWordInOperand(3);
- const analysis::Constant* min_const =
- const_mgr->FindDeclaredConstant(min_id);
- bool found_result = false;
- bool result = false;
- switch (cmp_opcode) {
- case spv::Op::OpFOrdLessThan:
- case spv::Op::OpFUnordLessThan:
- case spv::Op::OpFOrdGreaterThanEqual:
- case spv::Op::OpFUnordGreaterThanEqual:
- if (constants[0]) {
- if (min_const) {
- if (constants[0]->GetValueAsDouble() <
- min_const->GetValueAsDouble()) {
- found_result = true;
- result = (cmp_opcode == spv::Op::OpFOrdLessThan ||
- cmp_opcode == spv::Op::OpFUnordLessThan);
- }
- }
- if (max_const) {
- if (constants[0]->GetValueAsDouble() >=
- max_const->GetValueAsDouble()) {
- found_result = true;
- result = !(cmp_opcode == spv::Op::OpFOrdLessThan ||
- cmp_opcode == spv::Op::OpFUnordLessThan);
- }
- }
- }
- if (constants[1]) {
- if (max_const) {
- if (max_const->GetValueAsDouble() <
- constants[1]->GetValueAsDouble()) {
- found_result = true;
- result = (cmp_opcode == spv::Op::OpFOrdLessThan ||
- cmp_opcode == spv::Op::OpFUnordLessThan);
- }
- }
- if (min_const) {
- if (min_const->GetValueAsDouble() >=
- constants[1]->GetValueAsDouble()) {
- found_result = true;
- result = !(cmp_opcode == spv::Op::OpFOrdLessThan ||
- cmp_opcode == spv::Op::OpFUnordLessThan);
- }
- }
- }
- break;
- case spv::Op::OpFOrdGreaterThan:
- case spv::Op::OpFUnordGreaterThan:
- case spv::Op::OpFOrdLessThanEqual:
- case spv::Op::OpFUnordLessThanEqual:
- if (constants[0]) {
- if (min_const) {
- if (constants[0]->GetValueAsDouble() <=
- min_const->GetValueAsDouble()) {
- found_result = true;
- result = (cmp_opcode == spv::Op::OpFOrdLessThanEqual ||
- cmp_opcode == spv::Op::OpFUnordLessThanEqual);
- }
- }
- if (max_const) {
- if (constants[0]->GetValueAsDouble() >
- max_const->GetValueAsDouble()) {
- found_result = true;
- result = !(cmp_opcode == spv::Op::OpFOrdLessThanEqual ||
- cmp_opcode == spv::Op::OpFUnordLessThanEqual);
- }
- }
- }
- if (constants[1]) {
- if (max_const) {
- if (max_const->GetValueAsDouble() <=
- constants[1]->GetValueAsDouble()) {
- found_result = true;
- result = (cmp_opcode == spv::Op::OpFOrdLessThanEqual ||
- cmp_opcode == spv::Op::OpFUnordLessThanEqual);
- }
- }
- if (min_const) {
- if (min_const->GetValueAsDouble() >
- constants[1]->GetValueAsDouble()) {
- found_result = true;
- result = !(cmp_opcode == spv::Op::OpFOrdLessThanEqual ||
- cmp_opcode == spv::Op::OpFUnordLessThanEqual);
- }
- }
- }
- break;
- default:
- return nullptr;
- }
- if (!found_result) {
- return nullptr;
- }
- const analysis::Type* bool_type =
- context->get_type_mgr()->GetType(inst->type_id());
- const analysis::Constant* result_const =
- const_mgr->GetConstant(bool_type, {static_cast<uint32_t>(result)});
- assert(result_const);
- return result_const;
- };
- }
- ConstantFoldingRule FoldFMix() {
- return [](IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants)
- -> const analysis::Constant* {
- analysis::ConstantManager* const_mgr = context->get_constant_mgr();
- assert(inst->opcode() == spv::Op::OpExtInst &&
- "Expecting an extended instruction.");
- assert(inst->GetSingleWordInOperand(0) ==
- context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() &&
- "Expecting a GLSLstd450 extended instruction.");
- assert(inst->GetSingleWordInOperand(1) == GLSLstd450FMix &&
- "Expecting and FMix instruction.");
- if (!inst->IsFloatingPointFoldingAllowed()) {
- return nullptr;
- }
- // Make sure all FMix operands are constants.
- for (uint32_t i = 1; i < 4; i++) {
- if (constants[i] == nullptr) {
- return nullptr;
- }
- }
- const analysis::Constant* one;
- bool is_vector = false;
- const analysis::Type* result_type = constants[1]->type();
- const analysis::Type* base_type = result_type;
- if (base_type->AsVector()) {
- is_vector = true;
- base_type = base_type->AsVector()->element_type();
- }
- assert(base_type->AsFloat() != nullptr &&
- "FMix is suppose to act on floats or vectors of floats.");
- if (base_type->AsFloat()->width() == 32) {
- one = const_mgr->GetConstant(base_type,
- utils::FloatProxy<float>(1.0f).GetWords());
- } else {
- one = const_mgr->GetConstant(base_type,
- utils::FloatProxy<double>(1.0).GetWords());
- }
- if (is_vector) {
- uint32_t one_id = const_mgr->GetDefiningInstruction(one)->result_id();
- one =
- const_mgr->GetConstant(result_type, std::vector<uint32_t>(4, one_id));
- }
- const analysis::Constant* temp1 = FoldFPBinaryOp(
- FOLD_FPARITH_OP(-), inst->type_id(), {one, constants[3]}, context);
- if (temp1 == nullptr) {
- return nullptr;
- }
- const analysis::Constant* temp2 = FoldFPBinaryOp(
- FOLD_FPARITH_OP(*), inst->type_id(), {constants[1], temp1}, context);
- if (temp2 == nullptr) {
- return nullptr;
- }
- const analysis::Constant* temp3 =
- FoldFPBinaryOp(FOLD_FPARITH_OP(*), inst->type_id(),
- {constants[2], constants[3]}, context);
- if (temp3 == nullptr) {
- return nullptr;
- }
- return FoldFPBinaryOp(FOLD_FPARITH_OP(+), inst->type_id(), {temp2, temp3},
- context);
- };
- }
- const analysis::Constant* FoldMin(const analysis::Type* result_type,
- const analysis::Constant* a,
- const analysis::Constant* b,
- analysis::ConstantManager*) {
- if (const analysis::Integer* int_type = result_type->AsInteger()) {
- if (int_type->width() == 32) {
- if (int_type->IsSigned()) {
- int32_t va = a->GetS32();
- int32_t vb = b->GetS32();
- return (va < vb ? a : b);
- } else {
- uint32_t va = a->GetU32();
- uint32_t vb = b->GetU32();
- return (va < vb ? a : b);
- }
- } else if (int_type->width() == 64) {
- if (int_type->IsSigned()) {
- int64_t va = a->GetS64();
- int64_t vb = b->GetS64();
- return (va < vb ? a : b);
- } else {
- uint64_t va = a->GetU64();
- uint64_t vb = b->GetU64();
- return (va < vb ? a : b);
- }
- }
- } else if (const analysis::Float* float_type = result_type->AsFloat()) {
- if (float_type->width() == 32) {
- float va = a->GetFloat();
- float vb = b->GetFloat();
- return (va < vb ? a : b);
- } else if (float_type->width() == 64) {
- double va = a->GetDouble();
- double vb = b->GetDouble();
- return (va < vb ? a : b);
- }
- }
- return nullptr;
- }
- const analysis::Constant* FoldMax(const analysis::Type* result_type,
- const analysis::Constant* a,
- const analysis::Constant* b,
- analysis::ConstantManager*) {
- if (const analysis::Integer* int_type = result_type->AsInteger()) {
- if (int_type->width() == 32) {
- if (int_type->IsSigned()) {
- int32_t va = a->GetS32();
- int32_t vb = b->GetS32();
- return (va > vb ? a : b);
- } else {
- uint32_t va = a->GetU32();
- uint32_t vb = b->GetU32();
- return (va > vb ? a : b);
- }
- } else if (int_type->width() == 64) {
- if (int_type->IsSigned()) {
- int64_t va = a->GetS64();
- int64_t vb = b->GetS64();
- return (va > vb ? a : b);
- } else {
- uint64_t va = a->GetU64();
- uint64_t vb = b->GetU64();
- return (va > vb ? a : b);
- }
- }
- } else if (const analysis::Float* float_type = result_type->AsFloat()) {
- if (float_type->width() == 32) {
- float va = a->GetFloat();
- float vb = b->GetFloat();
- return (va > vb ? a : b);
- } else if (float_type->width() == 64) {
- double va = a->GetDouble();
- double vb = b->GetDouble();
- return (va > vb ? a : b);
- }
- }
- return nullptr;
- }
- // Fold an clamp instruction when all three operands are constant.
- const analysis::Constant* FoldClamp1(
- IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants) {
- assert(inst->opcode() == spv::Op::OpExtInst &&
- "Expecting an extended instruction.");
- assert(inst->GetSingleWordInOperand(0) ==
- context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() &&
- "Expecting a GLSLstd450 extended instruction.");
- // Make sure all Clamp operands are constants.
- for (uint32_t i = 1; i < 4; i++) {
- if (constants[i] == nullptr) {
- return nullptr;
- }
- }
- const analysis::Constant* temp = FoldFPBinaryOp(
- FoldMax, inst->type_id(), {constants[1], constants[2]}, context);
- if (temp == nullptr) {
- return nullptr;
- }
- return FoldFPBinaryOp(FoldMin, inst->type_id(), {temp, constants[3]},
- context);
- }
- // Fold a clamp instruction when |x <= min_val|.
- const analysis::Constant* FoldClamp2(
- IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants) {
- assert(inst->opcode() == spv::Op::OpExtInst &&
- "Expecting an extended instruction.");
- assert(inst->GetSingleWordInOperand(0) ==
- context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() &&
- "Expecting a GLSLstd450 extended instruction.");
- const analysis::Constant* x = constants[1];
- const analysis::Constant* min_val = constants[2];
- if (x == nullptr || min_val == nullptr) {
- return nullptr;
- }
- const analysis::Constant* temp =
- FoldFPBinaryOp(FoldMax, inst->type_id(), {x, min_val}, context);
- if (temp == min_val) {
- // We can assume that |min_val| is less than |max_val|. Therefore, if the
- // result of the max operation is |min_val|, we know the result of the min
- // operation, even if |max_val| is not a constant.
- return min_val;
- }
- return nullptr;
- }
- // Fold a clamp instruction when |x >= max_val|.
- const analysis::Constant* FoldClamp3(
- IRContext* context, Instruction* inst,
- const std::vector<const analysis::Constant*>& constants) {
- assert(inst->opcode() == spv::Op::OpExtInst &&
- "Expecting an extended instruction.");
- assert(inst->GetSingleWordInOperand(0) ==
- context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() &&
- "Expecting a GLSLstd450 extended instruction.");
- const analysis::Constant* x = constants[1];
- const analysis::Constant* max_val = constants[3];
- if (x == nullptr || max_val == nullptr) {
- return nullptr;
- }
- const analysis::Constant* temp =
- FoldFPBinaryOp(FoldMin, inst->type_id(), {x, max_val}, context);
- if (temp == max_val) {
- // We can assume that |min_val| is less than |max_val|. Therefore, if the
- // result of the max operation is |min_val|, we know the result of the min
- // operation, even if |max_val| is not a constant.
- return max_val;
- }
- return nullptr;
- }
- UnaryScalarFoldingRule FoldFTranscendentalUnary(double (*fp)(double)) {
- return
- [fp](const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr);
- const analysis::Float* float_type = a->type()->AsFloat();
- assert(float_type != nullptr);
- assert(float_type == result_type->AsFloat());
- if (float_type->width() == 32) {
- float fa = a->GetFloat();
- float res = static_cast<float>(fp(fa));
- utils::FloatProxy<float> result(res);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(result_type, words);
- } else if (float_type->width() == 64) {
- double fa = a->GetDouble();
- double res = fp(fa);
- utils::FloatProxy<double> result(res);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(result_type, words);
- }
- return nullptr;
- };
- }
- BinaryScalarFoldingRule FoldFTranscendentalBinary(double (*fp)(double,
- double)) {
- return
- [fp](const analysis::Type* result_type, const analysis::Constant* a,
- const analysis::Constant* b,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr);
- const analysis::Float* float_type = a->type()->AsFloat();
- assert(float_type != nullptr);
- assert(float_type == result_type->AsFloat());
- assert(float_type == b->type()->AsFloat());
- if (float_type->width() == 32) {
- float fa = a->GetFloat();
- float fb = b->GetFloat();
- float res = static_cast<float>(fp(fa, fb));
- utils::FloatProxy<float> result(res);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(result_type, words);
- } else if (float_type->width() == 64) {
- double fa = a->GetDouble();
- double fb = b->GetDouble();
- double res = fp(fa, fb);
- utils::FloatProxy<double> result(res);
- std::vector<uint32_t> words = result.GetWords();
- return const_mgr->GetConstant(result_type, words);
- }
- return nullptr;
- };
- }
- enum Sign { Signed, Unsigned };
- // Returns a BinaryScalarFoldingRule that applies `op` to the scalars.
- // The `signedness` is used to determine if the operands should be interpreted
- // as signed or unsigned. If the operands are signed, the value will be sign
- // extended before the value is passed to `op`. Otherwise the values will be
- // zero extended.
- template <Sign signedness>
- BinaryScalarFoldingRule FoldBinaryIntegerOperation(uint64_t (*op)(uint64_t,
- uint64_t)) {
- return
- [op](const analysis::Type* result_type, const analysis::Constant* a,
- const analysis::Constant* b,
- analysis::ConstantManager* const_mgr) -> const analysis::Constant* {
- assert(result_type != nullptr && a != nullptr && b != nullptr);
- const analysis::Integer* integer_type = result_type->AsInteger();
- assert(integer_type != nullptr);
- assert(a->type()->kind() == analysis::Type::kInteger);
- assert(b->type()->kind() == analysis::Type::kInteger);
- assert(integer_type->width() == a->type()->AsInteger()->width());
- assert(integer_type->width() == b->type()->AsInteger()->width());
- // In SPIR-V, all operations support unsigned types, but the way they
- // are interpreted depends on the opcode. This is why we use the
- // template argument to determine how to interpret the operands.
- uint64_t ia = (signedness == Signed ? a->GetSignExtendedValue()
- : a->GetZeroExtendedValue());
- uint64_t ib = (signedness == Signed ? b->GetSignExtendedValue()
- : b->GetZeroExtendedValue());
- uint64_t result = op(ia, ib);
- const analysis::Constant* result_constant =
- const_mgr->GenerateIntegerConstant(integer_type, result);
- return result_constant;
- };
- }
- // A scalar folding rule that folds OpSConvert.
- const analysis::Constant* FoldScalarSConvert(
- const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) {
- assert(result_type != nullptr);
- assert(a != nullptr);
- assert(const_mgr != nullptr);
- const analysis::Integer* integer_type = result_type->AsInteger();
- assert(integer_type && "The result type of an SConvert");
- int64_t value = a->GetSignExtendedValue();
- return const_mgr->GenerateIntegerConstant(integer_type, value);
- }
- // A scalar folding rule that folds OpUConvert.
- const analysis::Constant* FoldScalarUConvert(
- const analysis::Type* result_type, const analysis::Constant* a,
- analysis::ConstantManager* const_mgr) {
- assert(result_type != nullptr);
- assert(a != nullptr);
- assert(const_mgr != nullptr);
- const analysis::Integer* integer_type = result_type->AsInteger();
- assert(integer_type && "The result type of an UConvert");
- uint64_t value = a->GetZeroExtendedValue();
- // If the operand was an unsigned value with less than 32-bit, it would have
- // been sign extended earlier, and we need to clear those bits.
- auto* operand_type = a->type()->AsInteger();
- value = utils::ClearHighBits(value, 64 - operand_type->width());
- return const_mgr->GenerateIntegerConstant(integer_type, value);
- }
- } // namespace
- void ConstantFoldingRules::AddFoldingRules() {
- // Add all folding rules to the list for the opcodes to which they apply.
- // Note that the order in which rules are added to the list matters. If a rule
- // applies to the instruction, the rest of the rules will not be attempted.
- // Take that into consideration.
- rules_[spv::Op::OpCompositeConstruct].push_back(FoldCompositeWithConstants());
- rules_[spv::Op::OpCompositeExtract].push_back(FoldExtractWithConstants());
- rules_[spv::Op::OpCompositeInsert].push_back(FoldInsertWithConstants());
- rules_[spv::Op::OpConvertFToS].push_back(FoldFToI());
- rules_[spv::Op::OpConvertFToU].push_back(FoldFToI());
- rules_[spv::Op::OpConvertSToF].push_back(FoldIToF());
- rules_[spv::Op::OpConvertUToF].push_back(FoldIToF());
- rules_[spv::Op::OpSConvert].push_back(FoldUnaryOp(FoldScalarSConvert));
- rules_[spv::Op::OpUConvert].push_back(FoldUnaryOp(FoldScalarUConvert));
- rules_[spv::Op::OpDot].push_back(FoldOpDotWithConstants());
- rules_[spv::Op::OpFAdd].push_back(FoldFAdd());
- rules_[spv::Op::OpFDiv].push_back(FoldFDiv());
- rules_[spv::Op::OpFMul].push_back(FoldFMul());
- rules_[spv::Op::OpFSub].push_back(FoldFSub());
- rules_[spv::Op::OpFOrdEqual].push_back(FoldFOrdEqual());
- rules_[spv::Op::OpFUnordEqual].push_back(FoldFUnordEqual());
- rules_[spv::Op::OpFOrdNotEqual].push_back(FoldFOrdNotEqual());
- rules_[spv::Op::OpFUnordNotEqual].push_back(FoldFUnordNotEqual());
- rules_[spv::Op::OpFOrdLessThan].push_back(FoldFOrdLessThan());
- rules_[spv::Op::OpFOrdLessThan].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFOrdLessThan));
- rules_[spv::Op::OpFUnordLessThan].push_back(FoldFUnordLessThan());
- rules_[spv::Op::OpFUnordLessThan].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFUnordLessThan));
- rules_[spv::Op::OpFOrdGreaterThan].push_back(FoldFOrdGreaterThan());
- rules_[spv::Op::OpFOrdGreaterThan].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFOrdGreaterThan));
- rules_[spv::Op::OpFUnordGreaterThan].push_back(FoldFUnordGreaterThan());
- rules_[spv::Op::OpFUnordGreaterThan].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFUnordGreaterThan));
- rules_[spv::Op::OpFOrdLessThanEqual].push_back(FoldFOrdLessThanEqual());
- rules_[spv::Op::OpFOrdLessThanEqual].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFOrdLessThanEqual));
- rules_[spv::Op::OpFUnordLessThanEqual].push_back(FoldFUnordLessThanEqual());
- rules_[spv::Op::OpFUnordLessThanEqual].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFUnordLessThanEqual));
- rules_[spv::Op::OpFOrdGreaterThanEqual].push_back(FoldFOrdGreaterThanEqual());
- rules_[spv::Op::OpFOrdGreaterThanEqual].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFOrdGreaterThanEqual));
- rules_[spv::Op::OpFUnordGreaterThanEqual].push_back(
- FoldFUnordGreaterThanEqual());
- rules_[spv::Op::OpFUnordGreaterThanEqual].push_back(
- FoldFClampFeedingCompare(spv::Op::OpFUnordGreaterThanEqual));
- rules_[spv::Op::OpVectorShuffle].push_back(FoldVectorShuffleWithConstants());
- rules_[spv::Op::OpVectorTimesScalar].push_back(FoldVectorTimesScalar());
- rules_[spv::Op::OpVectorTimesMatrix].push_back(FoldVectorTimesMatrix());
- rules_[spv::Op::OpMatrixTimesVector].push_back(FoldMatrixTimesVector());
- rules_[spv::Op::OpTranspose].push_back(FoldTranspose);
- rules_[spv::Op::OpFNegate].push_back(FoldFNegate());
- rules_[spv::Op::OpSNegate].push_back(FoldSNegate());
- rules_[spv::Op::OpQuantizeToF16].push_back(FoldQuantizeToF16());
- rules_[spv::Op::OpIAdd].push_back(
- FoldBinaryOp(FoldBinaryIntegerOperation<Unsigned>(
- [](uint64_t a, uint64_t b) { return a + b; })));
- rules_[spv::Op::OpISub].push_back(
- FoldBinaryOp(FoldBinaryIntegerOperation<Unsigned>(
- [](uint64_t a, uint64_t b) { return a - b; })));
- rules_[spv::Op::OpIMul].push_back(
- FoldBinaryOp(FoldBinaryIntegerOperation<Unsigned>(
- [](uint64_t a, uint64_t b) { return a * b; })));
- rules_[spv::Op::OpUDiv].push_back(
- FoldBinaryOp(FoldBinaryIntegerOperation<Unsigned>(
- [](uint64_t a, uint64_t b) { return (b != 0 ? a / b : 0); })));
- rules_[spv::Op::OpSDiv].push_back(FoldBinaryOp(
- FoldBinaryIntegerOperation<Signed>([](uint64_t a, uint64_t b) {
- return (b != 0 ? static_cast<uint64_t>(static_cast<int64_t>(a) /
- static_cast<int64_t>(b))
- : 0);
- })));
- rules_[spv::Op::OpUMod].push_back(
- FoldBinaryOp(FoldBinaryIntegerOperation<Unsigned>(
- [](uint64_t a, uint64_t b) { return (b != 0 ? a % b : 0); })));
- rules_[spv::Op::OpSRem].push_back(FoldBinaryOp(
- FoldBinaryIntegerOperation<Signed>([](uint64_t a, uint64_t b) {
- return (b != 0 ? static_cast<uint64_t>(static_cast<int64_t>(a) %
- static_cast<int64_t>(b))
- : 0);
- })));
- rules_[spv::Op::OpSMod].push_back(FoldBinaryOp(
- FoldBinaryIntegerOperation<Signed>([](uint64_t a, uint64_t b) {
- if (b == 0) return static_cast<uint64_t>(0ull);
- int64_t signed_a = static_cast<int64_t>(a);
- int64_t signed_b = static_cast<int64_t>(b);
- int64_t result = signed_a % signed_b;
- if ((signed_b < 0) != (result < 0)) result += signed_b;
- return static_cast<uint64_t>(result);
- })));
- // Add rules for GLSLstd450
- FeatureManager* feature_manager = context_->get_feature_mgr();
- uint32_t ext_inst_glslstd450_id =
- feature_manager->GetExtInstImportId_GLSLstd450();
- if (ext_inst_glslstd450_id != 0) {
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMix}].push_back(FoldFMix());
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMin}].push_back(
- FoldFPBinaryOp(FoldMin));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMin}].push_back(
- FoldFPBinaryOp(FoldMin));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMin}].push_back(
- FoldFPBinaryOp(FoldMin));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMax}].push_back(
- FoldFPBinaryOp(FoldMax));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMax}].push_back(
- FoldFPBinaryOp(FoldMax));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMax}].push_back(
- FoldFPBinaryOp(FoldMax));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back(
- FoldClamp1);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back(
- FoldClamp2);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back(
- FoldClamp3);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back(
- FoldClamp1);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back(
- FoldClamp2);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back(
- FoldClamp3);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back(
- FoldClamp1);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back(
- FoldClamp2);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back(
- FoldClamp3);
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sin}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::sin)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Cos}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::cos)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Tan}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::tan)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Asin}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::asin)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Acos}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::acos)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::atan)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::log)));
- #ifdef __ANDROID__
- // Android NDK r15c targeting ABI 15 doesn't have full support for C++11
- // (no std::exp2/log2). ::exp2 is available from C99 but ::log2 isn't
- // available up until ABI 18 so we use a shim
- auto log2_shim = [](double v) -> double { return log(v) / log(2.0); };
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(::exp2)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(log2_shim)));
- #else
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp2)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::log2)));
- #endif
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sqrt}].push_back(
- FoldFPUnaryOp(FoldFTranscendentalUnary(std::sqrt)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan2}].push_back(
- FoldFPBinaryOp(FoldFTranscendentalBinary(std::atan2)));
- ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Pow}].push_back(
- FoldFPBinaryOp(FoldFTranscendentalBinary(std::pow)));
- }
- }
- } // namespace opt
- } // namespace spvtools
|