| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- // Copyright (c) 2017 Google Inc.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef SOURCE_OPT_PROPAGATOR_H_
- #define SOURCE_OPT_PROPAGATOR_H_
- #include <functional>
- #include <queue>
- #include <set>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "source/opt/ir_context.h"
- #include "source/opt/module.h"
- namespace spvtools {
- namespace opt {
- // Represents a CFG control edge.
- struct Edge {
- Edge(BasicBlock* b1, BasicBlock* b2) : source(b1), dest(b2) {
- assert(source && "CFG edges cannot have a null source block.");
- assert(dest && "CFG edges cannot have a null destination block.");
- }
- BasicBlock* source;
- BasicBlock* dest;
- bool operator<(const Edge& o) const {
- return std::make_pair(source->id(), dest->id()) <
- std::make_pair(o.source->id(), o.dest->id());
- }
- };
- // This class implements a generic value propagation algorithm based on the
- // conditional constant propagation algorithm proposed in
- //
- // Constant propagation with conditional branches,
- // Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
- //
- // A Propagation Engine for GCC
- // Diego Novillo, GCC Summit 2005
- // http://ols.fedoraproject.org/GCC/Reprints-2005/novillo-Reprint.pdf
- //
- // The purpose of this implementation is to act as a common framework for any
- // transformation that needs to propagate values from statements producing new
- // values to statements using those values. Simulation proceeds as follows:
- //
- // 1- Initially, all edges of the CFG are marked not executable and the CFG
- // worklist is seeded with all the statements in the entry basic block.
- //
- // 2- Every instruction I is simulated by calling a pass-provided function
- // |visit_fn|. This function is responsible for three things:
- //
- // (a) Keep a value table of interesting values. This table maps SSA IDs to
- // their values. For instance, when implementing constant propagation,
- // given a store operation 'OpStore %f %int_3', |visit_fn| should assign
- // the value 3 to the table slot for %f.
- //
- // In general, |visit_fn| will need to use the value table to replace its
- // operands, fold the result and decide whether a new value needs to be
- // stored in the table. |visit_fn| should only create a new mapping in
- // the value table if all the operands in the instruction are known and
- // present in the value table.
- //
- // (b) Return a status indicator to direct the propagator logic. Once the
- // instruction is simulated, the propagator needs to know whether this
- // instruction produced something interesting. This is indicated via
- // |visit_fn|'s return value:
- //
- // SSAPropagator::kNotInteresting: Instruction I produces nothing of
- // interest and does not affect any of the work lists. The
- // propagator will visit the statement again if any of its operands
- // produce an interesting value in the future.
- //
- // |visit_fn| should always return this value when it is not sure
- // whether the instruction will produce an interesting value in the
- // future or not. For instance, for constant propagation, an OpIAdd
- // instruction may produce a constant if its two operands are
- // constant, but the first time we visit the instruction, we still
- // may not have its operands in the value table.
- //
- // SSAPropagator::kVarying: The value produced by I cannot be determined
- // at compile time. Further simulation of I is not required. The
- // propagator will not visit this instruction again. Additionally,
- // the propagator will add all the instructions at the end of SSA
- // def-use edges to be simulated again.
- //
- // If I is a basic block terminator, it will mark all outgoing edges
- // as executable so they are traversed one more time. Eventually
- // the kVarying attribute will be spread out to all the data and
- // control dependents for I.
- //
- // It is important for propagation to use kVarying as a bottom value
- // for the propagation lattice. It should never be possible for an
- // instruction to return kVarying once and kInteresting on a second
- // visit. Otherwise, propagation would not stabilize.
- //
- // SSAPropagator::kInteresting: Instruction I produces a value that can
- // be computed at compile time. In this case, |visit_fn| should
- // create a new mapping between I's result ID and the produced
- // value. Much like the kNotInteresting case, the propagator will
- // visit this instruction again if any of its operands changes.
- // This is useful when the statement changes from one interesting
- // state to another.
- //
- // (c) For conditional branches, |visit_fn| may decide which edge to take out
- // of I's basic block. For example, if the operand for an OpSwitch is
- // known to take a specific constant value, |visit_fn| should figure out
- // the destination basic block and pass it back by setting the second
- // argument to |visit_fn|.
- //
- // At the end of propagation, values in the value table are guaranteed to be
- // stable and can be replaced in the IR.
- //
- // 3- The propagator keeps two work queues. Instructions are only added to
- // these queues if they produce an interesting or varying value. None of this
- // should be handled by |visit_fn|. The propagator keeps track of this
- // automatically (see SSAPropagator::Simulate for implementation).
- //
- // CFG blocks: contains the queue of blocks to be simulated.
- // Blocks are added to this queue if their incoming edges are
- // executable.
- //
- // SSA Edges: An SSA edge is a def-use edge between a value-producing
- // instruction and its use instruction. The SSA edges list
- // contains the statements at the end of a def-use edge that need
- // to be re-visited when an instruction produces a kVarying or
- // kInteresting result.
- //
- // 4- Simulation terminates when all work queues are drained.
- //
- //
- // EXAMPLE: Basic constant store propagator.
- //
- // Suppose we want to propagate all constant assignments of the form "OpStore
- // %id %cst" where "%id" is some variable and "%cst" an OpConstant. The
- // following code builds a table |values| where every id that was assigned a
- // constant value is mapped to the constant value it was assigned.
- //
- // auto ctx = BuildModule(...);
- // std::map<uint32_t, uint32_t> values;
- // const auto visit_fn = [&ctx, &values](Instruction* instr,
- // BasicBlock** dest_bb) {
- // if (instr->opcode() == spv::Op::OpStore) {
- // uint32_t rhs_id = instr->GetSingleWordOperand(1);
- // Instruction* rhs_def = ctx->get_def_use_mgr()->GetDef(rhs_id);
- // if (rhs_def->opcode() == spv::Op::OpConstant) {
- // uint32_t val = rhs_def->GetSingleWordOperand(2);
- // values[rhs_id] = val;
- // return SSAPropagator::kInteresting;
- // }
- // }
- // return SSAPropagator::kVarying;
- // };
- // SSAPropagator propagator(ctx.get(), &cfg, visit_fn);
- // propagator.Run(&fn);
- //
- // Given the code:
- //
- // %int_4 = OpConstant %int 4
- // %int_3 = OpConstant %int 3
- // %int_1 = OpConstant %int 1
- // OpStore %x %int_4
- // OpStore %y %int_3
- // OpStore %z %int_1
- //
- // After SSAPropagator::Run returns, the |values| map will contain the entries:
- // values[%x] = 4, values[%y] = 3, and, values[%z] = 1.
- class SSAPropagator {
- public:
- // Lattice values used for propagation. See class documentation for
- // a description.
- enum PropStatus { kNotInteresting, kInteresting, kVarying };
- using VisitFunction = std::function<PropStatus(Instruction*, BasicBlock**)>;
- SSAPropagator(IRContext* context, const VisitFunction& visit_fn)
- : ctx_(context), visit_fn_(visit_fn) {}
- // Runs the propagator on function |fn|. Returns true if changes were made to
- // the function. Otherwise, it returns false.
- bool Run(Function* fn);
- // Returns true if the |i|th argument for |phi| comes through a CFG edge that
- // has been marked executable. |i| should be an index value accepted by
- // Instruction::GetSingleWordOperand.
- bool IsPhiArgExecutable(Instruction* phi, uint32_t i) const;
- // Returns true if |inst| has a recorded status. This will be true once |inst|
- // has been simulated once.
- bool HasStatus(Instruction* inst) const { return statuses_.count(inst); }
- // Returns the current propagation status of |inst|. Assumes
- // |HasStatus(inst)| returns true.
- PropStatus Status(Instruction* inst) const {
- return statuses_.find(inst)->second;
- }
- // Records the propagation status |status| for |inst|. Returns true if the
- // status for |inst| has changed or set was set for the first time.
- bool SetStatus(Instruction* inst, PropStatus status);
- private:
- // Initialize processing.
- void Initialize(Function* fn);
- // Simulate the execution |block| by calling |visit_fn_| on every instruction
- // in it.
- bool Simulate(BasicBlock* block);
- // Simulate the execution of |instr| by replacing all the known values in
- // every operand and determining whether the result is interesting for
- // propagation. This invokes the callback function |visit_fn_| to determine
- // the value computed by |instr|.
- bool Simulate(Instruction* instr);
- // Returns true if |instr| should be simulated again.
- bool ShouldSimulateAgain(Instruction* instr) const {
- return do_not_simulate_.find(instr) == do_not_simulate_.end();
- }
- // Add |instr| to the set of instructions not to simulate again.
- void DontSimulateAgain(Instruction* instr) { do_not_simulate_.insert(instr); }
- // Returns true if |block| has been simulated already.
- bool BlockHasBeenSimulated(BasicBlock* block) const {
- return simulated_blocks_.find(block) != simulated_blocks_.end();
- }
- // Marks block |block| as simulated.
- void MarkBlockSimulated(BasicBlock* block) {
- simulated_blocks_.insert(block);
- }
- // Marks |edge| as executable. Returns false if the edge was already marked
- // as executable.
- bool MarkEdgeExecutable(const Edge& edge) {
- return executable_edges_.insert(edge).second;
- }
- // Returns true if |edge| has been marked as executable.
- bool IsEdgeExecutable(const Edge& edge) const {
- return executable_edges_.find(edge) != executable_edges_.end();
- }
- // Returns a pointer to the def-use manager for |ctx_|.
- analysis::DefUseManager* get_def_use_mgr() const {
- return ctx_->get_def_use_mgr();
- }
- // If the CFG edge |e| has not been executed, this function adds |e|'s
- // destination block to the work list.
- void AddControlEdge(const Edge& e);
- // Adds all the instructions that use the result of |instr| to the SSA edges
- // work list. If |instr| produces no result id, this does nothing.
- void AddSSAEdges(Instruction* instr);
- // IR context to use.
- IRContext* ctx_;
- // Function that visits instructions during simulation. The output of this
- // function is used to determine if the simulated instruction produced a value
- // interesting for propagation. The function is responsible for keeping
- // track of interesting values by storing them in some user-provided map.
- VisitFunction visit_fn_;
- // SSA def-use edges to traverse. Each entry is a destination statement for an
- // SSA def-use edge as returned by |def_use_manager_|.
- std::queue<Instruction*> ssa_edge_uses_;
- // Blocks to simulate.
- std::queue<BasicBlock*> blocks_;
- // Blocks simulated during propagation.
- std::unordered_set<BasicBlock*> simulated_blocks_;
- // Set of instructions that should not be simulated again because they have
- // been found to be in the kVarying state.
- std::unordered_set<Instruction*> do_not_simulate_;
- // Map between a basic block and its predecessor edges.
- // TODO(dnovillo): Move this to CFG and always build them. Alternately,
- // move it to IRContext and build CFG preds/succs on-demand.
- std::unordered_map<BasicBlock*, std::vector<Edge>> bb_preds_;
- // Map between a basic block and its successor edges.
- // TODO(dnovillo): Move this to CFG and always build them. Alternately,
- // move it to IRContext and build CFG preds/succs on-demand.
- std::unordered_map<BasicBlock*, std::vector<Edge>> bb_succs_;
- // Set of executable CFG edges.
- std::set<Edge> executable_edges_;
- // Tracks instruction propagation status.
- std::unordered_map<Instruction*, SSAPropagator::PropStatus> statuses_;
- };
- std::ostream& operator<<(std::ostream& str,
- const SSAPropagator::PropStatus& status);
- } // namespace opt
- } // namespace spvtools
- #endif // SOURCE_OPT_PROPAGATOR_H_
|