| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- // Copyright (c) 2021 Google LLC.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "source/opt/control_dependence.h"
- #include <cassert>
- #include <tuple>
- #include "source/opt/basic_block.h"
- #include "source/opt/cfg.h"
- #include "source/opt/dominator_analysis.h"
- #include "source/opt/function.h"
- #include "source/opt/instruction.h"
- // Computes the control dependence graph (CDG) using the algorithm in Cytron
- // 1991, "Efficiently Computing Static Single Assignment Form and the Control
- // Dependence Graph." It relies on the fact that the control dependence sources
- // (blocks on which a block is control dependent) are exactly the post-dominance
- // frontier for that block. The explanation and proofs are given in Section 6 of
- // that paper.
- // Link: https://www.cs.utexas.edu/~pingali/CS380C/2010/papers/ssaCytron.pdf
- //
- // The algorithm in Section 4.2 of the same paper is used to construct the
- // dominance frontier. It uses the post-dominance tree, which is available in
- // the IR context.
- namespace spvtools {
- namespace opt {
- constexpr uint32_t ControlDependenceAnalysis::kPseudoEntryBlock;
- uint32_t ControlDependence::GetConditionID(const CFG& cfg) const {
- if (source_bb_id() == 0) {
- // Entry dependence; return 0.
- return 0;
- }
- const BasicBlock* source_bb = cfg.block(source_bb_id());
- const Instruction* branch = source_bb->terminator();
- assert((branch->opcode() == spv::Op::OpBranchConditional ||
- branch->opcode() == spv::Op::OpSwitch) &&
- "invalid control dependence; last instruction must be conditional "
- "branch or switch");
- return branch->GetSingleWordInOperand(0);
- }
- bool ControlDependence::operator<(const ControlDependence& other) const {
- return std::tie(source_bb_id_, target_bb_id_, branch_target_bb_id_) <
- std::tie(other.source_bb_id_, other.target_bb_id_,
- other.branch_target_bb_id_);
- }
- bool ControlDependence::operator==(const ControlDependence& other) const {
- return std::tie(source_bb_id_, target_bb_id_, branch_target_bb_id_) ==
- std::tie(other.source_bb_id_, other.target_bb_id_,
- other.branch_target_bb_id_);
- }
- std::ostream& operator<<(std::ostream& os, const ControlDependence& dep) {
- os << dep.source_bb_id() << "->" << dep.target_bb_id();
- if (dep.branch_target_bb_id() != dep.target_bb_id()) {
- os << " through " << dep.branch_target_bb_id();
- }
- return os;
- }
- void ControlDependenceAnalysis::ComputePostDominanceFrontiers(
- const CFG& cfg, const PostDominatorAnalysis& pdom) {
- // Compute post-dominance frontiers (reverse graph).
- // The dominance frontier for a block X is equal to (Equation 4)
- // DF_local(X) U { B in DF_up(Z) | X = ipdom(Z) }
- // (ipdom(Z) is the immediate post-dominator of Z.)
- // where
- // DF_local(X) = { Y | X -> Y in CFG, X does not strictly post-dominate Y }
- // represents the contribution of X's predecessors to the DF, and
- // DF_up(Z) = { Y | Y in DF(Z), ipdom(Z) does not strictly post-dominate Y }
- // (note: ipdom(Z) = X.)
- // represents the contribution of a block to its immediate post-
- // dominator's DF.
- // This is computed in one pass through a post-order traversal of the
- // post-dominator tree.
- // Assert that there is a block other than the pseudo exit in the pdom tree,
- // as we need one to get the function entry point (as the pseudo exit is not
- // actually part of the function.)
- assert(!cfg.IsPseudoExitBlock(pdom.GetDomTree().post_begin()->bb_));
- Function* function = pdom.GetDomTree().post_begin()->bb_->GetParent();
- uint32_t function_entry = function->entry()->id();
- // Explicitly initialize pseudo-entry block, as it doesn't depend on anything,
- // so it won't be initialized in the following loop.
- reverse_nodes_[kPseudoEntryBlock] = {};
- for (auto it = pdom.GetDomTree().post_cbegin();
- it != pdom.GetDomTree().post_cend(); ++it) {
- ComputePostDominanceFrontierForNode(cfg, pdom, function_entry, *it);
- }
- }
- void ControlDependenceAnalysis::ComputePostDominanceFrontierForNode(
- const CFG& cfg, const PostDominatorAnalysis& pdom, uint32_t function_entry,
- const DominatorTreeNode& pdom_node) {
- const uint32_t label = pdom_node.id();
- ControlDependenceList& edges = reverse_nodes_[label];
- for (uint32_t pred : cfg.preds(label)) {
- if (!pdom.StrictlyDominates(label, pred)) {
- edges.push_back(ControlDependence(pred, label));
- }
- }
- if (label == function_entry) {
- // Add edge from pseudo-entry to entry.
- // In CDG construction, an edge is added from entry to exit, so only the
- // exit node can post-dominate entry.
- edges.push_back(ControlDependence(kPseudoEntryBlock, label));
- }
- for (DominatorTreeNode* child : pdom_node) {
- // Note: iterate dependences by value, as we need a copy.
- for (const ControlDependence& dep : reverse_nodes_[child->id()]) {
- // Special-case pseudo-entry, as above.
- if (dep.source_bb_id() == kPseudoEntryBlock ||
- !pdom.StrictlyDominates(label, dep.source_bb_id())) {
- edges.push_back(ControlDependence(dep.source_bb_id(), label,
- dep.branch_target_bb_id()));
- }
- }
- }
- }
- void ControlDependenceAnalysis::ComputeControlDependenceGraph(
- const CFG& cfg, const PostDominatorAnalysis& pdom) {
- ComputePostDominanceFrontiers(cfg, pdom);
- ComputeForwardGraphFromReverse();
- }
- void ControlDependenceAnalysis::ComputeForwardGraphFromReverse() {
- for (const auto& entry : reverse_nodes_) {
- // Ensure an entry is created for each node.
- forward_nodes_[entry.first];
- for (const ControlDependence& dep : entry.second) {
- forward_nodes_[dep.source_bb_id()].push_back(dep);
- }
- }
- }
- } // namespace opt
- } // namespace spvtools
|